refactor CUDA HOG algorithm:
use abstract interface with hidden implementation
This commit is contained in:
@@ -48,9 +48,10 @@ using namespace cvtest;
|
||||
|
||||
//#define DUMP
|
||||
|
||||
struct HOG : testing::TestWithParam<cv::cuda::DeviceInfo>, cv::cuda::HOGDescriptor
|
||||
struct HOG : testing::TestWithParam<cv::cuda::DeviceInfo>
|
||||
{
|
||||
cv::cuda::DeviceInfo devInfo;
|
||||
cv::Ptr<cv::cuda::HOG> hog;
|
||||
|
||||
#ifdef DUMP
|
||||
std::ofstream f;
|
||||
@@ -69,23 +70,13 @@ struct HOG : testing::TestWithParam<cv::cuda::DeviceInfo>, cv::cuda::HOGDescript
|
||||
devInfo = GetParam();
|
||||
|
||||
cv::cuda::setDevice(devInfo.deviceID());
|
||||
|
||||
hog = cv::cuda::HOG::create();
|
||||
}
|
||||
|
||||
#ifdef DUMP
|
||||
void dump(const cv::Mat& blockHists, const std::vector<cv::Point>& locations)
|
||||
void dump(const std::vector<cv::Point>& locations)
|
||||
{
|
||||
f.write((char*)&blockHists.rows, sizeof(blockHists.rows));
|
||||
f.write((char*)&blockHists.cols, sizeof(blockHists.cols));
|
||||
|
||||
for (int i = 0; i < blockHists.rows; ++i)
|
||||
{
|
||||
for (int j = 0; j < blockHists.cols; ++j)
|
||||
{
|
||||
float val = blockHists.at<float>(i, j);
|
||||
f.write((char*)&val, sizeof(val));
|
||||
}
|
||||
}
|
||||
|
||||
int nlocations = locations.size();
|
||||
f.write((char*)&nlocations, sizeof(nlocations));
|
||||
|
||||
@@ -93,21 +84,18 @@ struct HOG : testing::TestWithParam<cv::cuda::DeviceInfo>, cv::cuda::HOGDescript
|
||||
f.write((char*)&locations[i], sizeof(locations[i]));
|
||||
}
|
||||
#else
|
||||
void compare(const cv::Mat& blockHists, const std::vector<cv::Point>& locations)
|
||||
void compare(const std::vector<cv::Point>& locations)
|
||||
{
|
||||
// skip block_hists check
|
||||
int rows, cols;
|
||||
f.read((char*)&rows, sizeof(rows));
|
||||
f.read((char*)&cols, sizeof(cols));
|
||||
ASSERT_EQ(rows, blockHists.rows);
|
||||
ASSERT_EQ(cols, blockHists.cols);
|
||||
|
||||
for (int i = 0; i < blockHists.rows; ++i)
|
||||
for (int i = 0; i < rows; ++i)
|
||||
{
|
||||
for (int j = 0; j < blockHists.cols; ++j)
|
||||
for (int j = 0; j < cols; ++j)
|
||||
{
|
||||
float val;
|
||||
f.read((char*)&val, sizeof(val));
|
||||
ASSERT_NEAR(val, blockHists.at<float>(i, j), 1e-3);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -126,54 +114,41 @@ struct HOG : testing::TestWithParam<cv::cuda::DeviceInfo>, cv::cuda::HOGDescript
|
||||
|
||||
void testDetect(const cv::Mat& img)
|
||||
{
|
||||
gamma_correction = false;
|
||||
setSVMDetector(cv::cuda::HOGDescriptor::getDefaultPeopleDetector());
|
||||
hog->setGammaCorrection(false);
|
||||
hog->setSVMDetector(hog->getDefaultPeopleDetector());
|
||||
|
||||
std::vector<cv::Point> locations;
|
||||
|
||||
// Test detect
|
||||
detect(loadMat(img), locations, 0);
|
||||
hog->detect(loadMat(img), locations);
|
||||
|
||||
#ifdef DUMP
|
||||
dump(cv::Mat(block_hists), locations);
|
||||
dump(locations);
|
||||
#else
|
||||
compare(cv::Mat(block_hists), locations);
|
||||
compare(locations);
|
||||
#endif
|
||||
|
||||
// Test detect on smaller image
|
||||
cv::Mat img2;
|
||||
cv::resize(img, img2, cv::Size(img.cols / 2, img.rows / 2));
|
||||
detect(loadMat(img2), locations, 0);
|
||||
hog->detect(loadMat(img2), locations);
|
||||
|
||||
#ifdef DUMP
|
||||
dump(cv::Mat(block_hists), locations);
|
||||
dump(locations);
|
||||
#else
|
||||
compare(cv::Mat(block_hists), locations);
|
||||
compare(locations);
|
||||
#endif
|
||||
|
||||
// Test detect on greater image
|
||||
cv::resize(img, img2, cv::Size(img.cols * 2, img.rows * 2));
|
||||
detect(loadMat(img2), locations, 0);
|
||||
hog->detect(loadMat(img2), locations);
|
||||
|
||||
#ifdef DUMP
|
||||
dump(cv::Mat(block_hists), locations);
|
||||
dump(locations);
|
||||
#else
|
||||
compare(cv::Mat(block_hists), locations);
|
||||
compare(locations);
|
||||
#endif
|
||||
}
|
||||
|
||||
// Does not compare border value, as interpolation leads to delta
|
||||
void compare_inner_parts(cv::Mat d1, cv::Mat d2)
|
||||
{
|
||||
for (int i = 1; i < blocks_per_win_y - 1; ++i)
|
||||
for (int j = 1; j < blocks_per_win_x - 1; ++j)
|
||||
for (int k = 0; k < block_hist_size; ++k)
|
||||
{
|
||||
float a = d1.at<float>(0, (i * blocks_per_win_x + j) * block_hist_size);
|
||||
float b = d2.at<float>(0, (i * blocks_per_win_x + j) * block_hist_size);
|
||||
ASSERT_FLOAT_EQ(a, b);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// desabled while resize does not fixed
|
||||
@@ -182,13 +157,8 @@ CUDA_TEST_P(HOG, DISABLED_Detect)
|
||||
cv::Mat img_rgb = readImage("hog/road.png");
|
||||
ASSERT_FALSE(img_rgb.empty());
|
||||
|
||||
#ifdef DUMP
|
||||
f.open((std::string(cvtest::TS::ptr()->get_data_path()) + "hog/expected_output.bin").c_str(), std::ios_base::binary);
|
||||
ASSERT_TRUE(f.is_open());
|
||||
#else
|
||||
f.open((std::string(cvtest::TS::ptr()->get_data_path()) + "hog/expected_output.bin").c_str(), std::ios_base::binary);
|
||||
ASSERT_TRUE(f.is_open());
|
||||
#endif
|
||||
|
||||
// Test on color image
|
||||
cv::Mat img;
|
||||
@@ -198,8 +168,6 @@ CUDA_TEST_P(HOG, DISABLED_Detect)
|
||||
// Test on gray image
|
||||
cv::cvtColor(img_rgb, img, cv::COLOR_BGR2GRAY);
|
||||
testDetect(img);
|
||||
|
||||
f.close();
|
||||
}
|
||||
|
||||
CUDA_TEST_P(HOG, GetDescriptors)
|
||||
@@ -216,8 +184,14 @@ CUDA_TEST_P(HOG, GetDescriptors)
|
||||
|
||||
// Convert train images into feature vectors (train table)
|
||||
cv::cuda::GpuMat descriptors, descriptors_by_cols;
|
||||
getDescriptors(d_img, win_size, descriptors, DESCR_FORMAT_ROW_BY_ROW);
|
||||
getDescriptors(d_img, win_size, descriptors_by_cols, DESCR_FORMAT_COL_BY_COL);
|
||||
|
||||
hog->setWinStride(Size(64, 128));
|
||||
|
||||
hog->setDescriptorFormat(cv::cuda::HOG::DESCR_FORMAT_ROW_BY_ROW);
|
||||
hog->compute(d_img, descriptors);
|
||||
|
||||
hog->setDescriptorFormat(cv::cuda::HOG::DESCR_FORMAT_COL_BY_COL);
|
||||
hog->compute(d_img, descriptors_by_cols);
|
||||
|
||||
// Check size of the result train table
|
||||
wins_per_img_x = 3;
|
||||
@@ -242,48 +216,6 @@ CUDA_TEST_P(HOG, GetDescriptors)
|
||||
ASSERT_EQ(l[(y * blocks_per_win_x + x) * block_hist_size + k],
|
||||
r[(x * blocks_per_win_y + y) * block_hist_size + k]);
|
||||
}
|
||||
|
||||
/* Now we want to extract the same feature vectors, but from single images. NOTE: results will
|
||||
be defferent, due to border values interpolation. Using of many small images is slower, however we
|
||||
wont't call getDescriptors and will use computeBlockHistograms instead of. computeBlockHistograms
|
||||
works good, it can be checked in the gpu_hog sample */
|
||||
|
||||
img_rgb = readImage("hog/positive1.png");
|
||||
ASSERT_TRUE(!img_rgb.empty());
|
||||
cv::cvtColor(img_rgb, img, cv::COLOR_BGR2BGRA);
|
||||
computeBlockHistograms(cv::cuda::GpuMat(img));
|
||||
// Everything is fine with interpolation for left top subimage
|
||||
ASSERT_EQ(0.0, cv::norm((cv::Mat)block_hists, (cv::Mat)descriptors.rowRange(0, 1)));
|
||||
|
||||
img_rgb = readImage("hog/positive2.png");
|
||||
ASSERT_TRUE(!img_rgb.empty());
|
||||
cv::cvtColor(img_rgb, img, cv::COLOR_BGR2BGRA);
|
||||
computeBlockHistograms(cv::cuda::GpuMat(img));
|
||||
compare_inner_parts(cv::Mat(block_hists), cv::Mat(descriptors.rowRange(1, 2)));
|
||||
|
||||
img_rgb = readImage("hog/negative1.png");
|
||||
ASSERT_TRUE(!img_rgb.empty());
|
||||
cv::cvtColor(img_rgb, img, cv::COLOR_BGR2BGRA);
|
||||
computeBlockHistograms(cv::cuda::GpuMat(img));
|
||||
compare_inner_parts(cv::Mat(block_hists), cv::Mat(descriptors.rowRange(2, 3)));
|
||||
|
||||
img_rgb = readImage("hog/negative2.png");
|
||||
ASSERT_TRUE(!img_rgb.empty());
|
||||
cv::cvtColor(img_rgb, img, cv::COLOR_BGR2BGRA);
|
||||
computeBlockHistograms(cv::cuda::GpuMat(img));
|
||||
compare_inner_parts(cv::Mat(block_hists), cv::Mat(descriptors.rowRange(3, 4)));
|
||||
|
||||
img_rgb = readImage("hog/positive3.png");
|
||||
ASSERT_TRUE(!img_rgb.empty());
|
||||
cv::cvtColor(img_rgb, img, cv::COLOR_BGR2BGRA);
|
||||
computeBlockHistograms(cv::cuda::GpuMat(img));
|
||||
compare_inner_parts(cv::Mat(block_hists), cv::Mat(descriptors.rowRange(4, 5)));
|
||||
|
||||
img_rgb = readImage("hog/negative3.png");
|
||||
ASSERT_TRUE(!img_rgb.empty());
|
||||
cv::cvtColor(img_rgb, img, cv::COLOR_BGR2BGRA);
|
||||
computeBlockHistograms(cv::cuda::GpuMat(img));
|
||||
compare_inner_parts(cv::Mat(block_hists), cv::Mat(descriptors.rowRange(5, 6)));
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(CUDA_ObjDetect, HOG, ALL_DEVICES);
|
||||
@@ -310,12 +242,12 @@ CUDA_TEST_P(CalTech, HOG)
|
||||
cv::cuda::GpuMat d_img(img);
|
||||
cv::Mat markedImage(img.clone());
|
||||
|
||||
cv::cuda::HOGDescriptor d_hog;
|
||||
d_hog.setSVMDetector(cv::cuda::HOGDescriptor::getDefaultPeopleDetector());
|
||||
d_hog.nlevels = d_hog.nlevels + 32;
|
||||
cv::Ptr<cv::cuda::HOG> d_hog = cv::cuda::HOG::create();
|
||||
d_hog->setSVMDetector(d_hog->getDefaultPeopleDetector());
|
||||
d_hog->setNumLevels(d_hog->getNumLevels() + 32);
|
||||
|
||||
std::vector<cv::Rect> found_locations;
|
||||
d_hog.detectMultiScale(d_img, found_locations);
|
||||
d_hog->detectMultiScale(d_img, found_locations);
|
||||
|
||||
#if defined (LOG_CASCADE_STATISTIC)
|
||||
for (int i = 0; i < (int)found_locations.size(); i++)
|
||||
@@ -326,7 +258,8 @@ CUDA_TEST_P(CalTech, HOG)
|
||||
cv::rectangle(markedImage, r , CV_RGB(255, 0, 0));
|
||||
}
|
||||
|
||||
cv::imshow("Res", markedImage); cv::waitKey();
|
||||
cv::imshow("Res", markedImage);
|
||||
cv::waitKey();
|
||||
#endif
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user