fixed bayer pattern picture in cvtColor() description; corrected formula in getGaussianKernel()
This commit is contained in:
parent
6ecebb7f66
commit
79f3260b8e
@ -949,7 +949,7 @@ getGaussianKernel
|
||||
|
||||
:param ksize: Aperture size. It should be odd ( :math:`\texttt{ksize} \mod 2 = 1` ) and positive.
|
||||
|
||||
:param sigma: Gaussian standard deviation. If it is non-positive, it is computed from ``ksize`` as \ ``sigma = 0.3*(ksize/2 - 1) + 0.8`` .
|
||||
:param sigma: Gaussian standard deviation. If it is non-positive, it is computed from ``ksize`` as \ ``sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8`` .
|
||||
:param ktype: Type of filter coefficients. It can be ``CV_32f`` or ``CV_64F`` .
|
||||
|
||||
The function computes and returns the
|
||||
|
@ -384,9 +384,7 @@ The function can do the following transformations:
|
||||
*
|
||||
Bayer :math:`\rightarrow` RGB ( ``CV_BayerBG2BGR, CV_BayerGB2BGR, CV_BayerRG2BGR, CV_BayerGR2BGR, CV_BayerBG2RGB, CV_BayerGB2RGB, CV_BayerRG2RGB, CV_BayerGR2RGB`` ). The Bayer pattern is widely used in CCD and CMOS cameras. It enables you to get color pictures from a single plane where R,G, and B pixels (sensors of a particular component) are interleaved as follows:
|
||||
|
||||
.. math::
|
||||
|
||||
\newcommand{\Rcell}{\color{red}R} \newcommand{\Gcell}{\color{green}G} \newcommand{\Bcell}{\color{blue}B} \definecolor{BackGray}{rgb}{0.8,0.8,0.8} \begin{array}{ c c c c c } \Rcell & \Gcell & \Rcell & \Gcell & \Rcell \\ \Gcell & \colorbox{BackGray}{\Bcell} & \colorbox{BackGray}{\Gcell} & \Bcell & \Gcell \\ \Rcell & \Gcell & \Rcell & \Gcell & \Rcell \\ \Gcell & \Bcell & \Gcell & \Bcell & \Gcell \\ \Rcell & \Gcell & \Rcell & \Gcell & \Rcell \end{array}
|
||||
.. image:: pics/bayer.png
|
||||
|
||||
The output RGB components of a pixel are interpolated from 1, 2, or
|
||||
4 neighbors of the pixel having the same color. There are several
|
||||
@ -642,12 +640,8 @@ It makes possible to do a fast blurring or fast block correlation with a variabl
|
||||
|
||||
As a practical example, the next figure shows the calculation of the integral of a straight rectangle ``Rect(3,3,3,2)`` and of a tilted rectangle ``Rect(5,1,2,3)`` . The selected pixels in the original ``image`` are shown, as well as the relative pixels in the integral images ``sum`` and ``tilted`` .
|
||||
|
||||
\begin{center}
|
||||
|
||||
.. image:: pics/integral.png
|
||||
|
||||
\end{center}
|
||||
|
||||
.. index:: threshold
|
||||
|
||||
.. _threshold:
|
||||
|
BIN
modules/imgproc/doc/pics/bayer.png
Normal file
BIN
modules/imgproc/doc/pics/bayer.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 19 KiB |
Loading…
x
Reference in New Issue
Block a user