Normalize line endings and whitespace

This commit is contained in:
OpenCV Buildbot
2012-10-17 11:12:04 +04:00
committed by Andrey Kamaev
parent 0442bca235
commit 81f826db2b
1511 changed files with 258678 additions and 258624 deletions

View File

@@ -384,7 +384,7 @@ struct HammingLUT
*/
ResultType operator()(const unsigned char* a, const unsigned char* b, size_t size) const
{
static const uchar popCountTable[] =
static const uchar popCountTable[] =
{
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
@@ -514,9 +514,9 @@ struct Hamming2
ResultType result = 0;
size /= (sizeof(uint32_t)/sizeof(unsigned char));
for(size_t i = 0; i < size; ++i ) {
result += popcnt32(*pa ^ *pb);
++pa;
++pb;
result += popcnt32(*pa ^ *pb);
++pa;
++pb;
}
#endif
return result;

View File

@@ -93,7 +93,7 @@ using ::cvflann::KL_Divergence;
template <typename Distance>
class GenericIndex
class GenericIndex
{
public:
typedef typename Distance::ElementType ElementType;
@@ -103,13 +103,13 @@ public:
~GenericIndex();
void knnSearch(const vector<ElementType>& query, vector<int>& indices,
void knnSearch(const vector<ElementType>& query, vector<int>& indices,
vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& params);
void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& params);
int radiusSearch(const vector<ElementType>& query, vector<int>& indices,
int radiusSearch(const vector<ElementType>& query, vector<int>& indices,
vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& params);
int radiusSearch(const Mat& query, Mat& indices, Mat& dists,
int radiusSearch(const Mat& query, Mat& indices, Mat& dists,
DistanceType radius, const ::cvflann::SearchParams& params);
void save(std::string filename) { nnIndex->save(filename); }
@@ -134,7 +134,7 @@ private:
"(cv::flann::Index always uses L2). You should create the index templated on the distance, "\
"for example for L1 distance use: GenericIndex< L1<float> > \n"); \
}
template <typename Distance>
GenericIndex<Distance>::GenericIndex(const Mat& dataset, const ::cvflann::IndexParams& params, Distance distance)
@@ -142,11 +142,11 @@ GenericIndex<Distance>::GenericIndex(const Mat& dataset, const ::cvflann::IndexP
CV_Assert(dataset.type() == CvType<ElementType>::type());
CV_Assert(dataset.isContinuous());
::cvflann::Matrix<ElementType> m_dataset((ElementType*)dataset.ptr<ElementType>(0), dataset.rows, dataset.cols);
nnIndex = new ::cvflann::Index<Distance>(m_dataset, params, distance);
FLANN_DISTANCE_CHECK
nnIndex->buildIndex();
}
@@ -175,17 +175,17 @@ void GenericIndex<Distance>::knnSearch(const Mat& queries, Mat& indices, Mat& di
CV_Assert(queries.type() == CvType<ElementType>::type());
CV_Assert(queries.isContinuous());
::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols);
CV_Assert(indices.type() == CV_32S);
CV_Assert(indices.isContinuous());
::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
CV_Assert(dists.type() == CvType<DistanceType>::type());
CV_Assert(dists.isContinuous());
::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
FLANN_DISTANCE_CHECK
nnIndex->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
}
@@ -197,7 +197,7 @@ int GenericIndex<Distance>::radiusSearch(const vector<ElementType>& query, vecto
::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
FLANN_DISTANCE_CHECK
return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
}
@@ -207,17 +207,17 @@ int GenericIndex<Distance>::radiusSearch(const Mat& query, Mat& indices, Mat& di
CV_Assert(query.type() == CvType<ElementType>::type());
CV_Assert(query.isContinuous());
::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols);
CV_Assert(indices.type() == CV_32S);
CV_Assert(indices.isContinuous());
::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
CV_Assert(dists.type() == CvType<DistanceType>::type());
CV_Assert(dists.isContinuous());
::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
FLANN_DISTANCE_CHECK
return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
}
@@ -234,45 +234,45 @@ public:
typedef typename L2<T>::ElementType ElementType;
typedef typename L2<T>::ResultType DistanceType;
Index_(const Mat& features, const ::cvflann::IndexParams& params);
Index_(const Mat& features, const ::cvflann::IndexParams& params);
~Index_();
~Index_();
void knnSearch(const vector<ElementType>& query, vector<int>& indices, vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& params);
void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& params);
void knnSearch(const vector<ElementType>& query, vector<int>& indices, vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& params);
void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& params);
int radiusSearch(const vector<ElementType>& query, vector<int>& indices, vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& params);
int radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& params);
int radiusSearch(const vector<ElementType>& query, vector<int>& indices, vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& params);
int radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& params);
void save(std::string filename)
{
void save(std::string filename)
{
if (nnIndex_L1) nnIndex_L1->save(filename);
if (nnIndex_L2) nnIndex_L2->save(filename);
}
int veclen() const
{
int veclen() const
{
if (nnIndex_L1) return nnIndex_L1->veclen();
if (nnIndex_L2) return nnIndex_L2->veclen();
if (nnIndex_L2) return nnIndex_L2->veclen();
}
int size() const
{
int size() const
{
if (nnIndex_L1) return nnIndex_L1->size();
if (nnIndex_L2) return nnIndex_L2->size();
if (nnIndex_L2) return nnIndex_L2->size();
}
::cvflann::IndexParams getParameters()
{
::cvflann::IndexParams getParameters()
{
if (nnIndex_L1) return nnIndex_L1->getParameters();
if (nnIndex_L2) return nnIndex_L2->getParameters();
}
FLANN_DEPRECATED const ::cvflann::IndexParams* getIndexParameters()
{
FLANN_DEPRECATED const ::cvflann::IndexParams* getIndexParameters()
{
if (nnIndex_L1) return nnIndex_L1->getIndexParameters();
if (nnIndex_L2) return nnIndex_L2->getIndexParameters();
if (nnIndex_L2) return nnIndex_L2->getIndexParameters();
}
private:
@@ -290,18 +290,18 @@ template <typename T>
Index_<T>::Index_(const Mat& dataset, const ::cvflann::IndexParams& params)
{
printf("[WARNING] The cv::flann::Index_<T> class is deperecated, use cv::flann::GenericIndex<Distance> instead\n");
CV_Assert(dataset.type() == CvType<ElementType>::type());
CV_Assert(dataset.isContinuous());
::cvflann::Matrix<ElementType> m_dataset((ElementType*)dataset.ptr<ElementType>(0), dataset.rows, dataset.cols);
if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) {
nnIndex_L1 = NULL;
nnIndex_L2 = new ::cvflann::Index< L2<ElementType> >(m_dataset, params);
}
else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) {
nnIndex_L1 = new ::cvflann::Index< L1<ElementType> >(m_dataset, params);
nnIndex_L2 = NULL;
nnIndex_L2 = NULL;
}
else {
printf("[ERROR] cv::flann::Index_<T> only provides backwards compatibility for the L1 and L2 distances. "
@@ -325,7 +325,7 @@ void Index_<T>::knnSearch(const vector<ElementType>& query, vector<int>& indices
::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
if (nnIndex_L1) nnIndex_L1->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
if (nnIndex_L2) nnIndex_L2->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
}
@@ -337,11 +337,11 @@ void Index_<T>::knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn,
CV_Assert(queries.type() == CvType<ElementType>::type());
CV_Assert(queries.isContinuous());
::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols);
CV_Assert(indices.type() == CV_32S);
CV_Assert(indices.isContinuous());
::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
CV_Assert(dists.type() == CvType<DistanceType>::type());
CV_Assert(dists.isContinuous());
::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
@@ -356,7 +356,7 @@ int Index_<T>::radiusSearch(const vector<ElementType>& query, vector<int>& indic
::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
}
@@ -367,15 +367,15 @@ int Index_<T>::radiusSearch(const Mat& query, Mat& indices, Mat& dists, Distance
CV_Assert(query.type() == CvType<ElementType>::type());
CV_Assert(query.isContinuous());
::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols);
CV_Assert(indices.type() == CV_32S);
CV_Assert(indices.isContinuous());
::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
CV_Assert(dists.type() == CvType<DistanceType>::type());
CV_Assert(dists.isContinuous());
::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
}
@@ -387,11 +387,11 @@ int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::K
{
typedef typename Distance::ElementType ElementType;
typedef typename Distance::ResultType DistanceType;
CV_Assert(features.type() == CvType<ElementType>::type());
CV_Assert(features.isContinuous());
::cvflann::Matrix<ElementType> m_features((ElementType*)features.ptr<ElementType>(0), features.rows, features.cols);
CV_Assert(centers.type() == CvType<DistanceType>::type());
CV_Assert(centers.isContinuous());
::cvflann::Matrix<DistanceType> m_centers((DistanceType*)centers.ptr<DistanceType>(0), centers.rows, centers.cols);
@@ -405,7 +405,7 @@ FLANN_DEPRECATED int hierarchicalClustering(const Mat& features, Mat& centers, c
{
printf("[WARNING] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> is deprecated, use "
"cv::flann::hierarchicalClustering<Distance> instead\n");
if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) {
return hierarchicalClustering< L2<ELEM_TYPE> >(features, centers, params);
}

View File

@@ -162,7 +162,7 @@ private:
int best_index = -1;
DistanceType best_val = 0;
for (int j=0; j<n; ++j) {
DistanceType dist = distance(dataset[centers[0]],dataset[dsindices[j]],dataset.cols);
DistanceType dist = distance(dataset[centers[0]],dataset[dsindices[j]],dataset.cols);
for (int i=1; i<index; ++i) {
DistanceType tmp_dist = distance(dataset[centers[i]],dataset[dsindices[j]],dataset.cols);
if (tmp_dist<dist) {

View File

@@ -253,18 +253,18 @@ private:
/*--------------------- Internal Data Structures --------------------------*/
struct Node
{
/**
* Indices of points in leaf node
*/
int left, right;
/**
* Dimension used for subdivision.
*/
int divfeat;
/**
* The values used for subdivision.
*/
DistanceType divlow, divhigh;
/**
* Indices of points in leaf node
*/
int left, right;
/**
* Dimension used for subdivision.
*/
int divfeat;
/**
* The values used for subdivision.
*/
DistanceType divlow, divhigh;
/**
* The child nodes.
*/

View File

@@ -90,7 +90,7 @@ public:
Distance d = Distance()) :
dataset_(input_data), index_params_(params), distance_(d)
{
// cv::flann::IndexParams sets integer params as 'int', so it is used with get_param
// cv::flann::IndexParams sets integer params as 'int', so it is used with get_param
// in place of 'unsigned int'
table_number_ = (unsigned int)get_param<int>(index_params_,"table_number",12);
key_size_ = (unsigned int)get_param<int>(index_params_,"key_size",20);

View File

@@ -50,7 +50,7 @@
namespace cv
{
namespace flann
{
@@ -58,31 +58,31 @@ struct CV_EXPORTS IndexParams
{
IndexParams();
~IndexParams();
std::string getString(const std::string& key, const std::string& defaultVal=std::string()) const;
int getInt(const std::string& key, int defaultVal=-1) const;
double getDouble(const std::string& key, double defaultVal=-1) const;
void setString(const std::string& key, const std::string& value);
void setInt(const std::string& key, int value);
void setDouble(const std::string& key, double value);
void setFloat(const std::string& key, float value);
void setBool(const std::string& key, bool value);
void setAlgorithm(int value);
void getAll(std::vector<std::string>& names,
std::vector<int>& types,
std::vector<std::string>& strValues,
std::vector<double>& numValues) const;
void* params;
};
};
struct CV_EXPORTS KDTreeIndexParams : public IndexParams
{
KDTreeIndexParams(int trees=4);
};
struct CV_EXPORTS LinearIndexParams : public IndexParams
{
LinearIndexParams();
@@ -99,10 +99,10 @@ struct CV_EXPORTS AutotunedIndexParams : public IndexParams
AutotunedIndexParams(float target_precision = 0.8, float build_weight = 0.01,
float memory_weight = 0, float sample_fraction = 0.1);
};
struct CV_EXPORTS HierarchicalClusteringIndexParams : public IndexParams
{
HierarchicalClusteringIndexParams(int branching = 32,
HierarchicalClusteringIndexParams(int branching = 32,
cvflann::flann_centers_init_t centers_init = cvflann::FLANN_CENTERS_RANDOM, int trees = 4, int leaf_size = 100 );
};
@@ -116,45 +116,45 @@ struct CV_EXPORTS LshIndexParams : public IndexParams
{
LshIndexParams(int table_number, int key_size, int multi_probe_level);
};
struct CV_EXPORTS SavedIndexParams : public IndexParams
{
SavedIndexParams(const std::string& filename);
};
};
struct CV_EXPORTS SearchParams : public IndexParams
{
SearchParams( int checks = 32, float eps = 0, bool sorted = true );
};
};
class CV_EXPORTS_W Index
{
public:
CV_WRAP Index();
CV_WRAP Index(InputArray features, const IndexParams& params, cvflann::flann_distance_t distType=cvflann::FLANN_DIST_L2);
virtual ~Index();
CV_WRAP virtual void build(InputArray features, const IndexParams& params, cvflann::flann_distance_t distType=cvflann::FLANN_DIST_L2);
CV_WRAP virtual void knnSearch(InputArray query, OutputArray indices,
CV_WRAP virtual void knnSearch(InputArray query, OutputArray indices,
OutputArray dists, int knn, const SearchParams& params=SearchParams());
CV_WRAP virtual int radiusSearch(InputArray query, OutputArray indices,
OutputArray dists, double radius, int maxResults,
const SearchParams& params=SearchParams());
CV_WRAP virtual void save(const std::string& filename) const;
CV_WRAP virtual bool load(InputArray features, const std::string& filename);
CV_WRAP virtual void release();
CV_WRAP cvflann::flann_distance_t getDistance() const;
CV_WRAP cvflann::flann_algorithm_t getAlgorithm() const;
protected:
cvflann::flann_distance_t distType;
cvflann::flann_algorithm_t algo;
int featureType;
void* index;
};
} } // namespace cv::flann
#endif // __cplusplus