Updated ml module interfaces and documentation
This commit is contained in:
@@ -330,7 +330,8 @@ void CV_KNearestTest::run( int /*start_from*/ )
|
||||
}
|
||||
|
||||
// KNearest KDTree implementation
|
||||
Ptr<KNearest> knearestKdt = KNearest::create(ml::KNearest::Params(10, true, INT_MAX, ml::KNearest::KDTREE));
|
||||
Ptr<KNearest> knearestKdt = KNearest::create();
|
||||
knearestKdt->setAlgorithmType(KNearest::KDTREE);
|
||||
knearestKdt->train(trainData, ml::ROW_SAMPLE, trainLabels);
|
||||
knearestKdt->findNearest(testData, 4, bestLabels);
|
||||
if( !calcErr( bestLabels, testLabels, sizes, err, true ) )
|
||||
@@ -394,16 +395,18 @@ int CV_EMTest::runCase( int caseIndex, const EM_Params& params,
|
||||
cv::Mat labels;
|
||||
float err;
|
||||
|
||||
Ptr<EM> em;
|
||||
EM::Params emp(params.nclusters, params.covMatType, params.termCrit);
|
||||
Ptr<EM> em = EM::create();
|
||||
em->setClustersNumber(params.nclusters);
|
||||
em->setCovarianceMatrixType(params.covMatType);
|
||||
em->setTermCriteria(params.termCrit);
|
||||
if( params.startStep == EM::START_AUTO_STEP )
|
||||
em = EM::train( trainData, noArray(), labels, noArray(), emp );
|
||||
em->trainEM( trainData, noArray(), labels, noArray() );
|
||||
else if( params.startStep == EM::START_E_STEP )
|
||||
em = EM::train_startWithE( trainData, *params.means, *params.covs,
|
||||
*params.weights, noArray(), labels, noArray(), emp );
|
||||
em->trainE( trainData, *params.means, *params.covs,
|
||||
*params.weights, noArray(), labels, noArray() );
|
||||
else if( params.startStep == EM::START_M_STEP )
|
||||
em = EM::train_startWithM( trainData, *params.probs,
|
||||
noArray(), labels, noArray(), emp );
|
||||
em->trainM( trainData, *params.probs,
|
||||
noArray(), labels, noArray() );
|
||||
|
||||
// check train error
|
||||
if( !calcErr( labels, trainLabels, sizes, err , false, false ) )
|
||||
@@ -543,7 +546,9 @@ protected:
|
||||
|
||||
Mat labels;
|
||||
|
||||
Ptr<EM> em = EM::train(samples, noArray(), labels, noArray(), EM::Params(nclusters));
|
||||
Ptr<EM> em = EM::create();
|
||||
em->setClustersNumber(nclusters);
|
||||
em->trainEM(samples, noArray(), labels, noArray());
|
||||
|
||||
Mat firstResult(samples.rows, 1, CV_32SC1);
|
||||
for( int i = 0; i < samples.rows; i++)
|
||||
@@ -644,8 +649,13 @@ protected:
|
||||
samples1.push_back(sample);
|
||||
}
|
||||
}
|
||||
Ptr<EM> model0 = EM::train(samples0, noArray(), noArray(), noArray(), EM::Params(3));
|
||||
Ptr<EM> model1 = EM::train(samples1, noArray(), noArray(), noArray(), EM::Params(3));
|
||||
Ptr<EM> model0 = EM::create();
|
||||
model0->setClustersNumber(3);
|
||||
model0->trainEM(samples0, noArray(), noArray(), noArray());
|
||||
|
||||
Ptr<EM> model1 = EM::create();
|
||||
model1->setClustersNumber(3);
|
||||
model1->trainEM(samples1, noArray(), noArray(), noArray());
|
||||
|
||||
Mat trainConfusionMat(2, 2, CV_32SC1, Scalar(0)),
|
||||
testConfusionMat(2, 2, CV_32SC1, Scalar(0));
|
||||
|
Reference in New Issue
Block a user