Implemented async calls.

This commit is contained in:
Dan 2015-12-09 11:05:07 -05:00 committed by Dan
parent 7783206934
commit 79ecefb51f
2 changed files with 43 additions and 37 deletions

View File

@ -44,6 +44,8 @@
#include <thrust/device_ptr.h> #include <thrust/device_ptr.h>
#include <thrust/sort.h> #include <thrust/sort.h>
#include <thrust/system/cuda/execution_policy.h>
#include "opencv2/core/cuda/common.hpp" #include "opencv2/core/cuda/common.hpp"
#include "opencv2/core/cuda/reduce.hpp" #include "opencv2/core/cuda/reduce.hpp"
@ -56,13 +58,17 @@ namespace cv { namespace cuda { namespace device
//////////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////////
// cull // cull
int cull_gpu(int* loc, float* response, int size, int n_points) int cull_gpu(int* loc, float* response, int size, int n_points, cudaStream_t stream)
{ {
thrust::device_ptr<int> loc_ptr(loc); thrust::device_ptr<int> loc_ptr(loc);
thrust::device_ptr<float> response_ptr(response); thrust::device_ptr<float> response_ptr(response);
if(stream)
{
thrust::sort_by_key(thrust::cuda::par.on(stream), response_ptr, response_ptr + size, loc_ptr, thrust::greater<float>());
}else
{
thrust::sort_by_key(response_ptr, response_ptr + size, loc_ptr, thrust::greater<float>()); thrust::sort_by_key(response_ptr, response_ptr + size, loc_ptr, thrust::greater<float>());
}
return n_points; return n_points;
} }

View File

@ -55,7 +55,7 @@ namespace cv { namespace cuda { namespace device
{ {
namespace orb namespace orb
{ {
int cull_gpu(int* loc, float* response, int size, int n_points); int cull_gpu(int* loc, float* response, int size, int n_points, cudaStream_t stream);
void HarrisResponses_gpu(PtrStepSzb img, const short2* loc, float* response, const int npoints, int blockSize, float harris_k, cudaStream_t stream); void HarrisResponses_gpu(PtrStepSzb img, const short2* loc, float* response, const int npoints, int blockSize, float harris_k, cudaStream_t stream);
@ -401,10 +401,10 @@ namespace
bool blurForDescriptor_; bool blurForDescriptor_;
private: private:
void buildScalePyramids(InputArray _image, InputArray _mask); void buildScalePyramids(InputArray _image, InputArray _mask, Stream& stream);
void computeKeyPointsPyramid(); void computeKeyPointsPyramid(Stream& stream);
void computeDescriptors(OutputArray _descriptors); void computeDescriptors(OutputArray _descriptors, Stream& stream);
void mergeKeyPoints(OutputArray _keypoints); void mergeKeyPoints(OutputArray _keypoints, Stream& stream);
private: private:
Ptr<cv::cuda::FastFeatureDetector> fastDetector_; Ptr<cv::cuda::FastFeatureDetector> fastDetector_;
@ -582,13 +582,13 @@ namespace
{ {
CV_Assert( useProvidedKeypoints == false ); CV_Assert( useProvidedKeypoints == false );
buildScalePyramids(_image, _mask); buildScalePyramids(_image, _mask, stream);
computeKeyPointsPyramid(); computeKeyPointsPyramid(stream);
if (_descriptors.needed()) if (_descriptors.needed())
{ {
computeDescriptors(_descriptors); computeDescriptors(_descriptors, stream);
} }
mergeKeyPoints(_keypoints); mergeKeyPoints(_keypoints, stream);
} }
static float getScale(float scaleFactor, int firstLevel, int level) static float getScale(float scaleFactor, int firstLevel, int level)
@ -596,7 +596,7 @@ namespace
return pow(scaleFactor, level - firstLevel); return pow(scaleFactor, level - firstLevel);
} }
void ORB_Impl::buildScalePyramids(InputArray _image, InputArray _mask) void ORB_Impl::buildScalePyramids(InputArray _image, InputArray _mask, Stream& stream)
{ {
const GpuMat image = _image.getGpuMat(); const GpuMat image = _image.getGpuMat();
const GpuMat mask = _mask.getGpuMat(); const GpuMat mask = _mask.getGpuMat();
@ -622,28 +622,28 @@ namespace
{ {
if (level < firstLevel_) if (level < firstLevel_)
{ {
cuda::resize(image, imagePyr_[level], sz, 0, 0, INTER_LINEAR); cuda::resize(image, imagePyr_[level], sz, 0, 0, INTER_LINEAR, stream);
if (!mask.empty()) if (!mask.empty())
cuda::resize(mask, maskPyr_[level], sz, 0, 0, INTER_LINEAR); cuda::resize(mask, maskPyr_[level], sz, 0, 0, INTER_LINEAR, stream);
} }
else else
{ {
cuda::resize(imagePyr_[level - 1], imagePyr_[level], sz, 0, 0, INTER_LINEAR); cuda::resize(imagePyr_[level - 1], imagePyr_[level], sz, 0, 0, INTER_LINEAR, stream);
if (!mask.empty()) if (!mask.empty())
{ {
cuda::resize(maskPyr_[level - 1], maskPyr_[level], sz, 0, 0, INTER_LINEAR); cuda::resize(maskPyr_[level - 1], maskPyr_[level], sz, 0, 0, INTER_LINEAR, stream);
cuda::threshold(maskPyr_[level], maskPyr_[level], 254, 0, THRESH_TOZERO); cuda::threshold(maskPyr_[level], maskPyr_[level], 254, 0, THRESH_TOZERO, stream);
} }
} }
} }
else else
{ {
image.copyTo(imagePyr_[level]); image.copyTo(imagePyr_[level], stream);
if (!mask.empty()) if (!mask.empty())
mask.copyTo(maskPyr_[level]); mask.copyTo(maskPyr_[level], stream);
} }
// Filter keypoints by image border // Filter keypoints by image border
@ -652,12 +652,12 @@ namespace
Rect inner(edgeThreshold_, edgeThreshold_, sz.width - 2 * edgeThreshold_, sz.height - 2 * edgeThreshold_); Rect inner(edgeThreshold_, edgeThreshold_, sz.width - 2 * edgeThreshold_, sz.height - 2 * edgeThreshold_);
buf_(inner).setTo(Scalar::all(255)); buf_(inner).setTo(Scalar::all(255));
cuda::bitwise_and(maskPyr_[level], buf_, maskPyr_[level]); cuda::bitwise_and(maskPyr_[level], buf_, maskPyr_[level], stream);
} }
} }
// takes keypoints and culls them by the response // takes keypoints and culls them by the response
static void cull(GpuMat& keypoints, int& count, int n_points) static void cull(GpuMat& keypoints, int& count, int n_points, Stream& stream)
{ {
using namespace cv::cuda::device::orb; using namespace cv::cuda::device::orb;
@ -670,11 +670,11 @@ namespace
return; return;
} }
count = cull_gpu(keypoints.ptr<int>(cuda::FastFeatureDetector::LOCATION_ROW), keypoints.ptr<float>(cuda::FastFeatureDetector::RESPONSE_ROW), count, n_points); count = cull_gpu(keypoints.ptr<int>(cuda::FastFeatureDetector::LOCATION_ROW), keypoints.ptr<float>(cuda::FastFeatureDetector::RESPONSE_ROW), count, n_points, StreamAccessor::getStream(stream));
} }
} }
void ORB_Impl::computeKeyPointsPyramid() void ORB_Impl::computeKeyPointsPyramid(Stream& stream)
{ {
using namespace cv::cuda::device::orb; using namespace cv::cuda::device::orb;
@ -690,7 +690,7 @@ namespace
fastDetector_->setMaxNumPoints(0.05 * imagePyr_[level].size().area()); fastDetector_->setMaxNumPoints(0.05 * imagePyr_[level].size().area());
GpuMat fastKpRange; GpuMat fastKpRange;
fastDetector_->detectAsync(imagePyr_[level], fastKpRange, maskPyr_[level], Stream::Null()); fastDetector_->detectAsync(imagePyr_[level], fastKpRange, maskPyr_[level], stream);
keyPointsCount_[level] = fastKpRange.cols; keyPointsCount_[level] = fastKpRange.cols;
@ -698,28 +698,28 @@ namespace
continue; continue;
ensureSizeIsEnough(3, keyPointsCount_[level], fastKpRange.type(), keyPointsPyr_[level]); ensureSizeIsEnough(3, keyPointsCount_[level], fastKpRange.type(), keyPointsPyr_[level]);
fastKpRange.copyTo(keyPointsPyr_[level].rowRange(0, 2)); fastKpRange.copyTo(keyPointsPyr_[level].rowRange(0, 2), stream);
const int n_features = static_cast<int>(n_features_per_level_[level]); const int n_features = static_cast<int>(n_features_per_level_[level]);
if (scoreType_ == ORB::HARRIS_SCORE) if (scoreType_ == ORB::HARRIS_SCORE)
{ {
// Keep more points than necessary as FAST does not give amazing corners // Keep more points than necessary as FAST does not give amazing corners
cull(keyPointsPyr_[level], keyPointsCount_[level], 2 * n_features); cull(keyPointsPyr_[level], keyPointsCount_[level], 2 * n_features, stream);
// Compute the Harris cornerness (better scoring than FAST) // Compute the Harris cornerness (better scoring than FAST)
HarrisResponses_gpu(imagePyr_[level], keyPointsPyr_[level].ptr<short2>(0), keyPointsPyr_[level].ptr<float>(1), keyPointsCount_[level], 7, HARRIS_K, 0); HarrisResponses_gpu(imagePyr_[level], keyPointsPyr_[level].ptr<short2>(0), keyPointsPyr_[level].ptr<float>(1), keyPointsCount_[level], 7, HARRIS_K, StreamAccessor::getStream(stream));
} }
//cull to the final desired level, using the new Harris scores or the original FAST scores. //cull to the final desired level, using the new Harris scores or the original FAST scores.
cull(keyPointsPyr_[level], keyPointsCount_[level], n_features); cull(keyPointsPyr_[level], keyPointsCount_[level], n_features, stream);
// Compute orientation // Compute orientation
IC_Angle_gpu(imagePyr_[level], keyPointsPyr_[level].ptr<short2>(0), keyPointsPyr_[level].ptr<float>(2), keyPointsCount_[level], half_patch_size, 0); IC_Angle_gpu(imagePyr_[level], keyPointsPyr_[level].ptr<short2>(0), keyPointsPyr_[level].ptr<float>(2), keyPointsCount_[level], half_patch_size, StreamAccessor::getStream(stream));
} }
} }
void ORB_Impl::computeDescriptors(OutputArray _descriptors) void ORB_Impl::computeDescriptors(OutputArray _descriptors, Stream& stream)
{ {
using namespace cv::cuda::device::orb; using namespace cv::cuda::device::orb;
@ -750,17 +750,17 @@ namespace
{ {
// preprocess the resized image // preprocess the resized image
ensureSizeIsEnough(imagePyr_[level].size(), imagePyr_[level].type(), buf_); ensureSizeIsEnough(imagePyr_[level].size(), imagePyr_[level].type(), buf_);
blurFilter_->apply(imagePyr_[level], buf_); blurFilter_->apply(imagePyr_[level], buf_, stream);
} }
computeOrbDescriptor_gpu(blurForDescriptor_ ? buf_ : imagePyr_[level], keyPointsPyr_[level].ptr<short2>(0), keyPointsPyr_[level].ptr<float>(2), computeOrbDescriptor_gpu(blurForDescriptor_ ? buf_ : imagePyr_[level], keyPointsPyr_[level].ptr<short2>(0), keyPointsPyr_[level].ptr<float>(2),
keyPointsCount_[level], pattern_.ptr<int>(0), pattern_.ptr<int>(1), descRange, descriptorSize(), WTA_K_, 0); keyPointsCount_[level], pattern_.ptr<int>(0), pattern_.ptr<int>(1), descRange, descriptorSize(), WTA_K_, StreamAccessor::getStream(stream));
offset += keyPointsCount_[level]; offset += keyPointsCount_[level];
} }
} }
void ORB_Impl::mergeKeyPoints(OutputArray _keypoints) void ORB_Impl::mergeKeyPoints(OutputArray _keypoints, Stream& stream)
{ {
using namespace cv::cuda::device::orb; using namespace cv::cuda::device::orb;
@ -791,10 +791,10 @@ namespace
float locScale = level != firstLevel_ ? sf : 1.0f; float locScale = level != firstLevel_ ? sf : 1.0f;
mergeLocation_gpu(keyPointsPyr_[level].ptr<short2>(0), keyPointsRange.ptr<float>(0), keyPointsRange.ptr<float>(1), keyPointsCount_[level], locScale, 0); mergeLocation_gpu(keyPointsPyr_[level].ptr<short2>(0), keyPointsRange.ptr<float>(0), keyPointsRange.ptr<float>(1), keyPointsCount_[level], locScale, StreamAccessor::getStream(stream));
GpuMat range = keyPointsRange.rowRange(2, 4); GpuMat range = keyPointsRange.rowRange(2, 4);
keyPointsPyr_[level](Range(1, 3), Range(0, keyPointsCount_[level])).copyTo(range); keyPointsPyr_[level](Range(1, 3), Range(0, keyPointsCount_[level])).copyTo(range, stream);
keyPointsRange.row(4).setTo(Scalar::all(level)); keyPointsRange.row(4).setTo(Scalar::all(level));
keyPointsRange.row(5).setTo(Scalar::all(patchSize_ * sf)); keyPointsRange.row(5).setTo(Scalar::all(patchSize_ * sf));