AKAZE fixes, tests and tutorial
This commit is contained in:
parent
277802483f
commit
7f82960897
161
doc/tutorials/features2d/akaze_matching/akaze_matching.rst
Normal file
161
doc/tutorials/features2d/akaze_matching/akaze_matching.rst
Normal file
@ -0,0 +1,161 @@
|
||||
.. _akazeMatching:
|
||||
|
||||
|
||||
AKAZE local features matching
|
||||
******************************
|
||||
|
||||
Introduction
|
||||
------------------
|
||||
|
||||
In this tutorial we will learn how to use [AKAZE]_ local features to detect and match keypoints on two images.
|
||||
|
||||
We will find keypoints on a pair of images with given homography matrix,
|
||||
match them and count the number of inliers (i. e. matches that fit in the given homography).
|
||||
|
||||
You can find expanded version of this example here: https://github.com/pablofdezalc/test_kaze_akaze_opencv
|
||||
|
||||
.. [AKAZE] Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces. Pablo F. Alcantarilla, Jesús Nuevo and Adrien Bartoli. In British Machine Vision Conference (BMVC), Bristol, UK, September 2013.
|
||||
|
||||
Data
|
||||
------------------
|
||||
We are going to use images 1 and 3 from *Graffity* sequence of Oxford dataset.
|
||||
|
||||
.. image:: images/graf.png
|
||||
:height: 200pt
|
||||
:width: 320pt
|
||||
:alt: Graffity
|
||||
:align: center
|
||||
|
||||
Homography is given by a 3 by 3 matrix:
|
||||
|
||||
.. code-block:: none
|
||||
|
||||
7.6285898e-01 -2.9922929e-01 2.2567123e+02
|
||||
3.3443473e-01 1.0143901e+00 -7.6999973e+01
|
||||
3.4663091e-04 -1.4364524e-05 1.0000000e+00
|
||||
|
||||
You can find the images (*graf1.png*, *graf3.png*) and homography (*H1to3p.xml*) in *opencv/samples/cpp*.
|
||||
|
||||
Source Code
|
||||
===========
|
||||
.. literalinclude:: ../../../../samples/cpp/tutorial_code/features2D/AKAZE_match.cpp
|
||||
:language: cpp
|
||||
:linenos:
|
||||
:tab-width: 4
|
||||
|
||||
Explanation
|
||||
===========
|
||||
|
||||
1. **Load images and homography**
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
Mat img1 = imread("graf1.png", IMREAD_GRAYSCALE);
|
||||
Mat img2 = imread("graf3.png", IMREAD_GRAYSCALE);
|
||||
|
||||
Mat homography;
|
||||
FileStorage fs("H1to3p.xml", FileStorage::READ);
|
||||
fs.getFirstTopLevelNode() >> homography;
|
||||
|
||||
We are loading grayscale images here. Homography is stored in the xml created with FileStorage.
|
||||
|
||||
2. **Detect keypoints and compute descriptors using AKAZE**
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
vector<KeyPoint> kpts1, kpts2;
|
||||
Mat desc1, desc2;
|
||||
|
||||
AKAZE akaze;
|
||||
akaze(img1, noArray(), kpts1, desc1);
|
||||
akaze(img2, noArray(), kpts2, desc2);
|
||||
|
||||
We create AKAZE object and use it's *operator()* functionality. Since we don't need the *mask* parameter, *noArray()* is used.
|
||||
|
||||
3. **Use brute-force matcher to find 2-nn matches**
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
BFMatcher matcher(NORM_HAMMING);
|
||||
vector< vector<DMatch> > nn_matches;
|
||||
matcher.knnMatch(desc1, desc2, nn_matches, 2);
|
||||
|
||||
We use Hamming distance, because AKAZE uses binary descriptor by default.
|
||||
|
||||
4. **Use 2-nn matches to find correct keypoint matches**
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
for(size_t i = 0; i < nn_matches.size(); i++) {
|
||||
DMatch first = nn_matches[i][0];
|
||||
float dist1 = nn_matches[i][0].distance;
|
||||
float dist2 = nn_matches[i][1].distance;
|
||||
|
||||
if(dist1 < nn_match_ratio * dist2) {
|
||||
matched1.push_back(kpts1[first.queryIdx]);
|
||||
matched2.push_back(kpts2[first.trainIdx]);
|
||||
}
|
||||
}
|
||||
|
||||
If the closest match is *ratio* closer than the second closest one, then the match is correct.
|
||||
|
||||
5. **Check if our matches fit in the homography model**
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
for(int i = 0; i < matched1.size(); i++) {
|
||||
Mat col = Mat::ones(3, 1, CV_64F);
|
||||
col.at<double>(0) = matched1[i].pt.x;
|
||||
col.at<double>(1) = matched1[i].pt.y;
|
||||
|
||||
col = homography * col;
|
||||
col /= col.at<double>(2);
|
||||
float dist = sqrt( pow(col.at<double>(0) - matched2[i].pt.x, 2) +
|
||||
pow(col.at<double>(1) - matched2[i].pt.y, 2));
|
||||
|
||||
if(dist < inlier_threshold) {
|
||||
int new_i = inliers1.size();
|
||||
inliers1.push_back(matched1[i]);
|
||||
inliers2.push_back(matched2[i]);
|
||||
good_matches.push_back(DMatch(new_i, new_i, 0));
|
||||
}
|
||||
}
|
||||
|
||||
If the distance from first keypoint's projection to the second keypoint is less than threshold, then it it fits in the homography.
|
||||
|
||||
We create a new set of matches for the inliers, because it is required by the drawing function.
|
||||
|
||||
6. **Output results**
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
Mat res;
|
||||
drawMatches(img1, inliers1, img2, inliers2, good_matches, res);
|
||||
imwrite("res.png", res);
|
||||
...
|
||||
|
||||
Here we save the resulting image and print some statistics.
|
||||
|
||||
Results
|
||||
=======
|
||||
|
||||
Found matches
|
||||
--------------
|
||||
|
||||
.. image:: images/res.png
|
||||
:height: 200pt
|
||||
:width: 320pt
|
||||
:alt: Matches
|
||||
:align: center
|
||||
|
||||
A-KAZE Matching Results
|
||||
--------------------------
|
||||
Keypoints 1: 2943
|
||||
|
||||
Keypoints 2: 3511
|
||||
|
||||
Matches: 447
|
||||
|
||||
Inliers: 308
|
||||
|
||||
Inliers Ratio: 0.689038
|
BIN
doc/tutorials/features2d/akaze_matching/images/graf.png
Normal file
BIN
doc/tutorials/features2d/akaze_matching/images/graf.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 2.0 MiB |
BIN
doc/tutorials/features2d/akaze_matching/images/res.png
Normal file
BIN
doc/tutorials/features2d/akaze_matching/images/res.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 1.8 MiB |
Binary file not shown.
After Width: | Height: | Size: 63 KiB |
@ -183,6 +183,25 @@ Learn about how to use the feature points detectors, descriptors and matching f
|
||||
:height: 90pt
|
||||
:width: 90pt
|
||||
|
||||
+
|
||||
.. tabularcolumns:: m{100pt} m{300pt}
|
||||
.. cssclass:: toctableopencv
|
||||
|
||||
===================== ==============================================
|
||||
|AkazeMatch| **Title:** :ref:`akazeMatching`
|
||||
|
||||
*Compatibility:* > OpenCV 3.0
|
||||
|
||||
*Author:* Fedor Morozov
|
||||
|
||||
Use *AKAZE* local features to find correspondence between two images.
|
||||
|
||||
===================== ==============================================
|
||||
|
||||
.. |AkazeMatch| image:: images/AKAZE_Match_Tutorial_Cover.png
|
||||
:height: 90pt
|
||||
:width: 90pt
|
||||
|
||||
.. raw:: latex
|
||||
|
||||
\pagebreak
|
||||
@ -201,3 +220,4 @@ Learn about how to use the feature points detectors, descriptors and matching f
|
||||
../feature_flann_matcher/feature_flann_matcher
|
||||
../feature_homography/feature_homography
|
||||
../detection_of_planar_objects/detection_of_planar_objects
|
||||
../akaze_matching/akaze_matching
|
||||
|
@ -31,7 +31,7 @@ Detects corners using the FAST algorithm
|
||||
|
||||
Detects corners using the FAST algorithm by [Rosten06]_.
|
||||
|
||||
..note:: In Python API, types are given as ``cv2.FAST_FEATURE_DETECTOR_TYPE_5_8``, ``cv2.FAST_FEATURE_DETECTOR_TYPE_7_12`` and ``cv2.FAST_FEATURE_DETECTOR_TYPE_9_16``. For corner detection, use ``cv2.FAST.detect()`` method.
|
||||
.. note:: In Python API, types are given as ``cv2.FAST_FEATURE_DETECTOR_TYPE_5_8``, ``cv2.FAST_FEATURE_DETECTOR_TYPE_7_12`` and ``cv2.FAST_FEATURE_DETECTOR_TYPE_9_16``. For corner detection, use ``cv2.FAST.detect()`` method.
|
||||
|
||||
|
||||
.. [Rosten06] E. Rosten. Machine Learning for High-speed Corner Detection, 2006.
|
||||
@ -254,7 +254,17 @@ KAZE
|
||||
----
|
||||
.. ocv:class:: KAZE : public Feature2D
|
||||
|
||||
Class implementing the KAZE keypoint detector and descriptor extractor, described in [ABD12]_.
|
||||
Class implementing the KAZE keypoint detector and descriptor extractor, described in [ABD12]_. ::
|
||||
|
||||
class CV_EXPORTS_W KAZE : public Feature2D
|
||||
{
|
||||
public:
|
||||
CV_WRAP KAZE();
|
||||
CV_WRAP explicit KAZE(bool extended, bool upright, float threshold = 0.001f,
|
||||
int octaves = 4, int sublevels = 4, int diffusivity = DIFF_PM_G2);
|
||||
};
|
||||
|
||||
.. note:: AKAZE descriptor can only be used with KAZE or AKAZE keypoints
|
||||
|
||||
.. [ABD12] KAZE Features. Pablo F. Alcantarilla, Adrien Bartoli and Andrew J. Davison. In European Conference on Computer Vision (ECCV), Fiorenze, Italy, October 2012.
|
||||
|
||||
@ -262,12 +272,14 @@ KAZE::KAZE
|
||||
----------
|
||||
The KAZE constructor
|
||||
|
||||
.. ocv:function:: KAZE::KAZE(bool extended, bool upright)
|
||||
.. ocv:function:: KAZE::KAZE(bool extended, bool upright, float threshold, int octaves, int sublevels, int diffusivity)
|
||||
|
||||
:param extended: Set to enable extraction of extended (128-byte) descriptor.
|
||||
:param upright: Set to enable use of upright descriptors (non rotation-invariant).
|
||||
|
||||
|
||||
:param threshold: Detector response threshold to accept point
|
||||
:param octaves: Maximum octave evolution of the image
|
||||
:param sublevels: Default number of sublevels per scale level
|
||||
:param diffusivity: Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or DIFF_CHARBONNIER
|
||||
|
||||
AKAZE
|
||||
-----
|
||||
@ -278,25 +290,25 @@ Class implementing the AKAZE keypoint detector and descriptor extractor, describ
|
||||
class CV_EXPORTS_W AKAZE : public Feature2D
|
||||
{
|
||||
public:
|
||||
/// AKAZE Descriptor Type
|
||||
enum DESCRIPTOR_TYPE {
|
||||
DESCRIPTOR_KAZE_UPRIGHT = 2, ///< Upright descriptors, not invariant to rotation
|
||||
DESCRIPTOR_KAZE = 3,
|
||||
DESCRIPTOR_MLDB_UPRIGHT = 4, ///< Upright descriptors, not invariant to rotation
|
||||
DESCRIPTOR_MLDB = 5
|
||||
};
|
||||
CV_WRAP AKAZE();
|
||||
explicit AKAZE(DESCRIPTOR_TYPE descriptor_type, int descriptor_size = 0, int descriptor_channels = 3);
|
||||
CV_WRAP explicit AKAZE(int descriptor_type, int descriptor_size = 0, int descriptor_channels = 3,
|
||||
float threshold = 0.001f, int octaves = 4, int sublevels = 4, int diffusivity = DIFF_PM_G2);
|
||||
};
|
||||
|
||||
.. note:: AKAZE descriptor can only be used with KAZE or AKAZE keypoints
|
||||
|
||||
.. [ANB13] Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces. Pablo F. Alcantarilla, Jesús Nuevo and Adrien Bartoli. In British Machine Vision Conference (BMVC), Bristol, UK, September 2013.
|
||||
|
||||
AKAZE::AKAZE
|
||||
------------
|
||||
The AKAZE constructor
|
||||
|
||||
.. ocv:function:: AKAZE::AKAZE(DESCRIPTOR_TYPE descriptor_type, int descriptor_size = 0, int descriptor_channels = 3)
|
||||
.. ocv:function:: AKAZE::AKAZE(int descriptor_type, int descriptor_size, int descriptor_channels, float threshold, int octaves, int sublevels, int diffusivity)
|
||||
|
||||
:param descriptor_type: Type of the extracted descriptor.
|
||||
:param descriptor_type: Type of the extracted descriptor: DESCRIPTOR_KAZE, DESCRIPTOR_KAZE_UPRIGHT, DESCRIPTOR_MLDB or DESCRIPTOR_MLDB_UPRIGHT.
|
||||
:param descriptor_size: Size of the descriptor in bits. 0 -> Full size
|
||||
:param descriptor_channels: Number of channels in the descriptor (1, 2, 3).
|
||||
:param descriptor_channels: Number of channels in the descriptor (1, 2, 3)
|
||||
:param threshold: Detector response threshold to accept point
|
||||
:param octaves: Maximum octave evolution of the image
|
||||
:param sublevels: Default number of sublevels per scale level
|
||||
:param diffusivity: Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or DIFF_CHARBONNIER
|
||||
|
@ -895,6 +895,22 @@ protected:
|
||||
PixelTestFn test_fn_;
|
||||
};
|
||||
|
||||
// KAZE/AKAZE diffusivity
|
||||
enum {
|
||||
DIFF_PM_G1 = 0,
|
||||
DIFF_PM_G2 = 1,
|
||||
DIFF_WEICKERT = 2,
|
||||
DIFF_CHARBONNIER = 3
|
||||
};
|
||||
|
||||
// AKAZE descriptor type
|
||||
enum {
|
||||
DESCRIPTOR_KAZE_UPRIGHT = 2, ///< Upright descriptors, not invariant to rotation
|
||||
DESCRIPTOR_KAZE = 3,
|
||||
DESCRIPTOR_MLDB_UPRIGHT = 4, ///< Upright descriptors, not invariant to rotation
|
||||
DESCRIPTOR_MLDB = 5
|
||||
};
|
||||
|
||||
/*!
|
||||
KAZE implementation
|
||||
*/
|
||||
@ -902,7 +918,8 @@ class CV_EXPORTS_W KAZE : public Feature2D
|
||||
{
|
||||
public:
|
||||
CV_WRAP KAZE();
|
||||
CV_WRAP explicit KAZE(bool extended, bool upright);
|
||||
CV_WRAP explicit KAZE(bool extended, bool upright, float threshold = 0.001f,
|
||||
int octaves = 4, int sublevels = 4, int diffusivity = DIFF_PM_G2);
|
||||
|
||||
virtual ~KAZE();
|
||||
|
||||
@ -928,6 +945,10 @@ protected:
|
||||
|
||||
CV_PROP bool extended;
|
||||
CV_PROP bool upright;
|
||||
CV_PROP float threshold;
|
||||
CV_PROP int octaves;
|
||||
CV_PROP int sublevels;
|
||||
CV_PROP int diffusivity;
|
||||
};
|
||||
|
||||
/*!
|
||||
@ -936,16 +957,9 @@ AKAZE implementation
|
||||
class CV_EXPORTS_W AKAZE : public Feature2D
|
||||
{
|
||||
public:
|
||||
/// AKAZE Descriptor Type
|
||||
enum DESCRIPTOR_TYPE {
|
||||
DESCRIPTOR_KAZE_UPRIGHT = 2, ///< Upright descriptors, not invariant to rotation
|
||||
DESCRIPTOR_KAZE = 3,
|
||||
DESCRIPTOR_MLDB_UPRIGHT = 4, ///< Upright descriptors, not invariant to rotation
|
||||
DESCRIPTOR_MLDB = 5
|
||||
};
|
||||
|
||||
CV_WRAP AKAZE();
|
||||
explicit AKAZE(DESCRIPTOR_TYPE descriptor_type, int descriptor_size = 0, int descriptor_channels = 3);
|
||||
CV_WRAP explicit AKAZE(int descriptor_type, int descriptor_size = 0, int descriptor_channels = 3,
|
||||
float threshold = 0.001f, int octaves = 4, int sublevels = 4, int diffusivity = DIFF_PM_G2);
|
||||
|
||||
virtual ~AKAZE();
|
||||
|
||||
@ -973,7 +987,10 @@ protected:
|
||||
CV_PROP int descriptor;
|
||||
CV_PROP int descriptor_channels;
|
||||
CV_PROP int descriptor_size;
|
||||
|
||||
CV_PROP float threshold;
|
||||
CV_PROP int octaves;
|
||||
CV_PROP int sublevels;
|
||||
CV_PROP int diffusivity;
|
||||
};
|
||||
/****************************************************************************************\
|
||||
* Distance *
|
||||
|
@ -49,7 +49,10 @@ http://www.robesafe.com/personal/pablo.alcantarilla/papers/Alcantarilla13bmvc.pd
|
||||
*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "akaze/AKAZEFeatures.h"
|
||||
#include "kaze/AKAZEFeatures.h"
|
||||
|
||||
#include <iostream>
|
||||
using namespace std;
|
||||
|
||||
namespace cv
|
||||
{
|
||||
@ -57,13 +60,22 @@ namespace cv
|
||||
: descriptor(DESCRIPTOR_MLDB)
|
||||
, descriptor_channels(3)
|
||||
, descriptor_size(0)
|
||||
, threshold(0.001f)
|
||||
, octaves(4)
|
||||
, sublevels(4)
|
||||
, diffusivity(DIFF_PM_G2)
|
||||
{
|
||||
}
|
||||
|
||||
AKAZE::AKAZE(DESCRIPTOR_TYPE _descriptor_type, int _descriptor_size, int _descriptor_channels)
|
||||
AKAZE::AKAZE(int _descriptor_type, int _descriptor_size, int _descriptor_channels,
|
||||
float _threshold, int _octaves, int _sublevels, int _diffusivity)
|
||||
: descriptor(_descriptor_type)
|
||||
, descriptor_channels(_descriptor_channels)
|
||||
, descriptor_size(_descriptor_size)
|
||||
, threshold(_threshold)
|
||||
, octaves(_octaves)
|
||||
, sublevels(_sublevels)
|
||||
, diffusivity(_diffusivity)
|
||||
{
|
||||
|
||||
}
|
||||
@ -78,12 +90,12 @@ namespace cv
|
||||
{
|
||||
switch (descriptor)
|
||||
{
|
||||
case cv::AKAZE::DESCRIPTOR_KAZE:
|
||||
case cv::AKAZE::DESCRIPTOR_KAZE_UPRIGHT:
|
||||
case cv::DESCRIPTOR_KAZE:
|
||||
case cv::DESCRIPTOR_KAZE_UPRIGHT:
|
||||
return 64;
|
||||
|
||||
case cv::AKAZE::DESCRIPTOR_MLDB:
|
||||
case cv::AKAZE::DESCRIPTOR_MLDB_UPRIGHT:
|
||||
case cv::DESCRIPTOR_MLDB:
|
||||
case cv::DESCRIPTOR_MLDB_UPRIGHT:
|
||||
// We use the full length binary descriptor -> 486 bits
|
||||
if (descriptor_size == 0)
|
||||
{
|
||||
@ -106,12 +118,12 @@ namespace cv
|
||||
{
|
||||
switch (descriptor)
|
||||
{
|
||||
case cv::AKAZE::DESCRIPTOR_KAZE:
|
||||
case cv::AKAZE::DESCRIPTOR_KAZE_UPRIGHT:
|
||||
case cv::DESCRIPTOR_KAZE:
|
||||
case cv::DESCRIPTOR_KAZE_UPRIGHT:
|
||||
return CV_32F;
|
||||
|
||||
case cv::AKAZE::DESCRIPTOR_MLDB:
|
||||
case cv::AKAZE::DESCRIPTOR_MLDB_UPRIGHT:
|
||||
case cv::DESCRIPTOR_MLDB:
|
||||
case cv::DESCRIPTOR_MLDB_UPRIGHT:
|
||||
return CV_8U;
|
||||
|
||||
default:
|
||||
@ -124,12 +136,12 @@ namespace cv
|
||||
{
|
||||
switch (descriptor)
|
||||
{
|
||||
case cv::AKAZE::DESCRIPTOR_KAZE:
|
||||
case cv::AKAZE::DESCRIPTOR_KAZE_UPRIGHT:
|
||||
case cv::DESCRIPTOR_KAZE:
|
||||
case cv::DESCRIPTOR_KAZE_UPRIGHT:
|
||||
return cv::NORM_L2;
|
||||
|
||||
case cv::AKAZE::DESCRIPTOR_MLDB:
|
||||
case cv::AKAZE::DESCRIPTOR_MLDB_UPRIGHT:
|
||||
case cv::DESCRIPTOR_MLDB:
|
||||
case cv::DESCRIPTOR_MLDB_UPRIGHT:
|
||||
return cv::NORM_HAMMING;
|
||||
|
||||
default:
|
||||
@ -153,11 +165,15 @@ namespace cv
|
||||
cv::Mat& desc = descriptors.getMatRef();
|
||||
|
||||
AKAZEOptions options;
|
||||
options.descriptor = static_cast<DESCRIPTOR_TYPE>(descriptor);
|
||||
options.descriptor = descriptor;
|
||||
options.descriptor_channels = descriptor_channels;
|
||||
options.descriptor_size = descriptor_size;
|
||||
options.img_width = img.cols;
|
||||
options.img_height = img.rows;
|
||||
options.dthreshold = threshold;
|
||||
options.omax = octaves;
|
||||
options.nsublevels = sublevels;
|
||||
options.diffusivity = diffusivity;
|
||||
|
||||
AKAZEFeatures impl(options);
|
||||
impl.Create_Nonlinear_Scale_Space(img1_32);
|
||||
@ -188,7 +204,7 @@ namespace cv
|
||||
img.convertTo(img1_32, CV_32F, 1.0 / 255.0, 0);
|
||||
|
||||
AKAZEOptions options;
|
||||
options.descriptor = static_cast<DESCRIPTOR_TYPE>(descriptor);
|
||||
options.descriptor = descriptor;
|
||||
options.descriptor_channels = descriptor_channels;
|
||||
options.descriptor_size = descriptor_size;
|
||||
options.img_width = img.cols;
|
||||
@ -216,7 +232,7 @@ namespace cv
|
||||
cv::Mat& desc = descriptors.getMatRef();
|
||||
|
||||
AKAZEOptions options;
|
||||
options.descriptor = static_cast<DESCRIPTOR_TYPE>(descriptor);
|
||||
options.descriptor = descriptor;
|
||||
options.descriptor_channels = descriptor_channels;
|
||||
options.descriptor_size = descriptor_size;
|
||||
options.img_width = img.cols;
|
||||
@ -229,4 +245,4 @@ namespace cv
|
||||
CV_Assert((!desc.rows || desc.cols == descriptorSize()));
|
||||
CV_Assert((!desc.rows || (desc.type() == descriptorType())));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,65 +0,0 @@
|
||||
/**
|
||||
* @file AKAZE.h
|
||||
* @brief Main class for detecting and computing binary descriptors in an
|
||||
* accelerated nonlinear scale space
|
||||
* @date Mar 27, 2013
|
||||
* @author Pablo F. Alcantarilla, Jesus Nuevo
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Includes
|
||||
#include "precomp.hpp"
|
||||
#include "AKAZEConfig.h"
|
||||
|
||||
/* ************************************************************************* */
|
||||
// AKAZE Class Declaration
|
||||
class AKAZEFeatures {
|
||||
|
||||
private:
|
||||
|
||||
AKAZEOptions options_; ///< Configuration options for AKAZE
|
||||
std::vector<TEvolution> evolution_; ///< Vector of nonlinear diffusion evolution
|
||||
|
||||
/// FED parameters
|
||||
int ncycles_; ///< Number of cycles
|
||||
bool reordering_; ///< Flag for reordering time steps
|
||||
std::vector<std::vector<float > > tsteps_; ///< Vector of FED dynamic time steps
|
||||
std::vector<int> nsteps_; ///< Vector of number of steps per cycle
|
||||
|
||||
/// Matrices for the M-LDB descriptor computation
|
||||
cv::Mat descriptorSamples_; // List of positions in the grids to sample LDB bits from.
|
||||
cv::Mat descriptorBits_;
|
||||
cv::Mat bitMask_;
|
||||
|
||||
public:
|
||||
|
||||
/// Constructor with input arguments
|
||||
AKAZEFeatures(const AKAZEOptions& options);
|
||||
|
||||
/// Scale Space methods
|
||||
void Allocate_Memory_Evolution();
|
||||
int Create_Nonlinear_Scale_Space(const cv::Mat& img);
|
||||
void Feature_Detection(std::vector<cv::KeyPoint>& kpts);
|
||||
void Compute_Determinant_Hessian_Response(void);
|
||||
void Compute_Multiscale_Derivatives(void);
|
||||
void Find_Scale_Space_Extrema(std::vector<cv::KeyPoint>& kpts);
|
||||
void Do_Subpixel_Refinement(std::vector<cv::KeyPoint>& kpts);
|
||||
|
||||
// Feature description methods
|
||||
void Compute_Descriptors(std::vector<cv::KeyPoint>& kpts, cv::Mat& desc);
|
||||
|
||||
static void Compute_Main_Orientation(cv::KeyPoint& kpt, const std::vector<TEvolution>& evolution_);
|
||||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Inline functions
|
||||
|
||||
// Inline functions
|
||||
void generateDescriptorSubsample(cv::Mat& sampleList, cv::Mat& comparisons,
|
||||
int nbits, int pattern_size, int nchannels);
|
||||
float get_angle(float x, float y);
|
||||
float gaussian(float x, float y, float sigma);
|
||||
void check_descriptor_limits(int& x, int& y, int width, int height);
|
||||
int fRound(float flt);
|
@ -55,12 +55,21 @@ namespace cv
|
||||
KAZE::KAZE()
|
||||
: extended(false)
|
||||
, upright(false)
|
||||
, threshold(0.001f)
|
||||
, octaves(4)
|
||||
, sublevels(4)
|
||||
, diffusivity(DIFF_PM_G2)
|
||||
{
|
||||
}
|
||||
|
||||
KAZE::KAZE(bool _extended, bool _upright)
|
||||
KAZE::KAZE(bool _extended, bool _upright, float _threshold, int _octaves,
|
||||
int _sublevels, int _diffusivity)
|
||||
: extended(_extended)
|
||||
, upright(_upright)
|
||||
, threshold(_threshold)
|
||||
, octaves(_octaves)
|
||||
, sublevels(_sublevels)
|
||||
, diffusivity(_diffusivity)
|
||||
{
|
||||
|
||||
}
|
||||
@ -111,6 +120,10 @@ namespace cv
|
||||
options.img_height = img.rows;
|
||||
options.extended = extended;
|
||||
options.upright = upright;
|
||||
options.dthreshold = threshold;
|
||||
options.omax = octaves;
|
||||
options.nsublevels = sublevels;
|
||||
options.diffusivity = diffusivity;
|
||||
|
||||
KAZEFeatures impl(options);
|
||||
impl.Create_Nonlinear_Scale_Space(img1_32);
|
||||
@ -180,4 +193,4 @@ namespace cv
|
||||
CV_Assert((!desc.rows || desc.cols == descriptorSize()));
|
||||
CV_Assert((!desc.rows || (desc.type() == descriptorType())));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -5,7 +5,8 @@
|
||||
* @author Pablo F. Alcantarilla, Jesus Nuevo
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#ifndef __OPENCV_FEATURES_2D_AKAZE_CONFIG_H__
|
||||
#define __OPENCV_FEATURES_2D_AKAZE_CONFIG_H__
|
||||
|
||||
/* ************************************************************************* */
|
||||
// OpenCV
|
||||
@ -28,14 +29,6 @@ const float gauss25[7][7] = {
|
||||
/// AKAZE configuration options structure
|
||||
struct AKAZEOptions {
|
||||
|
||||
/// AKAZE Diffusivities
|
||||
enum DIFFUSIVITY_TYPE {
|
||||
PM_G1 = 0,
|
||||
PM_G2 = 1,
|
||||
WEICKERT = 2,
|
||||
CHARBONNIER = 3
|
||||
};
|
||||
|
||||
AKAZEOptions()
|
||||
: omax(4)
|
||||
, nsublevels(4)
|
||||
@ -44,12 +37,12 @@ struct AKAZEOptions {
|
||||
, soffset(1.6f)
|
||||
, derivative_factor(1.5f)
|
||||
, sderivatives(1.0)
|
||||
, diffusivity(PM_G2)
|
||||
, diffusivity(cv::DIFF_PM_G2)
|
||||
|
||||
, dthreshold(0.001f)
|
||||
, min_dthreshold(0.00001f)
|
||||
|
||||
, descriptor(cv::AKAZE::DESCRIPTOR_MLDB)
|
||||
, descriptor(cv::DESCRIPTOR_MLDB)
|
||||
, descriptor_size(0)
|
||||
, descriptor_channels(3)
|
||||
, descriptor_pattern_size(10)
|
||||
@ -67,12 +60,12 @@ struct AKAZEOptions {
|
||||
float soffset; ///< Base scale offset (sigma units)
|
||||
float derivative_factor; ///< Factor for the multiscale derivatives
|
||||
float sderivatives; ///< Smoothing factor for the derivatives
|
||||
DIFFUSIVITY_TYPE diffusivity; ///< Diffusivity type
|
||||
int diffusivity; ///< Diffusivity type
|
||||
|
||||
float dthreshold; ///< Detector response threshold to accept point
|
||||
float min_dthreshold; ///< Minimum detector threshold to accept a point
|
||||
|
||||
cv::AKAZE::DESCRIPTOR_TYPE descriptor; ///< Type of descriptor
|
||||
int descriptor; ///< Type of descriptor
|
||||
int descriptor_size; ///< Size of the descriptor in bits. 0->Full size
|
||||
int descriptor_channels; ///< Number of channels in the descriptor (1, 2, 3)
|
||||
int descriptor_pattern_size; ///< Actual patch size is 2*pattern_size*point.scale
|
||||
@ -82,28 +75,4 @@ struct AKAZEOptions {
|
||||
int kcontrast_nbins; ///< Number of bins for the contrast factor histogram
|
||||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
/// AKAZE nonlinear diffusion filtering evolution
|
||||
struct TEvolution {
|
||||
|
||||
TEvolution() {
|
||||
etime = 0.0f;
|
||||
esigma = 0.0f;
|
||||
octave = 0;
|
||||
sublevel = 0;
|
||||
sigma_size = 0;
|
||||
}
|
||||
|
||||
cv::Mat Lx, Ly; // First order spatial derivatives
|
||||
cv::Mat Lxx, Lxy, Lyy; // Second order spatial derivatives
|
||||
cv::Mat Lflow; // Diffusivity image
|
||||
cv::Mat Lt; // Evolution image
|
||||
cv::Mat Lsmooth; // Smoothed image
|
||||
cv::Mat Lstep; // Evolution step update
|
||||
cv::Mat Ldet; // Detector response
|
||||
float etime; // Evolution time
|
||||
float esigma; // Evolution sigma. For linear diffusion t = sigma^2 / 2
|
||||
size_t octave; // Image octave
|
||||
size_t sublevel; // Image sublevel in each octave
|
||||
size_t sigma_size; // Integer sigma. For computing the feature detector responses
|
||||
};
|
||||
#endif
|
1880
modules/features2d/src/kaze/AKAZEFeatures.cpp
Normal file
1880
modules/features2d/src/kaze/AKAZEFeatures.cpp
Normal file
File diff suppressed because it is too large
Load Diff
62
modules/features2d/src/kaze/AKAZEFeatures.h
Normal file
62
modules/features2d/src/kaze/AKAZEFeatures.h
Normal file
@ -0,0 +1,62 @@
|
||||
/**
|
||||
* @file AKAZE.h
|
||||
* @brief Main class for detecting and computing binary descriptors in an
|
||||
* accelerated nonlinear scale space
|
||||
* @date Mar 27, 2013
|
||||
* @author Pablo F. Alcantarilla, Jesus Nuevo
|
||||
*/
|
||||
|
||||
#ifndef __OPENCV_FEATURES_2D_AKAZE_FEATURES_H__
|
||||
#define __OPENCV_FEATURES_2D_AKAZE_FEATURES_H__
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Includes
|
||||
#include "precomp.hpp"
|
||||
#include "AKAZEConfig.h"
|
||||
#include "TEvolution.h"
|
||||
|
||||
/* ************************************************************************* */
|
||||
// AKAZE Class Declaration
|
||||
class AKAZEFeatures {
|
||||
|
||||
private:
|
||||
|
||||
AKAZEOptions options_; ///< Configuration options for AKAZE
|
||||
std::vector<TEvolution> evolution_; ///< Vector of nonlinear diffusion evolution
|
||||
|
||||
/// FED parameters
|
||||
int ncycles_; ///< Number of cycles
|
||||
bool reordering_; ///< Flag for reordering time steps
|
||||
std::vector<std::vector<float > > tsteps_; ///< Vector of FED dynamic time steps
|
||||
std::vector<int> nsteps_; ///< Vector of number of steps per cycle
|
||||
|
||||
/// Matrices for the M-LDB descriptor computation
|
||||
cv::Mat descriptorSamples_; // List of positions in the grids to sample LDB bits from.
|
||||
cv::Mat descriptorBits_;
|
||||
cv::Mat bitMask_;
|
||||
|
||||
public:
|
||||
|
||||
/// Constructor with input arguments
|
||||
AKAZEFeatures(const AKAZEOptions& options);
|
||||
|
||||
/// Scale Space methods
|
||||
void Allocate_Memory_Evolution();
|
||||
int Create_Nonlinear_Scale_Space(const cv::Mat& img);
|
||||
void Feature_Detection(std::vector<cv::KeyPoint>& kpts);
|
||||
void Compute_Determinant_Hessian_Response(void);
|
||||
void Compute_Multiscale_Derivatives(void);
|
||||
void Find_Scale_Space_Extrema(std::vector<cv::KeyPoint>& kpts);
|
||||
void Do_Subpixel_Refinement(std::vector<cv::KeyPoint>& kpts);
|
||||
|
||||
/// Feature description methods
|
||||
void Compute_Descriptors(std::vector<cv::KeyPoint>& kpts, cv::Mat& desc);
|
||||
static void Compute_Main_Orientation(cv::KeyPoint& kpt, const std::vector<TEvolution>& evolution_);
|
||||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
/// Inline functions
|
||||
void generateDescriptorSubsample(cv::Mat& sampleList, cv::Mat& comparisons,
|
||||
int nbits, int pattern_size, int nchannels);
|
||||
|
||||
#endif
|
@ -5,7 +5,8 @@
|
||||
* @author Pablo F. Alcantarilla
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#ifndef __OPENCV_FEATURES_2D_AKAZE_CONFIG_H__
|
||||
#define __OPENCV_FEATURES_2D_AKAZE_CONFIG_H__
|
||||
|
||||
// OpenCV Includes
|
||||
#include "precomp.hpp"
|
||||
@ -15,14 +16,8 @@
|
||||
|
||||
struct KAZEOptions {
|
||||
|
||||
enum DIFFUSIVITY_TYPE {
|
||||
PM_G1 = 0,
|
||||
PM_G2 = 1,
|
||||
WEICKERT = 2
|
||||
};
|
||||
|
||||
KAZEOptions()
|
||||
: diffusivity(PM_G2)
|
||||
: diffusivity(cv::DIFF_PM_G2)
|
||||
|
||||
, soffset(1.60f)
|
||||
, omax(4)
|
||||
@ -33,20 +28,13 @@ struct KAZEOptions {
|
||||
, dthreshold(0.001f)
|
||||
, kcontrast(0.01f)
|
||||
, kcontrast_percentille(0.7f)
|
||||
, kcontrast_bins(300)
|
||||
|
||||
, use_fed(true)
|
||||
, kcontrast_bins(300)
|
||||
, upright(false)
|
||||
, extended(false)
|
||||
|
||||
, use_clipping_normalilzation(false)
|
||||
, clipping_normalization_ratio(1.6f)
|
||||
, clipping_normalization_niter(5)
|
||||
{
|
||||
}
|
||||
|
||||
DIFFUSIVITY_TYPE diffusivity;
|
||||
|
||||
int diffusivity;
|
||||
float soffset;
|
||||
int omax;
|
||||
int nsublevels;
|
||||
@ -57,27 +45,8 @@ struct KAZEOptions {
|
||||
float kcontrast;
|
||||
float kcontrast_percentille;
|
||||
int kcontrast_bins;
|
||||
|
||||
bool use_fed;
|
||||
bool upright;
|
||||
bool extended;
|
||||
|
||||
bool use_clipping_normalilzation;
|
||||
float clipping_normalization_ratio;
|
||||
int clipping_normalization_niter;
|
||||
};
|
||||
|
||||
struct TEvolution {
|
||||
cv::Mat Lx, Ly; // First order spatial derivatives
|
||||
cv::Mat Lxx, Lxy, Lyy; // Second order spatial derivatives
|
||||
cv::Mat Lflow; // Diffusivity image
|
||||
cv::Mat Lt; // Evolution image
|
||||
cv::Mat Lsmooth; // Smoothed image
|
||||
cv::Mat Lstep; // Evolution step update
|
||||
cv::Mat Ldet; // Detector response
|
||||
float etime; // Evolution time
|
||||
float esigma; // Evolution sigma. For linear diffusion t = sigma^2 / 2
|
||||
float octave; // Image octave
|
||||
float sublevel; // Image sublevel in each octave
|
||||
int sigma_size; // Integer esigma. For computing the feature detector responses
|
||||
};
|
||||
#endif
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -7,84 +7,53 @@
|
||||
* @author Pablo F. Alcantarilla
|
||||
*/
|
||||
|
||||
#ifndef KAZE_H_
|
||||
#define KAZE_H_
|
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
#ifndef __OPENCV_FEATURES_2D_KAZE_FEATURES_H__
|
||||
#define __OPENCV_FEATURES_2D_KAZE_FEATURES_H__
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Includes
|
||||
#include "KAZEConfig.h"
|
||||
#include "nldiffusion_functions.h"
|
||||
#include "fed.h"
|
||||
#include "TEvolution.h"
|
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/* ************************************************************************* */
|
||||
// KAZE Class Declaration
|
||||
class KAZEFeatures {
|
||||
|
||||
private:
|
||||
|
||||
KAZEOptions options;
|
||||
/// Parameters of the Nonlinear diffusion class
|
||||
KAZEOptions options_; ///< Configuration options for KAZE
|
||||
std::vector<TEvolution> evolution_; ///< Vector of nonlinear diffusion evolution
|
||||
|
||||
// Parameters of the Nonlinear diffusion class
|
||||
std::vector<TEvolution> evolution_; // Vector of nonlinear diffusion evolution
|
||||
|
||||
// Vector of keypoint vectors for finding extrema in multiple threads
|
||||
/// Vector of keypoint vectors for finding extrema in multiple threads
|
||||
std::vector<std::vector<cv::KeyPoint> > kpts_par_;
|
||||
|
||||
// FED parameters
|
||||
int ncycles_; // Number of cycles
|
||||
bool reordering_; // Flag for reordering time steps
|
||||
std::vector<std::vector<float > > tsteps_; // Vector of FED dynamic time steps
|
||||
std::vector<int> nsteps_; // Vector of number of steps per cycle
|
||||
|
||||
// Some auxiliary variables used in the AOS step
|
||||
cv::Mat Ltx_, Lty_, px_, py_, ax_, ay_, bx_, by_, qr_, qc_;
|
||||
/// FED parameters
|
||||
int ncycles_; ///< Number of cycles
|
||||
bool reordering_; ///< Flag for reordering time steps
|
||||
std::vector<std::vector<float > > tsteps_; ///< Vector of FED dynamic time steps
|
||||
std::vector<int> nsteps_; ///< Vector of number of steps per cycle
|
||||
|
||||
public:
|
||||
|
||||
// Constructor
|
||||
/// Constructor
|
||||
KAZEFeatures(KAZEOptions& options);
|
||||
|
||||
// Public methods for KAZE interface
|
||||
/// Public methods for KAZE interface
|
||||
void Allocate_Memory_Evolution(void);
|
||||
int Create_Nonlinear_Scale_Space(const cv::Mat& img);
|
||||
void Feature_Detection(std::vector<cv::KeyPoint>& kpts);
|
||||
void Feature_Description(std::vector<cv::KeyPoint>& kpts, cv::Mat& desc);
|
||||
|
||||
static void Compute_Main_Orientation(cv::KeyPoint& kpt, const std::vector<TEvolution>& evolution_, const KAZEOptions& options);
|
||||
|
||||
private:
|
||||
|
||||
// Feature Detection Methods
|
||||
/// Feature Detection Methods
|
||||
void Compute_KContrast(const cv::Mat& img, const float& kper);
|
||||
void Compute_Multiscale_Derivatives(void);
|
||||
void Compute_Detector_Response(void);
|
||||
void Determinant_Hessian_Parallel(std::vector<cv::KeyPoint>& kpts);
|
||||
void Find_Extremum_Threading(const int& level);
|
||||
void Determinant_Hessian(std::vector<cv::KeyPoint>& kpts);
|
||||
void Do_Subpixel_Refinement(std::vector<cv::KeyPoint>& kpts);
|
||||
|
||||
// AOS Methods
|
||||
void AOS_Step_Scalar(cv::Mat &Ld, const cv::Mat &Ldprev, const cv::Mat &c, const float& stepsize);
|
||||
void AOS_Rows(const cv::Mat &Ldprev, const cv::Mat &c, const float& stepsize);
|
||||
void AOS_Columns(const cv::Mat &Ldprev, const cv::Mat &c, const float& stepsize);
|
||||
void Thomas(const cv::Mat &a, const cv::Mat &b, const cv::Mat &Ld, cv::Mat &x);
|
||||
|
||||
};
|
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
// Inline functions
|
||||
float getAngle(const float& x, const float& y);
|
||||
float gaussian(const float& x, const float& y, const float& sig);
|
||||
void checkDescriptorLimits(int &x, int &y, const int& width, const int& height);
|
||||
void clippingDescriptor(float *desc, const int& dsize, const int& niter, const float& ratio);
|
||||
int fRound(const float& flt);
|
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
#endif // KAZE_H_
|
||||
#endif
|
||||
|
35
modules/features2d/src/kaze/TEvolution.h
Normal file
35
modules/features2d/src/kaze/TEvolution.h
Normal file
@ -0,0 +1,35 @@
|
||||
/**
|
||||
* @file TEvolution.h
|
||||
* @brief Header file with the declaration of the TEvolution struct
|
||||
* @date Jun 02, 2014
|
||||
* @author Pablo F. Alcantarilla
|
||||
*/
|
||||
|
||||
#ifndef __OPENCV_FEATURES_2D_TEVOLUTION_H__
|
||||
#define __OPENCV_FEATURES_2D_TEVOLUTION_H__
|
||||
|
||||
/* ************************************************************************* */
|
||||
/// KAZE/A-KAZE nonlinear diffusion filtering evolution
|
||||
struct TEvolution {
|
||||
|
||||
TEvolution() {
|
||||
etime = 0.0f;
|
||||
esigma = 0.0f;
|
||||
octave = 0;
|
||||
sublevel = 0;
|
||||
sigma_size = 0;
|
||||
}
|
||||
|
||||
cv::Mat Lx, Ly; ///< First order spatial derivatives
|
||||
cv::Mat Lxx, Lxy, Lyy; ///< Second order spatial derivatives
|
||||
cv::Mat Lt; ///< Evolution image
|
||||
cv::Mat Lsmooth; ///< Smoothed image
|
||||
cv::Mat Ldet; ///< Detector response
|
||||
float etime; ///< Evolution time
|
||||
float esigma; ///< Evolution sigma. For linear diffusion t = sigma^2 / 2
|
||||
int octave; ///< Image octave
|
||||
int sublevel; ///< Image sublevel in each octave
|
||||
int sigma_size; ///< Integer esigma. For computing the feature detector responses
|
||||
};
|
||||
|
||||
#endif
|
@ -1,5 +1,5 @@
|
||||
#ifndef FED_H
|
||||
#define FED_H
|
||||
#ifndef __OPENCV_FEATURES_2D_FED_H__
|
||||
#define __OPENCV_FEATURES_2D_FED_H__
|
||||
|
||||
//******************************************************************************
|
||||
//******************************************************************************
|
||||
@ -22,4 +22,4 @@ bool fed_is_prime_internal(const int& number);
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
#endif // FED_H
|
||||
#endif // __OPENCV_FEATURES_2D_FED_H__
|
||||
|
@ -8,8 +8,8 @@
|
||||
* @author Pablo F. Alcantarilla
|
||||
*/
|
||||
|
||||
#ifndef KAZE_NLDIFFUSION_FUNCTIONS_H
|
||||
#define KAZE_NLDIFFUSION_FUNCTIONS_H
|
||||
#ifndef __OPENCV_FEATURES_2D_NLDIFFUSION_FUNCTIONS_H__
|
||||
#define __OPENCV_FEATURES_2D_NLDIFFUSION_FUNCTIONS_H__
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Includes
|
||||
|
77
modules/features2d/src/kaze/utils.h
Normal file
77
modules/features2d/src/kaze/utils.h
Normal file
@ -0,0 +1,77 @@
|
||||
#ifndef __OPENCV_FEATURES_2D_KAZE_UTILS_H__
|
||||
#define __OPENCV_FEATURES_2D_KAZE_UTILS_H__
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function computes the angle from the vector given by (X Y). From 0 to 2*Pi
|
||||
*/
|
||||
inline float getAngle(float x, float y) {
|
||||
|
||||
if (x >= 0 && y >= 0) {
|
||||
return atanf(y / x);
|
||||
}
|
||||
|
||||
if (x < 0 && y >= 0) {
|
||||
return static_cast<float>(CV_PI)-atanf(-y / x);
|
||||
}
|
||||
|
||||
if (x < 0 && y < 0) {
|
||||
return static_cast<float>(CV_PI)+atanf(y / x);
|
||||
}
|
||||
|
||||
if (x >= 0 && y < 0) {
|
||||
return static_cast<float>(2.0 * CV_PI) - atanf(-y / x);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function computes the value of a 2D Gaussian function
|
||||
* @param x X Position
|
||||
* @param y Y Position
|
||||
* @param sig Standard Deviation
|
||||
*/
|
||||
inline float gaussian(float x, float y, float sigma) {
|
||||
return expf(-(x*x + y*y) / (2.0f*sigma*sigma));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function checks descriptor limits
|
||||
* @param x X Position
|
||||
* @param y Y Position
|
||||
* @param width Image width
|
||||
* @param height Image height
|
||||
*/
|
||||
inline void checkDescriptorLimits(int &x, int &y, int width, int height) {
|
||||
|
||||
if (x < 0) {
|
||||
x = 0;
|
||||
}
|
||||
|
||||
if (y < 0) {
|
||||
y = 0;
|
||||
}
|
||||
|
||||
if (x > width - 1) {
|
||||
x = width - 1;
|
||||
}
|
||||
|
||||
if (y > height - 1) {
|
||||
y = height - 1;
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This funtion rounds float to nearest integer
|
||||
* @param flt Input float
|
||||
* @return dst Nearest integer
|
||||
*/
|
||||
inline int fRound(float flt) {
|
||||
return (int)(flt + 0.5f);
|
||||
}
|
||||
|
||||
#endif
|
@ -101,8 +101,14 @@ public:
|
||||
typedef typename Distance::ResultType DistanceType;
|
||||
|
||||
CV_DescriptorExtractorTest( const string _name, DistanceType _maxDist, const Ptr<DescriptorExtractor>& _dextractor,
|
||||
Distance d = Distance() ):
|
||||
name(_name), maxDist(_maxDist), dextractor(_dextractor), distance(d) {}
|
||||
Distance d = Distance(), Ptr<FeatureDetector> _detector = Ptr<FeatureDetector>()):
|
||||
name(_name), maxDist(_maxDist), dextractor(_dextractor), distance(d) , detector(_detector) {}
|
||||
|
||||
~CV_DescriptorExtractorTest()
|
||||
{
|
||||
if(!detector.empty())
|
||||
detector.release();
|
||||
}
|
||||
protected:
|
||||
virtual void createDescriptorExtractor() {}
|
||||
|
||||
@ -189,7 +195,6 @@ protected:
|
||||
|
||||
// Read the test image.
|
||||
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
|
||||
|
||||
Mat img = imread( imgFilename );
|
||||
if( img.empty() )
|
||||
{
|
||||
@ -197,13 +202,15 @@ protected:
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
||||
return;
|
||||
}
|
||||
|
||||
vector<KeyPoint> keypoints;
|
||||
FileStorage fs( string(ts->get_data_path()) + FEATURES2D_DIR + "/keypoints.xml.gz", FileStorage::READ );
|
||||
if( fs.isOpened() )
|
||||
{
|
||||
if(!detector.empty()) {
|
||||
detector->detect(img, keypoints);
|
||||
} else {
|
||||
read( fs.getFirstTopLevelNode(), keypoints );
|
||||
|
||||
}
|
||||
if(!keypoints.empty())
|
||||
{
|
||||
Mat calcDescriptors;
|
||||
double t = (double)getTickCount();
|
||||
dextractor->compute( img, keypoints, calcDescriptors );
|
||||
@ -244,7 +251,7 @@ protected:
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
if(!fs.isOpened())
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "Compute and write keypoints.\n" );
|
||||
fs.open( string(ts->get_data_path()) + FEATURES2D_DIR + "/keypoints.xml.gz", FileStorage::WRITE );
|
||||
@ -295,6 +302,7 @@ protected:
|
||||
const DistanceType maxDist;
|
||||
Ptr<DescriptorExtractor> dextractor;
|
||||
Distance distance;
|
||||
Ptr<FeatureDetector> detector;
|
||||
|
||||
private:
|
||||
CV_DescriptorExtractorTest& operator=(const CV_DescriptorExtractorTest&) { return *this; }
|
||||
@ -340,3 +348,19 @@ TEST( Features2d_DescriptorExtractor_OpponentBRIEF, regression )
|
||||
DescriptorExtractor::create("OpponentBRIEF") );
|
||||
test.safe_run();
|
||||
}
|
||||
|
||||
TEST( Features2d_DescriptorExtractor_KAZE, regression )
|
||||
{
|
||||
CV_DescriptorExtractorTest< L2<float> > test( "descriptor-kaze", 0.03f,
|
||||
DescriptorExtractor::create("KAZE"),
|
||||
L2<float>(), FeatureDetector::create("KAZE"));
|
||||
test.safe_run();
|
||||
}
|
||||
|
||||
TEST( Features2d_DescriptorExtractor_AKAZE, regression )
|
||||
{
|
||||
CV_DescriptorExtractorTest<Hamming> test( "descriptor-akaze", (CV_DescriptorExtractorTest<Hamming>::DistanceType)12.f,
|
||||
DescriptorExtractor::create("AKAZE"),
|
||||
Hamming(), FeatureDetector::create("AKAZE"));
|
||||
test.safe_run();
|
||||
}
|
||||
|
@ -289,6 +289,18 @@ TEST( Features2d_Detector_ORB, regression )
|
||||
test.safe_run();
|
||||
}
|
||||
|
||||
TEST( Features2d_Detector_KAZE, regression )
|
||||
{
|
||||
CV_FeatureDetectorTest test( "detector-kaze", FeatureDetector::create("KAZE") );
|
||||
test.safe_run();
|
||||
}
|
||||
|
||||
TEST( Features2d_Detector_AKAZE, regression )
|
||||
{
|
||||
CV_FeatureDetectorTest test( "detector-akaze", FeatureDetector::create("AKAZE") );
|
||||
test.safe_run();
|
||||
}
|
||||
|
||||
TEST( Features2d_Detector_GridFAST, regression )
|
||||
{
|
||||
CV_FeatureDetectorTest test( "detector-grid-fast", FeatureDetector::create("GridFAST") );
|
||||
|
@ -167,19 +167,17 @@ TEST(Features2d_Detector_Keypoints_Dense, validation)
|
||||
test.safe_run();
|
||||
}
|
||||
|
||||
// FIXIT #2807 Crash on Windows 7 x64 MSVS 2012, Linux Fedora 19 x64 with GCC 4.8.2, Linux Ubuntu 14.04 LTS x64 with GCC 4.8.2
|
||||
TEST(Features2d_Detector_Keypoints_KAZE, DISABLED_validation)
|
||||
TEST(Features2d_Detector_Keypoints_KAZE, validation)
|
||||
{
|
||||
CV_FeatureDetectorKeypointsTest test(Algorithm::create<FeatureDetector>("Feature2D.KAZE"));
|
||||
test.safe_run();
|
||||
}
|
||||
|
||||
// FIXIT #2807 Crash on Windows 7 x64 MSVS 2012, Linux Fedora 19 x64 with GCC 4.8.2, Linux Ubuntu 14.04 LTS x64 with GCC 4.8.2
|
||||
TEST(Features2d_Detector_Keypoints_AKAZE, DISABLED_validation)
|
||||
TEST(Features2d_Detector_Keypoints_AKAZE, validation)
|
||||
{
|
||||
CV_FeatureDetectorKeypointsTest test_kaze(cv::Ptr<FeatureDetector>(new cv::AKAZE(cv::AKAZE::DESCRIPTOR_KAZE)));
|
||||
CV_FeatureDetectorKeypointsTest test_kaze(cv::Ptr<FeatureDetector>(new cv::AKAZE(cv::DESCRIPTOR_KAZE)));
|
||||
test_kaze.safe_run();
|
||||
|
||||
CV_FeatureDetectorKeypointsTest test_mldb(cv::Ptr<FeatureDetector>(new cv::AKAZE(cv::AKAZE::DESCRIPTOR_MLDB)));
|
||||
CV_FeatureDetectorKeypointsTest test_mldb(cv::Ptr<FeatureDetector>(new cv::AKAZE(cv::DESCRIPTOR_MLDB)));
|
||||
test_mldb.safe_run();
|
||||
}
|
||||
|
@ -652,8 +652,7 @@ TEST(Features2d_ScaleInvariance_Detector_BRISK, regression)
|
||||
test.safe_run();
|
||||
}
|
||||
|
||||
// FIXIT #2807 Crash on Windows 7 x64 MSVS 2012, Linux Fedora 19 x64 with GCC 4.8.2, Linux Ubuntu 14.04 LTS x64 with GCC 4.8.2
|
||||
TEST(Features2d_ScaleInvariance_Detector_KAZE, DISABLED_regression)
|
||||
TEST(Features2d_ScaleInvariance_Detector_KAZE, regression)
|
||||
{
|
||||
DetectorScaleInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.KAZE"),
|
||||
0.08f,
|
||||
@ -661,8 +660,7 @@ TEST(Features2d_ScaleInvariance_Detector_KAZE, DISABLED_regression)
|
||||
test.safe_run();
|
||||
}
|
||||
|
||||
// FIXIT #2807 Crash on Windows 7 x64 MSVS 2012, Linux Fedora 19 x64 with GCC 4.8.2, Linux Ubuntu 14.04 LTS x64 with GCC 4.8.2
|
||||
TEST(Features2d_ScaleInvariance_Detector_AKAZE, DISABLED_regression)
|
||||
TEST(Features2d_ScaleInvariance_Detector_AKAZE, regression)
|
||||
{
|
||||
DetectorScaleInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.AKAZE"),
|
||||
0.08f,
|
||||
|
11
samples/cpp/H1to3p.xml
Executable file
11
samples/cpp/H1to3p.xml
Executable file
@ -0,0 +1,11 @@
|
||||
<?xml version="1.0"?>
|
||||
<opencv_storage>
|
||||
<H13 type_id="opencv-matrix">
|
||||
<rows>3</rows>
|
||||
<cols>3</cols>
|
||||
<dt>d</dt>
|
||||
<data>
|
||||
7.6285898e-01 -2.9922929e-01 2.2567123e+02
|
||||
3.3443473e-01 1.0143901e+00 -7.6999973e+01
|
||||
3.4663091e-04 -1.4364524e-05 1.0000000e+00 </data></H13>
|
||||
</opencv_storage>
|
BIN
samples/cpp/graf1.png
Executable file
BIN
samples/cpp/graf1.png
Executable file
Binary file not shown.
After Width: | Height: | Size: 929 KiB |
BIN
samples/cpp/graf3.png
Executable file
BIN
samples/cpp/graf3.png
Executable file
Binary file not shown.
After Width: | Height: | Size: 953 KiB |
79
samples/cpp/tutorial_code/features2D/AKAZE_match.cpp
Executable file
79
samples/cpp/tutorial_code/features2D/AKAZE_match.cpp
Executable file
@ -0,0 +1,79 @@
|
||||
#include <opencv2/features2d.hpp>
|
||||
#include <opencv2/imgcodecs.hpp>
|
||||
#include <opencv2/opencv.hpp>
|
||||
#include <vector>
|
||||
#include <iostream>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
const float inlier_threshold = 2.5f; // Distance threshold to identify inliers
|
||||
const float nn_match_ratio = 0.8f; // Nearest neighbor matching ratio
|
||||
|
||||
int main(void)
|
||||
{
|
||||
Mat img1 = imread("graf1.png", IMREAD_GRAYSCALE);
|
||||
Mat img2 = imread("graf3.png", IMREAD_GRAYSCALE);
|
||||
|
||||
Mat homography;
|
||||
FileStorage fs("H1to3p.xml", FileStorage::READ);
|
||||
fs.getFirstTopLevelNode() >> homography;
|
||||
|
||||
vector<KeyPoint> kpts1, kpts2;
|
||||
Mat desc1, desc2;
|
||||
|
||||
AKAZE akaze;
|
||||
akaze(img1, noArray(), kpts1, desc1);
|
||||
akaze(img2, noArray(), kpts2, desc2);
|
||||
|
||||
BFMatcher matcher(NORM_HAMMING);
|
||||
vector< vector<DMatch> > nn_matches;
|
||||
matcher.knnMatch(desc1, desc2, nn_matches, 2);
|
||||
|
||||
vector<KeyPoint> matched1, matched2, inliers1, inliers2;
|
||||
vector<DMatch> good_matches;
|
||||
for(size_t i = 0; i < nn_matches.size(); i++) {
|
||||
DMatch first = nn_matches[i][0];
|
||||
float dist1 = nn_matches[i][0].distance;
|
||||
float dist2 = nn_matches[i][1].distance;
|
||||
|
||||
if(dist1 < nn_match_ratio * dist2) {
|
||||
matched1.push_back(kpts1[first.queryIdx]);
|
||||
matched2.push_back(kpts2[first.trainIdx]);
|
||||
}
|
||||
}
|
||||
|
||||
for(unsigned i = 0; i < matched1.size(); i++) {
|
||||
Mat col = Mat::ones(3, 1, CV_64F);
|
||||
col.at<double>(0) = matched1[i].pt.x;
|
||||
col.at<double>(1) = matched1[i].pt.y;
|
||||
|
||||
col = homography * col;
|
||||
col /= col.at<double>(2);
|
||||
double dist = sqrt( pow(col.at<double>(0) - matched2[i].pt.x, 2) +
|
||||
pow(col.at<double>(1) - matched2[i].pt.y, 2));
|
||||
|
||||
if(dist < inlier_threshold) {
|
||||
int new_i = static_cast<int>(inliers1.size());
|
||||
inliers1.push_back(matched1[i]);
|
||||
inliers2.push_back(matched2[i]);
|
||||
good_matches.push_back(DMatch(new_i, new_i, 0));
|
||||
}
|
||||
}
|
||||
|
||||
Mat res;
|
||||
drawMatches(img1, inliers1, img2, inliers2, good_matches, res);
|
||||
imwrite("res.png", res);
|
||||
|
||||
double inlier_ratio = inliers1.size() * 1.0 / matched1.size();
|
||||
cout << "A-KAZE Matching Results" << endl;
|
||||
cout << "*******************************" << endl;
|
||||
cout << "# Keypoints 1: \t" << kpts1.size() << endl;
|
||||
cout << "# Keypoints 2: \t" << kpts2.size() << endl;
|
||||
cout << "# Matches: \t" << matched1.size() << endl;
|
||||
cout << "# Inliers: \t" << inliers1.size() << endl;
|
||||
cout << "# Inliers Ratio: \t" << inlier_ratio << endl;
|
||||
cout << endl;
|
||||
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue
Block a user