Merge pull request #1224 from mbarnach:pca_io

This commit is contained in:
Roman Donchenko 2013-09-03 18:43:54 +04:00 committed by OpenCV Buildbot
commit 79457f8f49
3 changed files with 51 additions and 0 deletions

View File

@ -670,6 +670,10 @@ public:
//! reconstructs the original vector from the projection //! reconstructs the original vector from the projection
void backProject(InputArray vec, OutputArray result) const; void backProject(InputArray vec, OutputArray result) const;
//! write and load PCA matrix
void write(FileStorage& fs ) const;
void read(const FileNode& fs);
Mat eigenvectors; //!< eigenvectors of the covariation matrix Mat eigenvectors; //!< eigenvectors of the covariation matrix
Mat eigenvalues; //!< eigenvalues of the covariation matrix Mat eigenvalues; //!< eigenvalues of the covariation matrix
Mat mean; //!< mean value subtracted before the projection and added after the back projection Mat mean; //!< mean value subtracted before the projection and added after the back projection

View File

@ -2911,6 +2911,27 @@ PCA& PCA::operator()(InputArray _data, InputArray __mean, int flags, int maxComp
return *this; return *this;
} }
void PCA::write(FileStorage& fs ) const
{
CV_Assert( fs.isOpened() );
fs << "name" << "PCA";
fs << "vectors" << eigenvectors;
fs << "values" << eigenvalues;
fs << "mean" << mean;
}
void PCA::read(const FileNode& fs)
{
CV_Assert( !fs.empty() );
String name = (String)fs["name"];
CV_Assert( name == "PCA" );
cv::read(fs["vectors"], eigenvectors);
cv::read(fs["values"], eigenvalues);
cv::read(fs["mean"], mean);
}
template <typename T> template <typename T>
int computeCumulativeEnergy(const Mat& eigenvalues, double retainedVariance) int computeCumulativeEnergy(const Mat& eigenvalues, double retainedVariance)
{ {

View File

@ -510,6 +510,32 @@ protected:
return; return;
} }
#endif #endif
// Test read and write
FileStorage fs( "PCA_store.yml", FileStorage::WRITE );
rPCA.write( fs );
fs.release();
PCA lPCA;
fs.open( "PCA_store.yml", FileStorage::READ );
lPCA.read( fs.root() );
err = norm( rPCA.eigenvectors, lPCA.eigenvectors, CV_RELATIVE_L2 );
if( err > 0 )
{
ts->printf( cvtest::TS::LOG, "bad accuracy of write/load functions (YML); err = %f\n", err );
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
}
err = norm( rPCA.eigenvalues, lPCA.eigenvalues, CV_RELATIVE_L2 );
if( err > 0 )
{
ts->printf( cvtest::TS::LOG, "bad accuracy of write/load functions (YML); err = %f\n", err );
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
}
err = norm( rPCA.mean, lPCA.mean, CV_RELATIVE_L2 );
if( err > 0 )
{
ts->printf( cvtest::TS::LOG, "bad accuracy of write/load functions (YML); err = %f\n", err );
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
}
} }
}; };