Merged the trunk r8467:8507 (inclusive) (big bunch of documentation fixes)
This commit is contained in:
@@ -7,17 +7,17 @@ kmeans
|
||||
------
|
||||
Finds centers of clusters and groups input samples around the clusters.
|
||||
|
||||
.. ocv:function:: double kmeans( InputArray samples, int clusterCount, InputOutputArray labels, TermCriteria criteria, int attempts, int flags, OutputArray centers=noArray() )
|
||||
.. ocv:function:: double kmeans( InputArray data, int K, InputOutputArray bestLabels, TermCriteria criteria, int attempts, int flags, OutputArray centers=noArray() )
|
||||
|
||||
.. ocv:pyfunction:: cv2.kmeans(data, K, criteria, attempts, flags[, bestLabels[, centers]]) -> retval, bestLabels, centers
|
||||
|
||||
.. ocv:cfunction:: int cvKMeans2(const CvArr* samples, int clusterCount, CvArr* labels, CvTermCriteria criteria, int attempts=1, CvRNG* rng=0, int flags=0, CvArr* centers=0, double* compactness=0)
|
||||
.. ocv:cfunction:: int cvKMeans2( const CvArr* samples, int cluster_count, CvArr* labels, CvTermCriteria termcrit, int attempts=1, CvRNG* rng=0, int flags=0, CvArr* _centers=0, double* compactness=0 )
|
||||
|
||||
.. ocv:pyoldfunction:: cv.KMeans2(samples, clusterCount, labels, criteria)-> None
|
||||
.. ocv:pyoldfunction:: cv.KMeans2(samples, nclusters, labels, termcrit, attempts=1, flags=0, centers=None) -> float
|
||||
|
||||
:param samples: Floating-point matrix of input samples, one row per sample.
|
||||
|
||||
:param clusterCount: Number of clusters to split the set by.
|
||||
:param cluster_count: Number of clusters to split the set by.
|
||||
|
||||
:param labels: Input/output integer array that stores the cluster indices for every sample.
|
||||
|
||||
@@ -40,7 +40,7 @@ Finds centers of clusters and groups input samples around the clusters.
|
||||
:param compactness: The returned value that is described below.
|
||||
|
||||
The function ``kmeans`` implements a k-means algorithm that finds the
|
||||
centers of ``clusterCount`` clusters and groups the input samples
|
||||
centers of ``cluster_count`` clusters and groups the input samples
|
||||
around the clusters. As an output,
|
||||
:math:`\texttt{labels}_i` contains a 0-based cluster index for
|
||||
the sample stored in the
|
||||
|
Reference in New Issue
Block a user