Updated ml module interfaces and documentation
This commit is contained in:
@@ -132,20 +132,16 @@ int main()
|
||||
showImage(data_train, 28, "train data");
|
||||
showImage(data_test, 28, "test data");
|
||||
|
||||
|
||||
// simple case with batch gradient
|
||||
LogisticRegression::Params params = LogisticRegression::Params(
|
||||
0.001, 10, LogisticRegression::BATCH, LogisticRegression::REG_L2, 1, 1);
|
||||
// simple case with mini-batch gradient
|
||||
// LogisticRegression::Params params = LogisticRegression::Params(
|
||||
// 0.001, 10, LogisticRegression::MINI_BATCH, LogisticRegression::REG_L2, 1, 1);
|
||||
|
||||
// mini-batch gradient with higher accuracy
|
||||
// LogisticRegression::Params params = LogisticRegression::Params(
|
||||
// 0.000001, 10, LogisticRegression::MINI_BATCH, LogisticRegression::REG_L2, 1, 1);
|
||||
|
||||
cout << "training...";
|
||||
Ptr<StatModel> lr1 = LogisticRegression::create(params);
|
||||
//! [init]
|
||||
Ptr<LogisticRegression> lr1 = LogisticRegression::create();
|
||||
lr1->setLearningRate(0.001);
|
||||
lr1->setIterations(10);
|
||||
lr1->setRegularization(LogisticRegression::REG_L2);
|
||||
lr1->setTrainMethod(LogisticRegression::BATCH);
|
||||
lr1->setMiniBatchSize(1);
|
||||
//! [init]
|
||||
lr1->train(data_train, ROW_SAMPLE, labels_train);
|
||||
cout << "done!" << endl;
|
||||
|
||||
|
Reference in New Issue
Block a user