Normalize line endings and whitespace

This commit is contained in:
OpenCV Buildbot
2012-10-17 11:12:04 +04:00
committed by Andrey Kamaev
parent 0442bca235
commit 81f826db2b
1511 changed files with 258678 additions and 258624 deletions

View File

@@ -1,381 +1,381 @@
#include "perf_precomp.hpp"
using namespace std;
using namespace testing;
namespace {
//////////////////////////////////////////////////////////////////////
// StereoBM
typedef std::tr1::tuple<string, string> pair_string;
DEF_PARAM_TEST_1(ImagePair, pair_string);
PERF_TEST_P(ImagePair, Calib3D_StereoBM, Values(pair_string("gpu/perf/aloe.png", "gpu/perf/aloeR.png")))
{
declare.time(5.0);
const cv::Mat imgLeft = readImage(GET_PARAM(0), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(imgLeft.empty());
const cv::Mat imgRight = readImage(GET_PARAM(1), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(imgRight.empty());
const int preset = 0;
const int ndisp = 256;
if (PERF_RUN_GPU())
{
cv::gpu::StereoBM_GPU d_bm(preset, ndisp);
cv::gpu::GpuMat d_imgLeft(imgLeft);
cv::gpu::GpuMat d_imgRight(imgRight);
cv::gpu::GpuMat d_dst;
d_bm(d_imgLeft, d_imgRight, d_dst);
TEST_CYCLE()
{
d_bm(d_imgLeft, d_imgRight, d_dst);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
cv::StereoBM bm(preset, ndisp);
cv::Mat dst;
bm(imgLeft, imgRight, dst);
TEST_CYCLE()
{
bm(imgLeft, imgRight, dst);
}
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// StereoBeliefPropagation
PERF_TEST_P(ImagePair, Calib3D_StereoBeliefPropagation, Values(pair_string("gpu/stereobp/aloe-L.png", "gpu/stereobp/aloe-R.png")))
{
declare.time(10.0);
const cv::Mat imgLeft = readImage(GET_PARAM(0));
ASSERT_FALSE(imgLeft.empty());
const cv::Mat imgRight = readImage(GET_PARAM(1));
ASSERT_FALSE(imgRight.empty());
const int ndisp = 64;
if (PERF_RUN_GPU())
{
cv::gpu::StereoBeliefPropagation d_bp(ndisp);
cv::gpu::GpuMat d_imgLeft(imgLeft);
cv::gpu::GpuMat d_imgRight(imgRight);
cv::gpu::GpuMat d_dst;
d_bp(d_imgLeft, d_imgRight, d_dst);
TEST_CYCLE()
{
d_bp(d_imgLeft, d_imgRight, d_dst);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
FAIL() << "No such CPU implementation analogy.";
}
}
//////////////////////////////////////////////////////////////////////
// StereoConstantSpaceBP
PERF_TEST_P(ImagePair, Calib3D_StereoConstantSpaceBP, Values(pair_string("gpu/stereobm/aloe-L.png", "gpu/stereobm/aloe-R.png")))
{
declare.time(10.0);
const cv::Mat imgLeft = readImage(GET_PARAM(0), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(imgLeft.empty());
const cv::Mat imgRight = readImage(GET_PARAM(1), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(imgRight.empty());
const int ndisp = 128;
if (PERF_RUN_GPU())
{
cv::gpu::StereoConstantSpaceBP d_csbp(ndisp);
cv::gpu::GpuMat d_imgLeft(imgLeft);
cv::gpu::GpuMat d_imgRight(imgRight);
cv::gpu::GpuMat d_dst;
d_csbp(d_imgLeft, d_imgRight, d_dst);
TEST_CYCLE()
{
d_csbp(d_imgLeft, d_imgRight, d_dst);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
FAIL() << "No such CPU implementation analogy.";
}
}
//////////////////////////////////////////////////////////////////////
// DisparityBilateralFilter
PERF_TEST_P(ImagePair, Calib3D_DisparityBilateralFilter, Values(pair_string("gpu/stereobm/aloe-L.png", "gpu/stereobm/aloe-disp.png")))
{
const cv::Mat img = readImage(GET_PARAM(0), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
const cv::Mat disp = readImage(GET_PARAM(1), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(disp.empty());
const int ndisp = 128;
if (PERF_RUN_GPU())
{
cv::gpu::DisparityBilateralFilter d_filter(ndisp);
cv::gpu::GpuMat d_img(img);
cv::gpu::GpuMat d_disp(disp);
cv::gpu::GpuMat d_dst;
d_filter(d_disp, d_img, d_dst);
TEST_CYCLE()
{
d_filter(d_disp, d_img, d_dst);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
FAIL() << "No such CPU implementation analogy.";
}
}
//////////////////////////////////////////////////////////////////////
// TransformPoints
DEF_PARAM_TEST_1(Count, int);
PERF_TEST_P(Count, Calib3D_TransformPoints, Values(5000, 10000, 20000))
{
const int count = GetParam();
cv::Mat src(1, count, CV_32FC3);
fillRandom(src, -100, 100);
const cv::Mat rvec = cv::Mat::ones(1, 3, CV_32FC1);
const cv::Mat tvec = cv::Mat::ones(1, 3, CV_32FC1);
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::transformPoints(d_src, rvec, tvec, d_dst);
TEST_CYCLE()
{
cv::gpu::transformPoints(d_src, rvec, tvec, d_dst);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
FAIL() << "No such CPU implementation analogy.";
}
}
//////////////////////////////////////////////////////////////////////
// ProjectPoints
PERF_TEST_P(Count, Calib3D_ProjectPoints, Values(5000, 10000, 20000))
{
const int count = GetParam();
cv::Mat src(1, count, CV_32FC3);
fillRandom(src, -100, 100);
const cv::Mat rvec = cv::Mat::ones(1, 3, CV_32FC1);
const cv::Mat tvec = cv::Mat::ones(1, 3, CV_32FC1);
const cv::Mat camera_mat = cv::Mat::ones(3, 3, CV_32FC1);
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::projectPoints(d_src, rvec, tvec, camera_mat, cv::Mat(), d_dst);
TEST_CYCLE()
{
cv::gpu::projectPoints(d_src, rvec, tvec, camera_mat, cv::Mat(), d_dst);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
cv::Mat dst;
cv::projectPoints(src, rvec, tvec, camera_mat, cv::noArray(), dst);
TEST_CYCLE()
{
cv::projectPoints(src, rvec, tvec, camera_mat, cv::noArray(), dst);
}
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// SolvePnPRansac
PERF_TEST_P(Count, Calib3D_SolvePnPRansac, Values(5000, 10000, 20000))
{
declare.time(10.0);
const int count = GetParam();
cv::Mat object(1, count, CV_32FC3);
fillRandom(object, -100, 100);
cv::Mat camera_mat(3, 3, CV_32FC1);
fillRandom(camera_mat, 0.5, 1);
camera_mat.at<float>(0, 1) = 0.f;
camera_mat.at<float>(1, 0) = 0.f;
camera_mat.at<float>(2, 0) = 0.f;
camera_mat.at<float>(2, 1) = 0.f;
const cv::Mat dist_coef(1, 8, CV_32F, cv::Scalar::all(0));
std::vector<cv::Point2f> image_vec;
cv::Mat rvec_gold(1, 3, CV_32FC1);
fillRandom(rvec_gold, 0, 1);
cv::Mat tvec_gold(1, 3, CV_32FC1);
fillRandom(tvec_gold, 0, 1);
cv::projectPoints(object, rvec_gold, tvec_gold, camera_mat, dist_coef, image_vec);
cv::Mat image(1, count, CV_32FC2, &image_vec[0]);
cv::Mat rvec;
cv::Mat tvec;
if (PERF_RUN_GPU())
{
cv::gpu::solvePnPRansac(object, image, camera_mat, dist_coef, rvec, tvec);
TEST_CYCLE()
{
cv::gpu::solvePnPRansac(object, image, camera_mat, dist_coef, rvec, tvec);
}
}
else
{
cv::solvePnPRansac(object, image, camera_mat, dist_coef, rvec, tvec);
TEST_CYCLE()
{
cv::solvePnPRansac(object, image, camera_mat, dist_coef, rvec, tvec);
}
}
CPU_SANITY_CHECK(rvec);
CPU_SANITY_CHECK(tvec);
}
//////////////////////////////////////////////////////////////////////
// ReprojectImageTo3D
PERF_TEST_P(Sz_Depth, Calib3D_ReprojectImageTo3D, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16S)))
{
const cv::Size size = GET_PARAM(0);
const int depth = GET_PARAM(1);
cv::Mat src(size, depth);
fillRandom(src, 5.0, 30.0);
cv::Mat Q(4, 4, CV_32FC1);
fillRandom(Q, 0.1, 1.0);
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::reprojectImageTo3D(d_src, d_dst, Q);
TEST_CYCLE()
{
cv::gpu::reprojectImageTo3D(d_src, d_dst, Q);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
cv::Mat dst;
cv::reprojectImageTo3D(src, dst, Q);
TEST_CYCLE()
{
cv::reprojectImageTo3D(src, dst, Q);
}
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// DrawColorDisp
PERF_TEST_P(Sz_Depth, Calib3D_DrawColorDisp, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16S)))
{
const cv::Size size = GET_PARAM(0);
const int type = GET_PARAM(1);
cv::Mat src(size, type);
fillRandom(src, 0, 255);
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::drawColorDisp(d_src, d_dst, 255);
TEST_CYCLE()
{
cv::gpu::drawColorDisp(d_src, d_dst, 255);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
FAIL() << "No such CPU implementation analogy.";
}
}
} // namespace
#include "perf_precomp.hpp"
using namespace std;
using namespace testing;
namespace {
//////////////////////////////////////////////////////////////////////
// StereoBM
typedef std::tr1::tuple<string, string> pair_string;
DEF_PARAM_TEST_1(ImagePair, pair_string);
PERF_TEST_P(ImagePair, Calib3D_StereoBM, Values(pair_string("gpu/perf/aloe.png", "gpu/perf/aloeR.png")))
{
declare.time(5.0);
const cv::Mat imgLeft = readImage(GET_PARAM(0), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(imgLeft.empty());
const cv::Mat imgRight = readImage(GET_PARAM(1), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(imgRight.empty());
const int preset = 0;
const int ndisp = 256;
if (PERF_RUN_GPU())
{
cv::gpu::StereoBM_GPU d_bm(preset, ndisp);
cv::gpu::GpuMat d_imgLeft(imgLeft);
cv::gpu::GpuMat d_imgRight(imgRight);
cv::gpu::GpuMat d_dst;
d_bm(d_imgLeft, d_imgRight, d_dst);
TEST_CYCLE()
{
d_bm(d_imgLeft, d_imgRight, d_dst);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
cv::StereoBM bm(preset, ndisp);
cv::Mat dst;
bm(imgLeft, imgRight, dst);
TEST_CYCLE()
{
bm(imgLeft, imgRight, dst);
}
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// StereoBeliefPropagation
PERF_TEST_P(ImagePair, Calib3D_StereoBeliefPropagation, Values(pair_string("gpu/stereobp/aloe-L.png", "gpu/stereobp/aloe-R.png")))
{
declare.time(10.0);
const cv::Mat imgLeft = readImage(GET_PARAM(0));
ASSERT_FALSE(imgLeft.empty());
const cv::Mat imgRight = readImage(GET_PARAM(1));
ASSERT_FALSE(imgRight.empty());
const int ndisp = 64;
if (PERF_RUN_GPU())
{
cv::gpu::StereoBeliefPropagation d_bp(ndisp);
cv::gpu::GpuMat d_imgLeft(imgLeft);
cv::gpu::GpuMat d_imgRight(imgRight);
cv::gpu::GpuMat d_dst;
d_bp(d_imgLeft, d_imgRight, d_dst);
TEST_CYCLE()
{
d_bp(d_imgLeft, d_imgRight, d_dst);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
FAIL() << "No such CPU implementation analogy.";
}
}
//////////////////////////////////////////////////////////////////////
// StereoConstantSpaceBP
PERF_TEST_P(ImagePair, Calib3D_StereoConstantSpaceBP, Values(pair_string("gpu/stereobm/aloe-L.png", "gpu/stereobm/aloe-R.png")))
{
declare.time(10.0);
const cv::Mat imgLeft = readImage(GET_PARAM(0), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(imgLeft.empty());
const cv::Mat imgRight = readImage(GET_PARAM(1), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(imgRight.empty());
const int ndisp = 128;
if (PERF_RUN_GPU())
{
cv::gpu::StereoConstantSpaceBP d_csbp(ndisp);
cv::gpu::GpuMat d_imgLeft(imgLeft);
cv::gpu::GpuMat d_imgRight(imgRight);
cv::gpu::GpuMat d_dst;
d_csbp(d_imgLeft, d_imgRight, d_dst);
TEST_CYCLE()
{
d_csbp(d_imgLeft, d_imgRight, d_dst);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
FAIL() << "No such CPU implementation analogy.";
}
}
//////////////////////////////////////////////////////////////////////
// DisparityBilateralFilter
PERF_TEST_P(ImagePair, Calib3D_DisparityBilateralFilter, Values(pair_string("gpu/stereobm/aloe-L.png", "gpu/stereobm/aloe-disp.png")))
{
const cv::Mat img = readImage(GET_PARAM(0), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
const cv::Mat disp = readImage(GET_PARAM(1), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(disp.empty());
const int ndisp = 128;
if (PERF_RUN_GPU())
{
cv::gpu::DisparityBilateralFilter d_filter(ndisp);
cv::gpu::GpuMat d_img(img);
cv::gpu::GpuMat d_disp(disp);
cv::gpu::GpuMat d_dst;
d_filter(d_disp, d_img, d_dst);
TEST_CYCLE()
{
d_filter(d_disp, d_img, d_dst);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
FAIL() << "No such CPU implementation analogy.";
}
}
//////////////////////////////////////////////////////////////////////
// TransformPoints
DEF_PARAM_TEST_1(Count, int);
PERF_TEST_P(Count, Calib3D_TransformPoints, Values(5000, 10000, 20000))
{
const int count = GetParam();
cv::Mat src(1, count, CV_32FC3);
fillRandom(src, -100, 100);
const cv::Mat rvec = cv::Mat::ones(1, 3, CV_32FC1);
const cv::Mat tvec = cv::Mat::ones(1, 3, CV_32FC1);
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::transformPoints(d_src, rvec, tvec, d_dst);
TEST_CYCLE()
{
cv::gpu::transformPoints(d_src, rvec, tvec, d_dst);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
FAIL() << "No such CPU implementation analogy.";
}
}
//////////////////////////////////////////////////////////////////////
// ProjectPoints
PERF_TEST_P(Count, Calib3D_ProjectPoints, Values(5000, 10000, 20000))
{
const int count = GetParam();
cv::Mat src(1, count, CV_32FC3);
fillRandom(src, -100, 100);
const cv::Mat rvec = cv::Mat::ones(1, 3, CV_32FC1);
const cv::Mat tvec = cv::Mat::ones(1, 3, CV_32FC1);
const cv::Mat camera_mat = cv::Mat::ones(3, 3, CV_32FC1);
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::projectPoints(d_src, rvec, tvec, camera_mat, cv::Mat(), d_dst);
TEST_CYCLE()
{
cv::gpu::projectPoints(d_src, rvec, tvec, camera_mat, cv::Mat(), d_dst);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
cv::Mat dst;
cv::projectPoints(src, rvec, tvec, camera_mat, cv::noArray(), dst);
TEST_CYCLE()
{
cv::projectPoints(src, rvec, tvec, camera_mat, cv::noArray(), dst);
}
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// SolvePnPRansac
PERF_TEST_P(Count, Calib3D_SolvePnPRansac, Values(5000, 10000, 20000))
{
declare.time(10.0);
const int count = GetParam();
cv::Mat object(1, count, CV_32FC3);
fillRandom(object, -100, 100);
cv::Mat camera_mat(3, 3, CV_32FC1);
fillRandom(camera_mat, 0.5, 1);
camera_mat.at<float>(0, 1) = 0.f;
camera_mat.at<float>(1, 0) = 0.f;
camera_mat.at<float>(2, 0) = 0.f;
camera_mat.at<float>(2, 1) = 0.f;
const cv::Mat dist_coef(1, 8, CV_32F, cv::Scalar::all(0));
std::vector<cv::Point2f> image_vec;
cv::Mat rvec_gold(1, 3, CV_32FC1);
fillRandom(rvec_gold, 0, 1);
cv::Mat tvec_gold(1, 3, CV_32FC1);
fillRandom(tvec_gold, 0, 1);
cv::projectPoints(object, rvec_gold, tvec_gold, camera_mat, dist_coef, image_vec);
cv::Mat image(1, count, CV_32FC2, &image_vec[0]);
cv::Mat rvec;
cv::Mat tvec;
if (PERF_RUN_GPU())
{
cv::gpu::solvePnPRansac(object, image, camera_mat, dist_coef, rvec, tvec);
TEST_CYCLE()
{
cv::gpu::solvePnPRansac(object, image, camera_mat, dist_coef, rvec, tvec);
}
}
else
{
cv::solvePnPRansac(object, image, camera_mat, dist_coef, rvec, tvec);
TEST_CYCLE()
{
cv::solvePnPRansac(object, image, camera_mat, dist_coef, rvec, tvec);
}
}
CPU_SANITY_CHECK(rvec);
CPU_SANITY_CHECK(tvec);
}
//////////////////////////////////////////////////////////////////////
// ReprojectImageTo3D
PERF_TEST_P(Sz_Depth, Calib3D_ReprojectImageTo3D, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16S)))
{
const cv::Size size = GET_PARAM(0);
const int depth = GET_PARAM(1);
cv::Mat src(size, depth);
fillRandom(src, 5.0, 30.0);
cv::Mat Q(4, 4, CV_32FC1);
fillRandom(Q, 0.1, 1.0);
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::reprojectImageTo3D(d_src, d_dst, Q);
TEST_CYCLE()
{
cv::gpu::reprojectImageTo3D(d_src, d_dst, Q);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
cv::Mat dst;
cv::reprojectImageTo3D(src, dst, Q);
TEST_CYCLE()
{
cv::reprojectImageTo3D(src, dst, Q);
}
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// DrawColorDisp
PERF_TEST_P(Sz_Depth, Calib3D_DrawColorDisp, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16S)))
{
const cv::Size size = GET_PARAM(0);
const int type = GET_PARAM(1);
cv::Mat src(size, type);
fillRandom(src, 0, 255);
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::drawColorDisp(d_src, d_dst, 255);
TEST_CYCLE()
{
cv::gpu::drawColorDisp(d_src, d_dst, 255);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
FAIL() << "No such CPU implementation analogy.";
}
}
} // namespace

File diff suppressed because it is too large Load Diff

View File

@@ -1,309 +1,309 @@
#include "perf_precomp.hpp"
using namespace std;
using namespace testing;
namespace {
//////////////////////////////////////////////////////////////////////
// SURF
DEF_PARAM_TEST_1(Image, string);
PERF_TEST_P(Image, Features2D_SURF, Values<string>("gpu/perf/aloe.png"))
{
declare.time(50.0);
cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
if (PERF_RUN_GPU())
{
cv::gpu::SURF_GPU d_surf;
cv::gpu::GpuMat d_img(img);
cv::gpu::GpuMat d_keypoints, d_descriptors;
d_surf(d_img, cv::gpu::GpuMat(), d_keypoints, d_descriptors);
TEST_CYCLE()
{
d_surf(d_img, cv::gpu::GpuMat(), d_keypoints, d_descriptors);
}
GPU_SANITY_CHECK(d_descriptors, 1e-4);
GPU_SANITY_CHECK_KEYPOINTS(SURF, d_keypoints);
}
else
{
cv::SURF surf;
std::vector<cv::KeyPoint> keypoints;
cv::Mat descriptors;
surf(img, cv::noArray(), keypoints, descriptors);
TEST_CYCLE()
{
keypoints.clear();
surf(img, cv::noArray(), keypoints, descriptors);
}
SANITY_CHECK_KEYPOINTS(keypoints);
SANITY_CHECK(descriptors, 1e-4);
}
}
//////////////////////////////////////////////////////////////////////
// FAST
PERF_TEST_P(Image, Features2D_FAST, Values<string>("gpu/perf/aloe.png"))
{
cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
if (PERF_RUN_GPU())
{
cv::gpu::FAST_GPU d_fast(20);
cv::gpu::GpuMat d_img(img);
cv::gpu::GpuMat d_keypoints;
d_fast(d_img, cv::gpu::GpuMat(), d_keypoints);
TEST_CYCLE()
{
d_fast(d_img, cv::gpu::GpuMat(), d_keypoints);
}
GPU_SANITY_CHECK_RESPONSE(FAST, d_keypoints);
}
else
{
std::vector<cv::KeyPoint> keypoints;
cv::FAST(img, keypoints, 20);
TEST_CYCLE()
{
keypoints.clear();
cv::FAST(img, keypoints, 20);
}
SANITY_CHECK_KEYPOINTS(keypoints);
}
}
//////////////////////////////////////////////////////////////////////
// ORB
PERF_TEST_P(Image, Features2D_ORB, Values<string>("gpu/perf/aloe.png"))
{
cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
if (PERF_RUN_GPU())
{
cv::gpu::ORB_GPU d_orb(4000);
cv::gpu::GpuMat d_img(img);
cv::gpu::GpuMat d_keypoints, d_descriptors;
d_orb(d_img, cv::gpu::GpuMat(), d_keypoints, d_descriptors);
TEST_CYCLE()
{
d_orb(d_img, cv::gpu::GpuMat(), d_keypoints, d_descriptors);
}
GPU_SANITY_CHECK_KEYPOINTS(ORB, d_keypoints);
GPU_SANITY_CHECK(d_descriptors);
}
else
{
cv::ORB orb(4000);
std::vector<cv::KeyPoint> keypoints;
cv::Mat descriptors;
orb(img, cv::noArray(), keypoints, descriptors);
TEST_CYCLE()
{
keypoints.clear();
orb(img, cv::noArray(), keypoints, descriptors);
}
SANITY_CHECK_KEYPOINTS(keypoints);
SANITY_CHECK(descriptors);
}
}
//////////////////////////////////////////////////////////////////////
// BFMatch
DEF_PARAM_TEST(DescSize_Norm, int, NormType);
PERF_TEST_P(DescSize_Norm, Features2D_BFMatch, Combine(Values(64, 128, 256), Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING))))
{
declare.time(20.0);
int desc_size = GET_PARAM(0);
int normType = GET_PARAM(1);
int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F;
cv::Mat query(3000, desc_size, type);
fillRandom(query);
cv::Mat train(3000, desc_size, type);
fillRandom(train);
if (PERF_RUN_GPU())
{
cv::gpu::BFMatcher_GPU d_matcher(normType);
cv::gpu::GpuMat d_query(query);
cv::gpu::GpuMat d_train(train);
cv::gpu::GpuMat d_trainIdx, d_distance;
d_matcher.matchSingle(d_query, d_train, d_trainIdx, d_distance);
TEST_CYCLE()
{
d_matcher.matchSingle(d_query, d_train, d_trainIdx, d_distance);
}
GPU_SANITY_CHECK(d_trainIdx);
GPU_SANITY_CHECK(d_distance);
}
else
{
cv::BFMatcher matcher(normType);
std::vector<cv::DMatch> matches;
matcher.match(query, train, matches);
TEST_CYCLE()
{
matcher.match(query, train, matches);
}
SANITY_CHECK(matches);
}
}
//////////////////////////////////////////////////////////////////////
// BFKnnMatch
DEF_PARAM_TEST(DescSize_K_Norm, int, int, NormType);
PERF_TEST_P(DescSize_K_Norm, Features2D_BFKnnMatch, Combine(
Values(64, 128, 256),
Values(2, 3),
Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING))))
{
declare.time(30.0);
int desc_size = GET_PARAM(0);
int k = GET_PARAM(1);
int normType = GET_PARAM(2);
int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F;
cv::Mat query(3000, desc_size, type);
fillRandom(query);
cv::Mat train(3000, desc_size, type);
fillRandom(train);
if (PERF_RUN_GPU())
{
cv::gpu::BFMatcher_GPU d_matcher(normType);
cv::gpu::GpuMat d_query(query);
cv::gpu::GpuMat d_train(train);
cv::gpu::GpuMat d_trainIdx, d_distance, d_allDist;
d_matcher.knnMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_allDist, k);
TEST_CYCLE()
{
d_matcher.knnMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_allDist, k);
}
GPU_SANITY_CHECK(d_trainIdx);
GPU_SANITY_CHECK(d_distance);
}
else
{
cv::BFMatcher matcher(normType);
std::vector< std::vector<cv::DMatch> > matches;
matcher.knnMatch(query, train, matches, k);
TEST_CYCLE()
{
matcher.knnMatch(query, train, matches, k);
}
SANITY_CHECK(matches);
}
}
//////////////////////////////////////////////////////////////////////
// BFRadiusMatch
PERF_TEST_P(DescSize_Norm, Features2D_BFRadiusMatch, Combine(Values(64, 128, 256), Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING))))
{
declare.time(30.0);
int desc_size = GET_PARAM(0);
int normType = GET_PARAM(1);
int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F;
cv::Mat query(3000, desc_size, type);
fillRandom(query, 0.0, 1.0);
cv::Mat train(3000, desc_size, type);
fillRandom(train, 0.0, 1.0);
if (PERF_RUN_GPU())
{
cv::gpu::BFMatcher_GPU d_matcher(normType);
cv::gpu::GpuMat d_query(query);
cv::gpu::GpuMat d_train(train);
cv::gpu::GpuMat d_trainIdx, d_nMatches, d_distance;
d_matcher.radiusMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_nMatches, 2.0);
TEST_CYCLE()
{
d_matcher.radiusMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_nMatches, 2.0);
}
GPU_SANITY_CHECK(d_trainIdx);
GPU_SANITY_CHECK(d_distance);
}
else
{
cv::BFMatcher matcher(normType);
std::vector< std::vector<cv::DMatch> > matches;
matcher.radiusMatch(query, train, matches, 2.0);
TEST_CYCLE()
{
matcher.radiusMatch(query, train, matches, 2.0);
}
SANITY_CHECK(matches);
}
}
} // namespace
#include "perf_precomp.hpp"
using namespace std;
using namespace testing;
namespace {
//////////////////////////////////////////////////////////////////////
// SURF
DEF_PARAM_TEST_1(Image, string);
PERF_TEST_P(Image, Features2D_SURF, Values<string>("gpu/perf/aloe.png"))
{
declare.time(50.0);
cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
if (PERF_RUN_GPU())
{
cv::gpu::SURF_GPU d_surf;
cv::gpu::GpuMat d_img(img);
cv::gpu::GpuMat d_keypoints, d_descriptors;
d_surf(d_img, cv::gpu::GpuMat(), d_keypoints, d_descriptors);
TEST_CYCLE()
{
d_surf(d_img, cv::gpu::GpuMat(), d_keypoints, d_descriptors);
}
GPU_SANITY_CHECK(d_descriptors, 1e-4);
GPU_SANITY_CHECK_KEYPOINTS(SURF, d_keypoints);
}
else
{
cv::SURF surf;
std::vector<cv::KeyPoint> keypoints;
cv::Mat descriptors;
surf(img, cv::noArray(), keypoints, descriptors);
TEST_CYCLE()
{
keypoints.clear();
surf(img, cv::noArray(), keypoints, descriptors);
}
SANITY_CHECK_KEYPOINTS(keypoints);
SANITY_CHECK(descriptors, 1e-4);
}
}
//////////////////////////////////////////////////////////////////////
// FAST
PERF_TEST_P(Image, Features2D_FAST, Values<string>("gpu/perf/aloe.png"))
{
cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
if (PERF_RUN_GPU())
{
cv::gpu::FAST_GPU d_fast(20);
cv::gpu::GpuMat d_img(img);
cv::gpu::GpuMat d_keypoints;
d_fast(d_img, cv::gpu::GpuMat(), d_keypoints);
TEST_CYCLE()
{
d_fast(d_img, cv::gpu::GpuMat(), d_keypoints);
}
GPU_SANITY_CHECK_RESPONSE(FAST, d_keypoints);
}
else
{
std::vector<cv::KeyPoint> keypoints;
cv::FAST(img, keypoints, 20);
TEST_CYCLE()
{
keypoints.clear();
cv::FAST(img, keypoints, 20);
}
SANITY_CHECK_KEYPOINTS(keypoints);
}
}
//////////////////////////////////////////////////////////////////////
// ORB
PERF_TEST_P(Image, Features2D_ORB, Values<string>("gpu/perf/aloe.png"))
{
cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
if (PERF_RUN_GPU())
{
cv::gpu::ORB_GPU d_orb(4000);
cv::gpu::GpuMat d_img(img);
cv::gpu::GpuMat d_keypoints, d_descriptors;
d_orb(d_img, cv::gpu::GpuMat(), d_keypoints, d_descriptors);
TEST_CYCLE()
{
d_orb(d_img, cv::gpu::GpuMat(), d_keypoints, d_descriptors);
}
GPU_SANITY_CHECK_KEYPOINTS(ORB, d_keypoints);
GPU_SANITY_CHECK(d_descriptors);
}
else
{
cv::ORB orb(4000);
std::vector<cv::KeyPoint> keypoints;
cv::Mat descriptors;
orb(img, cv::noArray(), keypoints, descriptors);
TEST_CYCLE()
{
keypoints.clear();
orb(img, cv::noArray(), keypoints, descriptors);
}
SANITY_CHECK_KEYPOINTS(keypoints);
SANITY_CHECK(descriptors);
}
}
//////////////////////////////////////////////////////////////////////
// BFMatch
DEF_PARAM_TEST(DescSize_Norm, int, NormType);
PERF_TEST_P(DescSize_Norm, Features2D_BFMatch, Combine(Values(64, 128, 256), Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING))))
{
declare.time(20.0);
int desc_size = GET_PARAM(0);
int normType = GET_PARAM(1);
int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F;
cv::Mat query(3000, desc_size, type);
fillRandom(query);
cv::Mat train(3000, desc_size, type);
fillRandom(train);
if (PERF_RUN_GPU())
{
cv::gpu::BFMatcher_GPU d_matcher(normType);
cv::gpu::GpuMat d_query(query);
cv::gpu::GpuMat d_train(train);
cv::gpu::GpuMat d_trainIdx, d_distance;
d_matcher.matchSingle(d_query, d_train, d_trainIdx, d_distance);
TEST_CYCLE()
{
d_matcher.matchSingle(d_query, d_train, d_trainIdx, d_distance);
}
GPU_SANITY_CHECK(d_trainIdx);
GPU_SANITY_CHECK(d_distance);
}
else
{
cv::BFMatcher matcher(normType);
std::vector<cv::DMatch> matches;
matcher.match(query, train, matches);
TEST_CYCLE()
{
matcher.match(query, train, matches);
}
SANITY_CHECK(matches);
}
}
//////////////////////////////////////////////////////////////////////
// BFKnnMatch
DEF_PARAM_TEST(DescSize_K_Norm, int, int, NormType);
PERF_TEST_P(DescSize_K_Norm, Features2D_BFKnnMatch, Combine(
Values(64, 128, 256),
Values(2, 3),
Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING))))
{
declare.time(30.0);
int desc_size = GET_PARAM(0);
int k = GET_PARAM(1);
int normType = GET_PARAM(2);
int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F;
cv::Mat query(3000, desc_size, type);
fillRandom(query);
cv::Mat train(3000, desc_size, type);
fillRandom(train);
if (PERF_RUN_GPU())
{
cv::gpu::BFMatcher_GPU d_matcher(normType);
cv::gpu::GpuMat d_query(query);
cv::gpu::GpuMat d_train(train);
cv::gpu::GpuMat d_trainIdx, d_distance, d_allDist;
d_matcher.knnMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_allDist, k);
TEST_CYCLE()
{
d_matcher.knnMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_allDist, k);
}
GPU_SANITY_CHECK(d_trainIdx);
GPU_SANITY_CHECK(d_distance);
}
else
{
cv::BFMatcher matcher(normType);
std::vector< std::vector<cv::DMatch> > matches;
matcher.knnMatch(query, train, matches, k);
TEST_CYCLE()
{
matcher.knnMatch(query, train, matches, k);
}
SANITY_CHECK(matches);
}
}
//////////////////////////////////////////////////////////////////////
// BFRadiusMatch
PERF_TEST_P(DescSize_Norm, Features2D_BFRadiusMatch, Combine(Values(64, 128, 256), Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING))))
{
declare.time(30.0);
int desc_size = GET_PARAM(0);
int normType = GET_PARAM(1);
int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F;
cv::Mat query(3000, desc_size, type);
fillRandom(query, 0.0, 1.0);
cv::Mat train(3000, desc_size, type);
fillRandom(train, 0.0, 1.0);
if (PERF_RUN_GPU())
{
cv::gpu::BFMatcher_GPU d_matcher(normType);
cv::gpu::GpuMat d_query(query);
cv::gpu::GpuMat d_train(train);
cv::gpu::GpuMat d_trainIdx, d_nMatches, d_distance;
d_matcher.radiusMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_nMatches, 2.0);
TEST_CYCLE()
{
d_matcher.radiusMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_nMatches, 2.0);
}
GPU_SANITY_CHECK(d_trainIdx);
GPU_SANITY_CHECK(d_distance);
}
else
{
cv::BFMatcher matcher(normType);
std::vector< std::vector<cv::DMatch> > matches;
matcher.radiusMatch(query, train, matches, 2.0);
TEST_CYCLE()
{
matcher.radiusMatch(query, train, matches, 2.0);
}
SANITY_CHECK(matches);
}
}
} // namespace

View File

@@ -1,415 +1,415 @@
#include "perf_precomp.hpp"
using namespace std;
using namespace testing;
namespace {
//////////////////////////////////////////////////////////////////////
// Blur
DEF_PARAM_TEST(Sz_Type_KernelSz, cv::Size, MatType, int);
PERF_TEST_P(Sz_Type_KernelSz, Filters_Blur, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4), Values(3, 5, 7)))
{
declare.time(20.0);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
int ksize = GET_PARAM(2);
cv::Mat src(size, type);
fillRandom(src);
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::blur(d_src, d_dst, cv::Size(ksize, ksize));
TEST_CYCLE()
{
cv::gpu::blur(d_src, d_dst, cv::Size(ksize, ksize));
}
GPU_SANITY_CHECK(d_dst);
}
else
{
cv::Mat dst;
cv::blur(src, dst, cv::Size(ksize, ksize));
TEST_CYCLE()
{
cv::blur(src, dst, cv::Size(ksize, ksize));
}
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// Sobel
PERF_TEST_P(Sz_Type_KernelSz, Filters_Sobel, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4, CV_32FC1), Values(3, 5, 7, 9, 11, 13, 15)))
{
declare.time(20.0);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
int ksize = GET_PARAM(2);
cv::Mat src(size, type);
fillRandom(src);
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::GpuMat d_buf;
cv::gpu::Sobel(d_src, d_dst, -1, 1, 1, d_buf, ksize);
TEST_CYCLE()
{
cv::gpu::Sobel(d_src, d_dst, -1, 1, 1, d_buf, ksize);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
cv::Mat dst;
cv::Sobel(src, dst, -1, 1, 1, ksize);
TEST_CYCLE()
{
cv::Sobel(src, dst, -1, 1, 1, ksize);
}
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// Scharr
PERF_TEST_P(Sz_Type, Filters_Scharr, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4, CV_32FC1)))
{
declare.time(20.0);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
cv::Mat src(size, type);
fillRandom(src);
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::GpuMat d_buf;
cv::gpu::Scharr(d_src, d_dst, -1, 1, 0, d_buf);
TEST_CYCLE()
{
cv::gpu::Scharr(d_src, d_dst, -1, 1, 0, d_buf);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
cv::Mat dst;
cv::Scharr(src, dst, -1, 1, 0);
TEST_CYCLE()
{
cv::Scharr(src, dst, -1, 1, 0);
}
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// GaussianBlur
PERF_TEST_P(Sz_Type_KernelSz, Filters_GaussianBlur, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4, CV_32FC1), Values(3, 5, 7, 9, 11, 13, 15)))
{
declare.time(20.0);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
int ksize = GET_PARAM(2);
cv::Mat src(size, type);
fillRandom(src);
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::GpuMat d_buf;
cv::gpu::GaussianBlur(d_src, d_dst, cv::Size(ksize, ksize), d_buf, 0.5);
TEST_CYCLE()
{
cv::gpu::GaussianBlur(d_src, d_dst, cv::Size(ksize, ksize), d_buf, 0.5);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
cv::Mat dst;
cv::GaussianBlur(src, dst, cv::Size(ksize, ksize), 0.5);
TEST_CYCLE()
{
cv::GaussianBlur(src, dst, cv::Size(ksize, ksize), 0.5);
}
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// Laplacian
PERF_TEST_P(Sz_Type_KernelSz, Filters_Laplacian, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4), Values(1, 3)))
{
declare.time(20.0);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
int ksize = GET_PARAM(2);
cv::Mat src(size, type);
fillRandom(src);
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::Laplacian(d_src, d_dst, -1, ksize);
TEST_CYCLE()
{
cv::gpu::Laplacian(d_src, d_dst, -1, ksize);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
cv::Mat dst;
cv::Laplacian(src, dst, -1, ksize);
TEST_CYCLE()
{
cv::Laplacian(src, dst, -1, ksize);
}
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// Erode
PERF_TEST_P(Sz_Type, Filters_Erode, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4)))
{
declare.time(20.0);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
cv::Mat src(size, type);
fillRandom(src);
cv::Mat ker = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3));
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::GpuMat d_buf;
cv::gpu::erode(d_src, d_dst, ker, d_buf);
TEST_CYCLE()
{
cv::gpu::erode(d_src, d_dst, ker, d_buf);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
cv::Mat dst;
cv::erode(src, dst, ker);
TEST_CYCLE()
{
cv::erode(src, dst, ker);
}
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// Dilate
PERF_TEST_P(Sz_Type, Filters_Dilate, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4)))
{
declare.time(20.0);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
cv::Mat src(size, type);
fillRandom(src);
cv::Mat ker = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3));
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::GpuMat d_buf;
cv::gpu::dilate(d_src, d_dst, ker, d_buf);
TEST_CYCLE()
{
cv::gpu::dilate(d_src, d_dst, ker, d_buf);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
cv::Mat dst;
cv::dilate(src, dst, ker);
TEST_CYCLE()
{
cv::dilate(src, dst, ker);
}
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// MorphologyEx
CV_ENUM(MorphOp, cv::MORPH_OPEN, cv::MORPH_CLOSE, cv::MORPH_GRADIENT, cv::MORPH_TOPHAT, cv::MORPH_BLACKHAT)
#define ALL_MORPH_OPS ValuesIn(MorphOp::all())
DEF_PARAM_TEST(Sz_Type_Op, cv::Size, MatType, MorphOp);
PERF_TEST_P(Sz_Type_Op, Filters_MorphologyEx, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4), ALL_MORPH_OPS))
{
declare.time(20.0);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
int morphOp = GET_PARAM(2);
cv::Mat src(size, type);
fillRandom(src);
cv::Mat ker = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3));
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::GpuMat d_buf1;
cv::gpu::GpuMat d_buf2;
cv::gpu::morphologyEx(d_src, d_dst, morphOp, ker, d_buf1, d_buf2);
TEST_CYCLE()
{
cv::gpu::morphologyEx(d_src, d_dst, morphOp, ker, d_buf1, d_buf2);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
cv::Mat dst;
cv::morphologyEx(src, dst, morphOp, ker);
TEST_CYCLE()
{
cv::morphologyEx(src, dst, morphOp, ker);
}
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// Filter2D
PERF_TEST_P(Sz_Type_KernelSz, Filters_Filter2D, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4), Values(3, 5, 7, 9, 11, 13, 15)))
{
declare.time(20.0);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
int ksize = GET_PARAM(2);
cv::Mat src(size, type);
fillRandom(src);
cv::Mat kernel(ksize, ksize, CV_32FC1);
fillRandom(kernel, 0.0, 1.0);
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::filter2D(d_src, d_dst, -1, kernel);
TEST_CYCLE()
{
cv::gpu::filter2D(d_src, d_dst, -1, kernel);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
cv::Mat dst;
cv::filter2D(src, dst, -1, kernel);
TEST_CYCLE()
{
cv::filter2D(src, dst, -1, kernel);
}
CPU_SANITY_CHECK(dst);
}
}
} // namespace
#include "perf_precomp.hpp"
using namespace std;
using namespace testing;
namespace {
//////////////////////////////////////////////////////////////////////
// Blur
DEF_PARAM_TEST(Sz_Type_KernelSz, cv::Size, MatType, int);
PERF_TEST_P(Sz_Type_KernelSz, Filters_Blur, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4), Values(3, 5, 7)))
{
declare.time(20.0);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
int ksize = GET_PARAM(2);
cv::Mat src(size, type);
fillRandom(src);
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::blur(d_src, d_dst, cv::Size(ksize, ksize));
TEST_CYCLE()
{
cv::gpu::blur(d_src, d_dst, cv::Size(ksize, ksize));
}
GPU_SANITY_CHECK(d_dst);
}
else
{
cv::Mat dst;
cv::blur(src, dst, cv::Size(ksize, ksize));
TEST_CYCLE()
{
cv::blur(src, dst, cv::Size(ksize, ksize));
}
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// Sobel
PERF_TEST_P(Sz_Type_KernelSz, Filters_Sobel, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4, CV_32FC1), Values(3, 5, 7, 9, 11, 13, 15)))
{
declare.time(20.0);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
int ksize = GET_PARAM(2);
cv::Mat src(size, type);
fillRandom(src);
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::GpuMat d_buf;
cv::gpu::Sobel(d_src, d_dst, -1, 1, 1, d_buf, ksize);
TEST_CYCLE()
{
cv::gpu::Sobel(d_src, d_dst, -1, 1, 1, d_buf, ksize);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
cv::Mat dst;
cv::Sobel(src, dst, -1, 1, 1, ksize);
TEST_CYCLE()
{
cv::Sobel(src, dst, -1, 1, 1, ksize);
}
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// Scharr
PERF_TEST_P(Sz_Type, Filters_Scharr, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4, CV_32FC1)))
{
declare.time(20.0);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
cv::Mat src(size, type);
fillRandom(src);
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::GpuMat d_buf;
cv::gpu::Scharr(d_src, d_dst, -1, 1, 0, d_buf);
TEST_CYCLE()
{
cv::gpu::Scharr(d_src, d_dst, -1, 1, 0, d_buf);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
cv::Mat dst;
cv::Scharr(src, dst, -1, 1, 0);
TEST_CYCLE()
{
cv::Scharr(src, dst, -1, 1, 0);
}
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// GaussianBlur
PERF_TEST_P(Sz_Type_KernelSz, Filters_GaussianBlur, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4, CV_32FC1), Values(3, 5, 7, 9, 11, 13, 15)))
{
declare.time(20.0);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
int ksize = GET_PARAM(2);
cv::Mat src(size, type);
fillRandom(src);
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::GpuMat d_buf;
cv::gpu::GaussianBlur(d_src, d_dst, cv::Size(ksize, ksize), d_buf, 0.5);
TEST_CYCLE()
{
cv::gpu::GaussianBlur(d_src, d_dst, cv::Size(ksize, ksize), d_buf, 0.5);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
cv::Mat dst;
cv::GaussianBlur(src, dst, cv::Size(ksize, ksize), 0.5);
TEST_CYCLE()
{
cv::GaussianBlur(src, dst, cv::Size(ksize, ksize), 0.5);
}
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// Laplacian
PERF_TEST_P(Sz_Type_KernelSz, Filters_Laplacian, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4), Values(1, 3)))
{
declare.time(20.0);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
int ksize = GET_PARAM(2);
cv::Mat src(size, type);
fillRandom(src);
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::Laplacian(d_src, d_dst, -1, ksize);
TEST_CYCLE()
{
cv::gpu::Laplacian(d_src, d_dst, -1, ksize);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
cv::Mat dst;
cv::Laplacian(src, dst, -1, ksize);
TEST_CYCLE()
{
cv::Laplacian(src, dst, -1, ksize);
}
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// Erode
PERF_TEST_P(Sz_Type, Filters_Erode, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4)))
{
declare.time(20.0);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
cv::Mat src(size, type);
fillRandom(src);
cv::Mat ker = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3));
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::GpuMat d_buf;
cv::gpu::erode(d_src, d_dst, ker, d_buf);
TEST_CYCLE()
{
cv::gpu::erode(d_src, d_dst, ker, d_buf);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
cv::Mat dst;
cv::erode(src, dst, ker);
TEST_CYCLE()
{
cv::erode(src, dst, ker);
}
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// Dilate
PERF_TEST_P(Sz_Type, Filters_Dilate, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4)))
{
declare.time(20.0);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
cv::Mat src(size, type);
fillRandom(src);
cv::Mat ker = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3));
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::GpuMat d_buf;
cv::gpu::dilate(d_src, d_dst, ker, d_buf);
TEST_CYCLE()
{
cv::gpu::dilate(d_src, d_dst, ker, d_buf);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
cv::Mat dst;
cv::dilate(src, dst, ker);
TEST_CYCLE()
{
cv::dilate(src, dst, ker);
}
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// MorphologyEx
CV_ENUM(MorphOp, cv::MORPH_OPEN, cv::MORPH_CLOSE, cv::MORPH_GRADIENT, cv::MORPH_TOPHAT, cv::MORPH_BLACKHAT)
#define ALL_MORPH_OPS ValuesIn(MorphOp::all())
DEF_PARAM_TEST(Sz_Type_Op, cv::Size, MatType, MorphOp);
PERF_TEST_P(Sz_Type_Op, Filters_MorphologyEx, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4), ALL_MORPH_OPS))
{
declare.time(20.0);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
int morphOp = GET_PARAM(2);
cv::Mat src(size, type);
fillRandom(src);
cv::Mat ker = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3));
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::GpuMat d_buf1;
cv::gpu::GpuMat d_buf2;
cv::gpu::morphologyEx(d_src, d_dst, morphOp, ker, d_buf1, d_buf2);
TEST_CYCLE()
{
cv::gpu::morphologyEx(d_src, d_dst, morphOp, ker, d_buf1, d_buf2);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
cv::Mat dst;
cv::morphologyEx(src, dst, morphOp, ker);
TEST_CYCLE()
{
cv::morphologyEx(src, dst, morphOp, ker);
}
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// Filter2D
PERF_TEST_P(Sz_Type_KernelSz, Filters_Filter2D, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4), Values(3, 5, 7, 9, 11, 13, 15)))
{
declare.time(20.0);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
int ksize = GET_PARAM(2);
cv::Mat src(size, type);
fillRandom(src);
cv::Mat kernel(ksize, ksize, CV_32FC1);
fillRandom(kernel, 0.0, 1.0);
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::filter2D(d_src, d_dst, -1, kernel);
TEST_CYCLE()
{
cv::gpu::filter2D(d_src, d_dst, -1, kernel);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
cv::Mat dst;
cv::filter2D(src, dst, -1, kernel);
TEST_CYCLE()
{
cv::filter2D(src, dst, -1, kernel);
}
CPU_SANITY_CHECK(dst);
}
}
} // namespace

File diff suppressed because it is too large Load Diff

View File

@@ -32,8 +32,8 @@ struct GreedyLabeling
return lo <= d && d <= hi;
}
private:
InInterval& operator=(const InInterval&);
private:
InInterval& operator=(const InInterval&);
};

View File

@@ -1,185 +1,185 @@
#include "perf_precomp.hpp"
using namespace std;
using namespace testing;
namespace {
//////////////////////////////////////////////////////////////////////
// SetTo
PERF_TEST_P(Sz_Depth_Cn, MatOp_SetTo, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F, CV_64F), GPU_CHANNELS_1_3_4))
{
cv::Size size = GET_PARAM(0);
int depth = GET_PARAM(1);
int channels = GET_PARAM(2);
int type = CV_MAKE_TYPE(depth, channels);
cv::Scalar val(1, 2, 3, 4);
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(size, type);
d_src.setTo(val);
TEST_CYCLE()
{
d_src.setTo(val);
}
GPU_SANITY_CHECK(d_src);
}
else
{
cv::Mat src(size, type);
src.setTo(val);
TEST_CYCLE()
{
src.setTo(val);
}
CPU_SANITY_CHECK(src);
}
}
//////////////////////////////////////////////////////////////////////
// SetToMasked
PERF_TEST_P(Sz_Depth_Cn, MatOp_SetToMasked, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F, CV_64F), GPU_CHANNELS_1_3_4))
{
cv::Size size = GET_PARAM(0);
int depth = GET_PARAM(1);
int channels = GET_PARAM(2);
int type = CV_MAKE_TYPE(depth, channels);
cv::Mat src(size, type);
fillRandom(src);
cv::Mat mask(size, CV_8UC1);
fillRandom(mask, 0, 2);
cv::Scalar val(1, 2, 3, 4);
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_mask(mask);
d_src.setTo(val, d_mask);
TEST_CYCLE()
{
d_src.setTo(val, d_mask);
}
GPU_SANITY_CHECK(d_src);
}
else
{
src.setTo(val, mask);
TEST_CYCLE()
{
src.setTo(val, mask);
}
CPU_SANITY_CHECK(src);
}
}
//////////////////////////////////////////////////////////////////////
// CopyToMasked
PERF_TEST_P(Sz_Depth_Cn, MatOp_CopyToMasked, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F, CV_64F), GPU_CHANNELS_1_3_4))
{
cv::Size size = GET_PARAM(0);
int depth = GET_PARAM(1);
int channels = GET_PARAM(2);
int type = CV_MAKE_TYPE(depth, channels);
cv::Mat src(size, type);
fillRandom(src);
cv::Mat mask(size, CV_8UC1);
fillRandom(mask, 0, 2);
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_mask(mask);
cv::gpu::GpuMat d_dst;
d_src.copyTo(d_dst, d_mask);
TEST_CYCLE()
{
d_src.copyTo(d_dst, d_mask);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
cv::Mat dst;
src.copyTo(dst, mask);
TEST_CYCLE()
{
src.copyTo(dst, mask);
}
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// ConvertTo
DEF_PARAM_TEST(Sz_2Depth, cv::Size, MatDepth, MatDepth);
PERF_TEST_P(Sz_2Depth, MatOp_ConvertTo, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F, CV_64F), Values(CV_8U, CV_16U, CV_32F, CV_64F)))
{
cv::Size size = GET_PARAM(0);
int depth1 = GET_PARAM(1);
int depth2 = GET_PARAM(2);
cv::Mat src(size, depth1);
fillRandom(src);
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
d_src.convertTo(d_dst, depth2, 0.5, 1.0);
TEST_CYCLE()
{
d_src.convertTo(d_dst, depth2, 0.5, 1.0);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
cv::Mat dst;
src.convertTo(dst, depth2, 0.5, 1.0);
TEST_CYCLE()
{
src.convertTo(dst, depth2, 0.5, 1.0);
}
CPU_SANITY_CHECK(dst);
}
}
} // namespace
#include "perf_precomp.hpp"
using namespace std;
using namespace testing;
namespace {
//////////////////////////////////////////////////////////////////////
// SetTo
PERF_TEST_P(Sz_Depth_Cn, MatOp_SetTo, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F, CV_64F), GPU_CHANNELS_1_3_4))
{
cv::Size size = GET_PARAM(0);
int depth = GET_PARAM(1);
int channels = GET_PARAM(2);
int type = CV_MAKE_TYPE(depth, channels);
cv::Scalar val(1, 2, 3, 4);
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(size, type);
d_src.setTo(val);
TEST_CYCLE()
{
d_src.setTo(val);
}
GPU_SANITY_CHECK(d_src);
}
else
{
cv::Mat src(size, type);
src.setTo(val);
TEST_CYCLE()
{
src.setTo(val);
}
CPU_SANITY_CHECK(src);
}
}
//////////////////////////////////////////////////////////////////////
// SetToMasked
PERF_TEST_P(Sz_Depth_Cn, MatOp_SetToMasked, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F, CV_64F), GPU_CHANNELS_1_3_4))
{
cv::Size size = GET_PARAM(0);
int depth = GET_PARAM(1);
int channels = GET_PARAM(2);
int type = CV_MAKE_TYPE(depth, channels);
cv::Mat src(size, type);
fillRandom(src);
cv::Mat mask(size, CV_8UC1);
fillRandom(mask, 0, 2);
cv::Scalar val(1, 2, 3, 4);
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_mask(mask);
d_src.setTo(val, d_mask);
TEST_CYCLE()
{
d_src.setTo(val, d_mask);
}
GPU_SANITY_CHECK(d_src);
}
else
{
src.setTo(val, mask);
TEST_CYCLE()
{
src.setTo(val, mask);
}
CPU_SANITY_CHECK(src);
}
}
//////////////////////////////////////////////////////////////////////
// CopyToMasked
PERF_TEST_P(Sz_Depth_Cn, MatOp_CopyToMasked, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F, CV_64F), GPU_CHANNELS_1_3_4))
{
cv::Size size = GET_PARAM(0);
int depth = GET_PARAM(1);
int channels = GET_PARAM(2);
int type = CV_MAKE_TYPE(depth, channels);
cv::Mat src(size, type);
fillRandom(src);
cv::Mat mask(size, CV_8UC1);
fillRandom(mask, 0, 2);
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_mask(mask);
cv::gpu::GpuMat d_dst;
d_src.copyTo(d_dst, d_mask);
TEST_CYCLE()
{
d_src.copyTo(d_dst, d_mask);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
cv::Mat dst;
src.copyTo(dst, mask);
TEST_CYCLE()
{
src.copyTo(dst, mask);
}
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// ConvertTo
DEF_PARAM_TEST(Sz_2Depth, cv::Size, MatDepth, MatDepth);
PERF_TEST_P(Sz_2Depth, MatOp_ConvertTo, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F, CV_64F), Values(CV_8U, CV_16U, CV_32F, CV_64F)))
{
cv::Size size = GET_PARAM(0);
int depth1 = GET_PARAM(1);
int depth2 = GET_PARAM(2);
cv::Mat src(size, depth1);
fillRandom(src);
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
d_src.convertTo(d_dst, depth2, 0.5, 1.0);
TEST_CYCLE()
{
d_src.convertTo(d_dst, depth2, 0.5, 1.0);
}
GPU_SANITY_CHECK(d_dst);
}
else
{
cv::Mat dst;
src.convertTo(dst, depth2, 0.5, 1.0);
TEST_CYCLE()
{
src.convertTo(dst, depth2, 0.5, 1.0);
}
CPU_SANITY_CHECK(dst);
}
}
} // namespace

View File

@@ -1,184 +1,184 @@
#include "perf_precomp.hpp"
using namespace std;
using namespace testing;
namespace {
///////////////////////////////////////////////////////////////
// HOG
DEF_PARAM_TEST_1(Image, string);
PERF_TEST_P(Image, ObjDetect_HOG, Values<string>("gpu/hog/road.png"))
{
cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
std::vector<cv::Rect> found_locations;
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_img(img);
cv::gpu::HOGDescriptor d_hog;
d_hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
d_hog.detectMultiScale(d_img, found_locations);
TEST_CYCLE()
{
d_hog.detectMultiScale(d_img, found_locations);
}
}
else
{
cv::HOGDescriptor hog;
hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
hog.detectMultiScale(img, found_locations);
TEST_CYCLE()
{
hog.detectMultiScale(img, found_locations);
}
}
SANITY_CHECK(found_locations);
}
//===========test for CalTech data =============//
DEF_PARAM_TEST_1(HOG, string);
PERF_TEST_P(HOG, CalTech, Values<string>("gpu/caltech/image_00000009_0.png", "gpu/caltech/image_00000032_0.png",
"gpu/caltech/image_00000165_0.png", "gpu/caltech/image_00000261_0.png", "gpu/caltech/image_00000469_0.png",
"gpu/caltech/image_00000527_0.png", "gpu/caltech/image_00000574_0.png"))
{
cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
std::vector<cv::Rect> found_locations;
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_img(img);
cv::gpu::HOGDescriptor d_hog;
d_hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
d_hog.detectMultiScale(d_img, found_locations);
TEST_CYCLE()
{
d_hog.detectMultiScale(d_img, found_locations);
}
}
else
{
cv::HOGDescriptor hog;
hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
hog.detectMultiScale(img, found_locations);
TEST_CYCLE()
{
hog.detectMultiScale(img, found_locations);
}
}
SANITY_CHECK(found_locations);
}
///////////////////////////////////////////////////////////////
// HaarClassifier
typedef pair<string, string> pair_string;
DEF_PARAM_TEST_1(ImageAndCascade, pair_string);
PERF_TEST_P(ImageAndCascade, ObjDetect_HaarClassifier,
Values<pair_string>(make_pair("gpu/haarcascade/group_1_640x480_VGA.pgm", "gpu/perf/haarcascade_frontalface_alt.xml")))
{
cv::Mat img = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
if (PERF_RUN_GPU())
{
cv::gpu::CascadeClassifier_GPU d_cascade;
ASSERT_TRUE(d_cascade.load(perf::TestBase::getDataPath(GetParam().second)));
cv::gpu::GpuMat d_img(img);
cv::gpu::GpuMat d_objects_buffer;
d_cascade.detectMultiScale(d_img, d_objects_buffer);
TEST_CYCLE()
{
d_cascade.detectMultiScale(d_img, d_objects_buffer);
}
GPU_SANITY_CHECK(d_objects_buffer);
}
else
{
cv::CascadeClassifier cascade;
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/perf/haarcascade_frontalface_alt.xml")));
std::vector<cv::Rect> rects;
cascade.detectMultiScale(img, rects);
TEST_CYCLE()
{
cascade.detectMultiScale(img, rects);
}
CPU_SANITY_CHECK(rects);
}
}
///////////////////////////////////////////////////////////////
// LBP cascade
PERF_TEST_P(ImageAndCascade, ObjDetect_LBPClassifier,
Values<pair_string>(make_pair("gpu/haarcascade/group_1_640x480_VGA.pgm", "gpu/lbpcascade/lbpcascade_frontalface.xml")))
{
cv::Mat img = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
if (PERF_RUN_GPU())
{
cv::gpu::CascadeClassifier_GPU d_cascade;
ASSERT_TRUE(d_cascade.load(perf::TestBase::getDataPath(GetParam().second)));
cv::gpu::GpuMat d_img(img);
cv::gpu::GpuMat d_gpu_rects;
d_cascade.detectMultiScale(d_img, d_gpu_rects);
TEST_CYCLE()
{
d_cascade.detectMultiScale(d_img, d_gpu_rects);
}
GPU_SANITY_CHECK(d_gpu_rects);
}
else
{
cv::CascadeClassifier cascade;
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/lbpcascade/lbpcascade_frontalface.xml")));
std::vector<cv::Rect> rects;
cascade.detectMultiScale(img, rects);
TEST_CYCLE()
{
cascade.detectMultiScale(img, rects);
}
CPU_SANITY_CHECK(rects);
}
}
} // namespace
#include "perf_precomp.hpp"
using namespace std;
using namespace testing;
namespace {
///////////////////////////////////////////////////////////////
// HOG
DEF_PARAM_TEST_1(Image, string);
PERF_TEST_P(Image, ObjDetect_HOG, Values<string>("gpu/hog/road.png"))
{
cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
std::vector<cv::Rect> found_locations;
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_img(img);
cv::gpu::HOGDescriptor d_hog;
d_hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
d_hog.detectMultiScale(d_img, found_locations);
TEST_CYCLE()
{
d_hog.detectMultiScale(d_img, found_locations);
}
}
else
{
cv::HOGDescriptor hog;
hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
hog.detectMultiScale(img, found_locations);
TEST_CYCLE()
{
hog.detectMultiScale(img, found_locations);
}
}
SANITY_CHECK(found_locations);
}
//===========test for CalTech data =============//
DEF_PARAM_TEST_1(HOG, string);
PERF_TEST_P(HOG, CalTech, Values<string>("gpu/caltech/image_00000009_0.png", "gpu/caltech/image_00000032_0.png",
"gpu/caltech/image_00000165_0.png", "gpu/caltech/image_00000261_0.png", "gpu/caltech/image_00000469_0.png",
"gpu/caltech/image_00000527_0.png", "gpu/caltech/image_00000574_0.png"))
{
cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
std::vector<cv::Rect> found_locations;
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_img(img);
cv::gpu::HOGDescriptor d_hog;
d_hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
d_hog.detectMultiScale(d_img, found_locations);
TEST_CYCLE()
{
d_hog.detectMultiScale(d_img, found_locations);
}
}
else
{
cv::HOGDescriptor hog;
hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
hog.detectMultiScale(img, found_locations);
TEST_CYCLE()
{
hog.detectMultiScale(img, found_locations);
}
}
SANITY_CHECK(found_locations);
}
///////////////////////////////////////////////////////////////
// HaarClassifier
typedef pair<string, string> pair_string;
DEF_PARAM_TEST_1(ImageAndCascade, pair_string);
PERF_TEST_P(ImageAndCascade, ObjDetect_HaarClassifier,
Values<pair_string>(make_pair("gpu/haarcascade/group_1_640x480_VGA.pgm", "gpu/perf/haarcascade_frontalface_alt.xml")))
{
cv::Mat img = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
if (PERF_RUN_GPU())
{
cv::gpu::CascadeClassifier_GPU d_cascade;
ASSERT_TRUE(d_cascade.load(perf::TestBase::getDataPath(GetParam().second)));
cv::gpu::GpuMat d_img(img);
cv::gpu::GpuMat d_objects_buffer;
d_cascade.detectMultiScale(d_img, d_objects_buffer);
TEST_CYCLE()
{
d_cascade.detectMultiScale(d_img, d_objects_buffer);
}
GPU_SANITY_CHECK(d_objects_buffer);
}
else
{
cv::CascadeClassifier cascade;
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/perf/haarcascade_frontalface_alt.xml")));
std::vector<cv::Rect> rects;
cascade.detectMultiScale(img, rects);
TEST_CYCLE()
{
cascade.detectMultiScale(img, rects);
}
CPU_SANITY_CHECK(rects);
}
}
///////////////////////////////////////////////////////////////
// LBP cascade
PERF_TEST_P(ImageAndCascade, ObjDetect_LBPClassifier,
Values<pair_string>(make_pair("gpu/haarcascade/group_1_640x480_VGA.pgm", "gpu/lbpcascade/lbpcascade_frontalface.xml")))
{
cv::Mat img = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
if (PERF_RUN_GPU())
{
cv::gpu::CascadeClassifier_GPU d_cascade;
ASSERT_TRUE(d_cascade.load(perf::TestBase::getDataPath(GetParam().second)));
cv::gpu::GpuMat d_img(img);
cv::gpu::GpuMat d_gpu_rects;
d_cascade.detectMultiScale(d_img, d_gpu_rects);
TEST_CYCLE()
{
d_cascade.detectMultiScale(d_img, d_gpu_rects);
}
GPU_SANITY_CHECK(d_gpu_rects);
}
else
{
cv::CascadeClassifier cascade;
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/lbpcascade/lbpcascade_frontalface.xml")));
std::vector<cv::Rect> rects;
cascade.detectMultiScale(img, rects);
TEST_CYCLE()
{
cascade.detectMultiScale(img, rects);
}
CPU_SANITY_CHECK(rects);
}
}
} // namespace

View File

@@ -1,37 +1,37 @@
#ifdef __GNUC__
# pragma GCC diagnostic ignored "-Wmissing-declarations"
# pragma GCC diagnostic ignored "-Wmissing-prototypes" //OSX
#endif
#ifndef __OPENCV_PERF_PRECOMP_HPP__
#define __OPENCV_PERF_PRECOMP_HPP__
#include <cstdio>
#include <iostream>
#include "cvconfig.h"
#ifdef HAVE_CUDA
#include <cuda_runtime.h>
#endif
#include "opencv2/ts/ts.hpp"
#include "opencv2/ts/ts_perf.hpp"
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/gpu/gpu.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/video/video.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/legacy/legacy.hpp"
#include "opencv2/photo/photo.hpp"
#include "utility.hpp"
#ifdef GTEST_CREATE_SHARED_LIBRARY
#error no modules except ts should have GTEST_CREATE_SHARED_LIBRARY defined
#endif
#endif
#ifdef __GNUC__
# pragma GCC diagnostic ignored "-Wmissing-declarations"
# pragma GCC diagnostic ignored "-Wmissing-prototypes" //OSX
#endif
#ifndef __OPENCV_PERF_PRECOMP_HPP__
#define __OPENCV_PERF_PRECOMP_HPP__
#include <cstdio>
#include <iostream>
#include "cvconfig.h"
#ifdef HAVE_CUDA
#include <cuda_runtime.h>
#endif
#include "opencv2/ts/ts.hpp"
#include "opencv2/ts/ts_perf.hpp"
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/gpu/gpu.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/video/video.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/legacy/legacy.hpp"
#include "opencv2/photo/photo.hpp"
#include "utility.hpp"
#ifdef GTEST_CREATE_SHARED_LIBRARY
#error no modules except ts should have GTEST_CREATE_SHARED_LIBRARY defined
#endif
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -1,191 +1,191 @@
#include "perf_precomp.hpp"
using namespace std;
using namespace cv;
using namespace cv::gpu;
void fillRandom(Mat& m, double a, double b)
{
RNG rng(123456789);
rng.fill(m, RNG::UNIFORM, Scalar::all(a), Scalar::all(b));
}
Mat readImage(const string& fileName, int flags)
{
return imread(perf::TestBase::getDataPath(fileName), flags);
}
void PrintTo(const CvtColorInfo& info, ostream* os)
{
static const char* str[] =
{
"BGR2BGRA",
"BGRA2BGR",
"BGR2RGBA",
"RGBA2BGR",
"BGR2RGB",
"BGRA2RGBA",
"BGR2GRAY",
"RGB2GRAY",
"GRAY2BGR",
"GRAY2BGRA",
"BGRA2GRAY",
"RGBA2GRAY",
"BGR2BGR565",
"RGB2BGR565",
"BGR5652BGR",
"BGR5652RGB",
"BGRA2BGR565",
"RGBA2BGR565",
"BGR5652BGRA",
"BGR5652RGBA",
"GRAY2BGR565",
"BGR5652GRAY",
"BGR2BGR555",
"RGB2BGR555",
"BGR5552BGR",
"BGR5552RGB",
"BGRA2BGR555",
"RGBA2BGR555",
"BGR5552BGRA",
"BGR5552RGBA",
"GRAY2BGR555",
"BGR5552GRAY",
"BGR2XYZ",
"RGB2XYZ",
"XYZ2BGR",
"XYZ2RGB",
"BGR2YCrCb",
"RGB2YCrCb",
"YCrCb2BGR",
"YCrCb2RGB",
"BGR2HSV",
"RGB2HSV",
"",
"",
"BGR2Lab",
"RGB2Lab",
"BayerBG2BGR",
"BayerGB2BGR",
"BayerRG2BGR",
"BayerGR2BGR",
"BGR2Luv",
"RGB2Luv",
"BGR2HLS",
"RGB2HLS",
"HSV2BGR",
"HSV2RGB",
"Lab2BGR",
"Lab2RGB",
"Luv2BGR",
"Luv2RGB",
"HLS2BGR",
"HLS2RGB",
"BayerBG2BGR_VNG",
"BayerGB2BGR_VNG",
"BayerRG2BGR_VNG",
"BayerGR2BGR_VNG",
"BGR2HSV_FULL",
"RGB2HSV_FULL",
"BGR2HLS_FULL",
"RGB2HLS_FULL",
"HSV2BGR_FULL",
"HSV2RGB_FULL",
"HLS2BGR_FULL",
"HLS2RGB_FULL",
"LBGR2Lab",
"LRGB2Lab",
"LBGR2Luv",
"LRGB2Luv",
"Lab2LBGR",
"Lab2LRGB",
"Luv2LBGR",
"Luv2LRGB",
"BGR2YUV",
"RGB2YUV",
"YUV2BGR",
"YUV2RGB",
"BayerBG2GRAY",
"BayerGB2GRAY",
"BayerRG2GRAY",
"BayerGR2GRAY",
//YUV 4:2:0 formats family
"YUV2RGB_NV12",
"YUV2BGR_NV12",
"YUV2RGB_NV21",
"YUV2BGR_NV21",
"YUV2RGBA_NV12",
"YUV2BGRA_NV12",
"YUV2RGBA_NV21",
"YUV2BGRA_NV21",
"YUV2RGB_YV12",
"YUV2BGR_YV12",
"YUV2RGB_IYUV",
"YUV2BGR_IYUV",
"YUV2RGBA_YV12",
"YUV2BGRA_YV12",
"YUV2RGBA_IYUV",
"YUV2BGRA_IYUV",
"YUV2GRAY_420",
//YUV 4:2:2 formats family
"YUV2RGB_UYVY",
"YUV2BGR_UYVY",
"YUV2RGB_VYUY",
"YUV2BGR_VYUY",
"YUV2RGBA_UYVY",
"YUV2BGRA_UYVY",
"YUV2RGBA_VYUY",
"YUV2BGRA_VYUY",
"YUV2RGB_YUY2",
"YUV2BGR_YUY2",
"YUV2RGB_YVYU",
"YUV2BGR_YVYU",
"YUV2RGBA_YUY2",
"YUV2BGRA_YUY2",
"YUV2RGBA_YVYU",
"YUV2BGRA_YVYU",
"YUV2GRAY_UYVY",
"YUV2GRAY_YUY2",
// alpha premultiplication
"RGBA2mRGBA",
"mRGBA2RGBA",
"COLORCVT_MAX"
};
*os << str[info.code];
#include "perf_precomp.hpp"
using namespace std;
using namespace cv;
using namespace cv::gpu;
void fillRandom(Mat& m, double a, double b)
{
RNG rng(123456789);
rng.fill(m, RNG::UNIFORM, Scalar::all(a), Scalar::all(b));
}
Mat readImage(const string& fileName, int flags)
{
return imread(perf::TestBase::getDataPath(fileName), flags);
}
void PrintTo(const CvtColorInfo& info, ostream* os)
{
static const char* str[] =
{
"BGR2BGRA",
"BGRA2BGR",
"BGR2RGBA",
"RGBA2BGR",
"BGR2RGB",
"BGRA2RGBA",
"BGR2GRAY",
"RGB2GRAY",
"GRAY2BGR",
"GRAY2BGRA",
"BGRA2GRAY",
"RGBA2GRAY",
"BGR2BGR565",
"RGB2BGR565",
"BGR5652BGR",
"BGR5652RGB",
"BGRA2BGR565",
"RGBA2BGR565",
"BGR5652BGRA",
"BGR5652RGBA",
"GRAY2BGR565",
"BGR5652GRAY",
"BGR2BGR555",
"RGB2BGR555",
"BGR5552BGR",
"BGR5552RGB",
"BGRA2BGR555",
"RGBA2BGR555",
"BGR5552BGRA",
"BGR5552RGBA",
"GRAY2BGR555",
"BGR5552GRAY",
"BGR2XYZ",
"RGB2XYZ",
"XYZ2BGR",
"XYZ2RGB",
"BGR2YCrCb",
"RGB2YCrCb",
"YCrCb2BGR",
"YCrCb2RGB",
"BGR2HSV",
"RGB2HSV",
"",
"",
"BGR2Lab",
"RGB2Lab",
"BayerBG2BGR",
"BayerGB2BGR",
"BayerRG2BGR",
"BayerGR2BGR",
"BGR2Luv",
"RGB2Luv",
"BGR2HLS",
"RGB2HLS",
"HSV2BGR",
"HSV2RGB",
"Lab2BGR",
"Lab2RGB",
"Luv2BGR",
"Luv2RGB",
"HLS2BGR",
"HLS2RGB",
"BayerBG2BGR_VNG",
"BayerGB2BGR_VNG",
"BayerRG2BGR_VNG",
"BayerGR2BGR_VNG",
"BGR2HSV_FULL",
"RGB2HSV_FULL",
"BGR2HLS_FULL",
"RGB2HLS_FULL",
"HSV2BGR_FULL",
"HSV2RGB_FULL",
"HLS2BGR_FULL",
"HLS2RGB_FULL",
"LBGR2Lab",
"LRGB2Lab",
"LBGR2Luv",
"LRGB2Luv",
"Lab2LBGR",
"Lab2LRGB",
"Luv2LBGR",
"Luv2LRGB",
"BGR2YUV",
"RGB2YUV",
"YUV2BGR",
"YUV2RGB",
"BayerBG2GRAY",
"BayerGB2GRAY",
"BayerRG2GRAY",
"BayerGR2GRAY",
//YUV 4:2:0 formats family
"YUV2RGB_NV12",
"YUV2BGR_NV12",
"YUV2RGB_NV21",
"YUV2BGR_NV21",
"YUV2RGBA_NV12",
"YUV2BGRA_NV12",
"YUV2RGBA_NV21",
"YUV2BGRA_NV21",
"YUV2RGB_YV12",
"YUV2BGR_YV12",
"YUV2RGB_IYUV",
"YUV2BGR_IYUV",
"YUV2RGBA_YV12",
"YUV2BGRA_YV12",
"YUV2RGBA_IYUV",
"YUV2BGRA_IYUV",
"YUV2GRAY_420",
//YUV 4:2:2 formats family
"YUV2RGB_UYVY",
"YUV2BGR_UYVY",
"YUV2RGB_VYUY",
"YUV2BGR_VYUY",
"YUV2RGBA_UYVY",
"YUV2BGRA_UYVY",
"YUV2RGBA_VYUY",
"YUV2BGRA_VYUY",
"YUV2RGB_YUY2",
"YUV2BGR_YUY2",
"YUV2RGB_YVYU",
"YUV2BGR_YVYU",
"YUV2RGBA_YUY2",
"YUV2BGRA_YUY2",
"YUV2RGBA_YVYU",
"YUV2BGRA_YVYU",
"YUV2GRAY_UYVY",
"YUV2GRAY_YUY2",
// alpha premultiplication
"RGBA2mRGBA",
"mRGBA2RGBA",
"COLORCVT_MAX"
};
*os << str[info.code];
}

View File

@@ -1,84 +1,84 @@
#ifndef __OPENCV_PERF_GPU_UTILITY_HPP__
#define __OPENCV_PERF_GPU_UTILITY_HPP__
#include "opencv2/core/core.hpp"
#include "opencv2/core/gpumat.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/ts/ts_perf.hpp"
void fillRandom(cv::Mat& m, double a = 0.0, double b = 255.0);
cv::Mat readImage(const std::string& fileName, int flags = cv::IMREAD_COLOR);
using perf::MatType;
using perf::MatDepth;
CV_ENUM(BorderMode, cv::BORDER_REFLECT101, cv::BORDER_REPLICATE, cv::BORDER_CONSTANT, cv::BORDER_REFLECT, cv::BORDER_WRAP)
#define ALL_BORDER_MODES testing::ValuesIn(BorderMode::all())
CV_ENUM(Interpolation, cv::INTER_NEAREST, cv::INTER_LINEAR, cv::INTER_CUBIC, cv::INTER_AREA)
#define ALL_INTERPOLATIONS testing::ValuesIn(Interpolation::all())
CV_ENUM(NormType, cv::NORM_INF, cv::NORM_L1, cv::NORM_L2, cv::NORM_HAMMING)
const int Gray = 1, TwoChannel = 2, BGR = 3, BGRA = 4;
CV_ENUM(MatCn, Gray, TwoChannel, BGR, BGRA)
#define GPU_CHANNELS_1_3_4 testing::Values(Gray, BGR, BGRA)
#define GPU_CHANNELS_1_3 testing::Values(Gray, BGR)
struct CvtColorInfo
{
int scn;
int dcn;
int code;
explicit CvtColorInfo(int scn_=0, int dcn_=0, int code_=0) : scn(scn_), dcn(dcn_), code(code_) {}
};
void PrintTo(const CvtColorInfo& info, std::ostream* os);
#define GET_PARAM(k) std::tr1::get< k >(GetParam())
#define DEF_PARAM_TEST(name, ...) typedef ::perf::TestBaseWithParam< std::tr1::tuple< __VA_ARGS__ > > name
#define DEF_PARAM_TEST_1(name, param_type) typedef ::perf::TestBaseWithParam< param_type > name
DEF_PARAM_TEST_1(Sz, cv::Size);
typedef perf::Size_MatType Sz_Type;
DEF_PARAM_TEST(Sz_Depth, cv::Size, MatDepth);
DEF_PARAM_TEST(Sz_Depth_Cn, cv::Size, MatDepth, MatCn);
#define GPU_TYPICAL_MAT_SIZES testing::Values(perf::sz720p, perf::szSXGA, perf::sz1080p)
#define GPU_SANITY_CHECK(dmat, ...) \
do{ \
cv::Mat d##dmat(dmat); \
SANITY_CHECK(d##dmat, ## __VA_ARGS__); \
} while(0)
#define CPU_SANITY_CHECK(cmat, ...) \
do{ \
SANITY_CHECK(cmat, ## __VA_ARGS__); \
} while(0)
#define GPU_SANITY_CHECK_KEYPOINTS(alg, dmat, ...) \
do{ \
cv::Mat d##dmat(dmat); \
cv::Mat __pt_x = d##dmat.row(cv::gpu::alg##_GPU::X_ROW); \
cv::Mat __pt_y = d##dmat.row(cv::gpu::alg##_GPU::Y_ROW); \
cv::Mat __angle = d##dmat.row(cv::gpu::alg##_GPU::ANGLE_ROW); \
cv::Mat __octave = d##dmat.row(cv::gpu::alg##_GPU::OCTAVE_ROW); \
cv::Mat __size = d##dmat.row(cv::gpu::alg##_GPU::SIZE_ROW); \
::perf::Regression::add(this, std::string(#dmat) + "-pt-x-row", __pt_x, ## __VA_ARGS__); \
::perf::Regression::add(this, std::string(#dmat) + "-pt-y-row", __pt_y, ## __VA_ARGS__); \
::perf::Regression::add(this, std::string(#dmat) + "-angle-row", __angle, ## __VA_ARGS__); \
::perf::Regression::add(this, std::string(#dmat) + "octave-row", __octave, ## __VA_ARGS__); \
::perf::Regression::add(this, std::string(#dmat) + "-pt-size-row", __size, ## __VA_ARGS__); \
} while(0)
#define GPU_SANITY_CHECK_RESPONSE(alg, dmat, ...) \
do{ \
cv::Mat d##dmat(dmat); \
cv::Mat __response = d##dmat.row(cv::gpu::alg##_GPU::RESPONSE_ROW); \
::perf::Regression::add(this, std::string(#dmat) + "-response-row", __response, ## __VA_ARGS__); \
} while(0)
#define FAIL_NO_CPU() FAIL() << "No such CPU implementation analogy"
#endif // __OPENCV_PERF_GPU_UTILITY_HPP__
#ifndef __OPENCV_PERF_GPU_UTILITY_HPP__
#define __OPENCV_PERF_GPU_UTILITY_HPP__
#include "opencv2/core/core.hpp"
#include "opencv2/core/gpumat.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/ts/ts_perf.hpp"
void fillRandom(cv::Mat& m, double a = 0.0, double b = 255.0);
cv::Mat readImage(const std::string& fileName, int flags = cv::IMREAD_COLOR);
using perf::MatType;
using perf::MatDepth;
CV_ENUM(BorderMode, cv::BORDER_REFLECT101, cv::BORDER_REPLICATE, cv::BORDER_CONSTANT, cv::BORDER_REFLECT, cv::BORDER_WRAP)
#define ALL_BORDER_MODES testing::ValuesIn(BorderMode::all())
CV_ENUM(Interpolation, cv::INTER_NEAREST, cv::INTER_LINEAR, cv::INTER_CUBIC, cv::INTER_AREA)
#define ALL_INTERPOLATIONS testing::ValuesIn(Interpolation::all())
CV_ENUM(NormType, cv::NORM_INF, cv::NORM_L1, cv::NORM_L2, cv::NORM_HAMMING)
const int Gray = 1, TwoChannel = 2, BGR = 3, BGRA = 4;
CV_ENUM(MatCn, Gray, TwoChannel, BGR, BGRA)
#define GPU_CHANNELS_1_3_4 testing::Values(Gray, BGR, BGRA)
#define GPU_CHANNELS_1_3 testing::Values(Gray, BGR)
struct CvtColorInfo
{
int scn;
int dcn;
int code;
explicit CvtColorInfo(int scn_=0, int dcn_=0, int code_=0) : scn(scn_), dcn(dcn_), code(code_) {}
};
void PrintTo(const CvtColorInfo& info, std::ostream* os);
#define GET_PARAM(k) std::tr1::get< k >(GetParam())
#define DEF_PARAM_TEST(name, ...) typedef ::perf::TestBaseWithParam< std::tr1::tuple< __VA_ARGS__ > > name
#define DEF_PARAM_TEST_1(name, param_type) typedef ::perf::TestBaseWithParam< param_type > name
DEF_PARAM_TEST_1(Sz, cv::Size);
typedef perf::Size_MatType Sz_Type;
DEF_PARAM_TEST(Sz_Depth, cv::Size, MatDepth);
DEF_PARAM_TEST(Sz_Depth_Cn, cv::Size, MatDepth, MatCn);
#define GPU_TYPICAL_MAT_SIZES testing::Values(perf::sz720p, perf::szSXGA, perf::sz1080p)
#define GPU_SANITY_CHECK(dmat, ...) \
do{ \
cv::Mat d##dmat(dmat); \
SANITY_CHECK(d##dmat, ## __VA_ARGS__); \
} while(0)
#define CPU_SANITY_CHECK(cmat, ...) \
do{ \
SANITY_CHECK(cmat, ## __VA_ARGS__); \
} while(0)
#define GPU_SANITY_CHECK_KEYPOINTS(alg, dmat, ...) \
do{ \
cv::Mat d##dmat(dmat); \
cv::Mat __pt_x = d##dmat.row(cv::gpu::alg##_GPU::X_ROW); \
cv::Mat __pt_y = d##dmat.row(cv::gpu::alg##_GPU::Y_ROW); \
cv::Mat __angle = d##dmat.row(cv::gpu::alg##_GPU::ANGLE_ROW); \
cv::Mat __octave = d##dmat.row(cv::gpu::alg##_GPU::OCTAVE_ROW); \
cv::Mat __size = d##dmat.row(cv::gpu::alg##_GPU::SIZE_ROW); \
::perf::Regression::add(this, std::string(#dmat) + "-pt-x-row", __pt_x, ## __VA_ARGS__); \
::perf::Regression::add(this, std::string(#dmat) + "-pt-y-row", __pt_y, ## __VA_ARGS__); \
::perf::Regression::add(this, std::string(#dmat) + "-angle-row", __angle, ## __VA_ARGS__); \
::perf::Regression::add(this, std::string(#dmat) + "octave-row", __octave, ## __VA_ARGS__); \
::perf::Regression::add(this, std::string(#dmat) + "-pt-size-row", __size, ## __VA_ARGS__); \
} while(0)
#define GPU_SANITY_CHECK_RESPONSE(alg, dmat, ...) \
do{ \
cv::Mat d##dmat(dmat); \
cv::Mat __response = d##dmat.row(cv::gpu::alg##_GPU::RESPONSE_ROW); \
::perf::Regression::add(this, std::string(#dmat) + "-response-row", __response, ## __VA_ARGS__); \
} while(0)
#define FAIL_NO_CPU() FAIL() << "No such CPU implementation analogy"
#endif // __OPENCV_PERF_GPU_UTILITY_HPP__