added improved version of the variational stereo correspondence algorithm by Sergey Kosov

This commit is contained in:
Vadim Pisarevsky 2011-07-14 15:30:28 +00:00
parent 5f0c312087
commit 7702fa4d61
3 changed files with 193 additions and 77 deletions

View File

@ -568,7 +568,7 @@ namespace cv
{
public:
// Flags
enum {USE_INITIAL_DISPARITY = 1, USE_EQUALIZE_HIST = 2, USE_SMART_ID = 4, USE_MEDIAN_FILTERING = 8};
enum {USE_INITIAL_DISPARITY = 1, USE_EQUALIZE_HIST = 2, USE_SMART_ID = 4, USE_AUTO_PARAMS = 8, USE_MEDIAN_FILTERING = 16};
enum {CYCLE_O, CYCLE_V};
enum {PENALIZATION_TICHONOV, PENALIZATION_CHARBONNIER, PENALIZATION_PERONA_MALIK};
@ -598,7 +598,8 @@ namespace cv
CV_PROP_RW int flags;
private:
void FMG(Mat &I1, Mat &I2, Mat &I2x, Mat &u, int level);
void autoParams();
void FMG(Mat &I1, Mat &I2, Mat &I2x, Mat &u, int level);
void VCycle_MyFAS(Mat &I1_h, Mat &I2_h, Mat &I2x_h, Mat &u_h, int level);
void VariationalSolver(Mat &I1_h, Mat &I2_h, Mat &I2x_h, Mat &u_h, int level);
};

View File

@ -53,7 +53,7 @@
namespace cv
{
StereoVar::StereoVar() : levels(3), pyrScale(0.5), nIt(3), minDisp(0), maxDisp(16), poly_n(5), poly_sigma(1.2), fi(1000.0f), lambda(0.0f), penalization(PENALIZATION_TICHONOV), cycle(CYCLE_V), flags(USE_SMART_ID)
StereoVar::StereoVar() : levels(3), pyrScale(0.5), nIt(5), minDisp(0), maxDisp(16), poly_n(3), poly_sigma(0), fi(25.0f), lambda(0.03f), penalization(PENALIZATION_TICHONOV), cycle(CYCLE_V), flags(USE_SMART_ID | USE_AUTO_PARAMS)
{
}
@ -65,111 +65,172 @@ StereoVar::~StereoVar()
{
}
static Mat diffX(Mat &img)
static Mat diffX(Mat &src)
{
register int x, y, cols = src.cols - 1;
Mat dst(src.size(), src.type());
for(y = 0; y < src.rows; y++){
const float* pSrc = src.ptr<float>(y);
float* pDst = dst.ptr<float>(y);
for (x = 0; x <= cols - 8; x += 8) {
__m128 a0 = _mm_loadu_ps(pSrc + x);
__m128 b0 = _mm_loadu_ps(pSrc + x + 1);
__m128 a1 = _mm_loadu_ps(pSrc + x + 4);
__m128 b1 = _mm_loadu_ps(pSrc + x + 5);
b0 = _mm_sub_ps(b0, a0);
b1 = _mm_sub_ps(b1, a1);
_mm_storeu_ps(pDst + x, b0);
_mm_storeu_ps(pDst + x + 4, b1);
}
for( ; x < cols; x++) pDst[x] = pSrc[x+1] - pSrc[x];
pDst[cols] = 0.f;
}
return dst;
}
static Mat getGradient(Mat &src)
{
// TODO try pointers or assm
register int x, y;
Mat dst(img.size(), img.type());
Mat dst(src.size(), src.type());
dst.setTo(0);
for (x = 0; x < img.cols - 1; x++)
for (y = 0; y < img.rows; y++)
dst.at<float>(y, x) = img.at<float>(y, x + 1) - img.at<float>(y ,x);
for (y = 0; y < src.rows - 1; y++) {
float *pSrc = src.ptr<float>(y);
float *pSrcF = src.ptr<float>(y + 1);
float *pDst = dst.ptr<float>(y);
for (x = 0; x < src.cols - 1; x++)
pDst[x] = fabs(pSrc[x + 1] - pSrc[x]) + fabs(pSrcF[x] - pSrc[x]);
}
return dst;
}
static Mat Gradient(Mat &img)
static Mat getG_c(Mat &src, float l)
{
Mat sobel, sobelX, sobelY;
img.copyTo(sobelX);
img.copyTo(sobelY);
Sobel(img, sobelX, sobelX.type(), 1, 0, 1);
Sobel(img, sobelY, sobelY.type(), 0, 1, 1);
sobelX = abs(sobelX);
sobelY = abs(sobelY);
add(sobelX, sobelY, sobel);
sobelX.release();
sobelY.release();
return sobel;
Mat dst(src.size(), src.type());
for (register int y = 0; y < src.rows; y++) {
float *pSrc = src.ptr<float>(y);
float *pDst = dst.ptr<float>(y);
for (register int x = 0; x < src.cols; x++)
pDst[x] = 0.5f*l / sqrtf(l*l + pSrc[x]*pSrc[x]);
}
return dst;
}
static float g_c(Mat z, int x, int y, float l)
static Mat getG_p(Mat &src, float l)
{
return 0.5f*l / sqrtf(l*l + z.at<float>(y,x)*z.at<float>(y,x));
}
static float g_p(Mat z, int x, int y, float l)
{
return 0.5f*l*l / (l*l + z.at<float>(y,x)*z.at<float>(y,x)) ;
Mat dst(src.size(), src.type());
for (register int y = 0; y < src.rows; y++) {
float *pSrc = src.ptr<float>(y);
float *pDst = dst.ptr<float>(y);
for (register int x = 0; x < src.cols; x++)
pDst[x] = 0.5f*l*l / (l*l + pSrc[x]*pSrc[x]);
}
return dst;
}
void StereoVar::VariationalSolver(Mat &I1, Mat &I2, Mat &I2x, Mat &u, int level)
{
register int n, x, y;
float gl = 1, gr = 1, gu = 1, gd = 1, gc = 4;
Mat g_c, g_p;
Mat U;
Mat Sobel;
u.copyTo(U);
int N = nIt;
float l = lambda;
float Fi = fi;
double scale = pow(pyrScale, (double) level);
if (flags & USE_SMART_ID) {
if (flags & USE_SMART_ID) {
double scale = pow(pyrScale, (double) level) * (1 + pyrScale);
N = (int) (N / scale);
Fi /= (float) scale;
l *= (float) scale;
}
double scale = pow(pyrScale, (double) level);
Fi /= (float) scale;
l *= (float) scale;
int width = u.cols - 1;
int height = u.rows - 1;
for (n = 0; n < N; n++) {
if (penalization != PENALIZATION_TICHONOV) {if(!Sobel.empty()) Sobel.release(); Sobel = Gradient(U);}
for (x = 1; x < u.cols - 1; x++) {
for (y = 1 ; y < u.rows - 1; y++) {
if (penalization != PENALIZATION_TICHONOV) {
Mat gradient = getGradient(U);
switch (penalization) {
case PENALIZATION_CHARBONNIER: g_c = getG_c(gradient, l); break;
case PENALIZATION_PERONA_MALIK: g_p = getG_p(gradient, l); break;
}
gradient.release();
}
for (y = 1 ; y < height; y++) {
float *pU = U.ptr<float>(y);
float *pUu = U.ptr<float>(y + 1);
float *pUd = U.ptr<float>(y - 1);
float *pu = u.ptr<float>(y);
float *pI1 = I1.ptr<float>(y);
float *pI2 = I2.ptr<float>(y);
float *pI2x = I2x.ptr<float>(y);
float *pG_c = NULL, *pG_cu = NULL, *pG_cd = NULL;
float *pG_p = NULL, *pG_pu = NULL, *pG_pd = NULL;
switch (penalization) {
case PENALIZATION_CHARBONNIER:
pG_c = g_c.ptr<float>(y);
pG_cu = g_c.ptr<float>(y + 1);
pG_cd = g_c.ptr<float>(y - 1);
break;
case PENALIZATION_PERONA_MALIK:
pG_p = g_p.ptr<float>(y);
pG_pu = g_p.ptr<float>(y + 1);
pG_pd = g_p.ptr<float>(y - 1);
break;
}
for (x = 1; x < width; x++) {
switch (penalization) {
case PENALIZATION_CHARBONNIER:
gc = g_c(Sobel, x, y, l);
gl = gc + g_c(Sobel, x - 1, y, l);
gr = gc + g_c(Sobel, x + 1, y, l);
gu = gc + g_c(Sobel, x, y + 1, l);
gd = gc + g_c(Sobel, x, y - 1, l);
gc = gl + gr + gu + gd;
gc = pG_c[x];
gl = gc + pG_c[x - 1];
gr = gc + pG_c[x + 1];
gu = gc + pG_cu[x];
gd = gc + pG_cd[x];
gc = gl + gr + gu + gd;
break;
case PENALIZATION_PERONA_MALIK:
gc = g_p(Sobel, x, y, l);
gl = gc + g_p(Sobel, x - 1, y, l);
gr = gc + g_p(Sobel, x + 1, y, l);
gu = gc + g_p(Sobel, x, y + 1, l);
gd = gc + g_p(Sobel, x, y - 1, l);
gc = pG_p[x];
gl = gc + pG_p[x - 1];
gr = gc + pG_p[x + 1];
gu = gc + pG_pu[x];
gd = gc + pG_pd[x];
gc = gl + gr + gu + gd;
break;
}
float fi = Fi;
if (maxDisp > minDisp) {
if (U.at<float>(y,x) > maxDisp * scale) {fi*=1000; U.at<float>(y,x) = static_cast<float>(maxDisp * scale);}
if (U.at<float>(y,x) < minDisp * scale) {fi*=1000; U.at<float>(y,x) = static_cast<float>(minDisp * scale);}
if (pU[x] > maxDisp * scale) {fi *= 1000; pU[x] = static_cast<float>(maxDisp * scale);}
if (pU[x] < minDisp * scale) {fi *= 1000; pU[x] = static_cast<float>(minDisp * scale);}
}
int A = (int) (U.at<float>(y,x));
int neg = 0; if (U.at<float>(y,x) <= 0) neg = -1;
int A = static_cast<int>(pU[x]);
int neg = 0; if (pU[x] <= 0) neg = -1;
if (x + A >= u.cols)
u.at<float>(y, x) = U.at<float>(y, u.cols - A - 1);
if (x + A > width)
pu[x] = pU[width - A];
else if (x + A + neg < 0)
u.at<float>(y, x) = U.at<float>(y, - A + 2);
pu[x] = pU[- A + 2];
else {
u.at<float>(y, x) = A + (I2x.at<float>(y, x + A + neg) * (I1.at<float>(y, x) - I2.at<float>(y, x + A))
+ fi * (gr * U.at<float>(y, x + 1) + gl * U.at<float>(y, x - 1) + gu * U.at<float>(y + 1, x) + gd * U.at<float>(y - 1, x) - gc * A))
/ (I2x.at<float>(y, x + A + neg) * I2x.at<float>(y, x + A + neg) + gc * fi) ;
pu[x] = A + (pI2x[x + A + neg] * (pI1[x] - pI2[x + A])
+ fi * (gr * pU[x + 1] + gl * pU[x - 1] + gu * pUu[x] + gd * pUd[x] - gc * A))
/ (pI2x[x + A + neg] * pI2x[x + A + neg] + gc * fi) ;
}
}//y
}// x
pu[0] = pu[1];
pu[width] = pu[width - 1];
}// y
for (x = 0; x <= width; x++) {
u.at<float>(0, x) = u.at<float>(1, x);
u.at<float>(u.rows - 1, x) = u.at<float>(u.rows - 2, x);
}//x
for (y = 0; y < u.rows; y++) {
u.at<float>(y, 0) = u.at<float>(y, 1);
u.at<float>(y, u.cols - 1) = u.at<float>(y, u.cols - 2);
u.at<float>(height, x) = u.at<float>(height - 1, x);
}
u.copyTo(U);
if (!g_c.empty()) g_c.release();
if (!g_p.empty()) g_p.release();
}//n
}
@ -251,15 +312,43 @@ void StereoVar::FMG(Mat &I1, Mat &I2, Mat &I2x, Mat &u, int level)
u_h.release();
level--;
if ((flags & USE_AUTO_PARAMS) && (level < levels / 3)) {
penalization = PENALIZATION_PERONA_MALIK;
fi *= 100;
flags -= USE_AUTO_PARAMS;
autoParams();
}
if (flags & USE_MEDIAN_FILTERING) medianBlur(u, u, 3);
if (level >= 0) FMG(I1, I2, I2x, u, level);
}
void StereoVar::autoParams()
{
int maxD = MAX(labs(maxDisp), labs(minDisp));
if (!maxD) pyrScale = 0.85;
else if (maxD < 8) pyrScale = 0.5;
else if (maxD < 64) pyrScale = 0.5 + static_cast<double>(maxD - 8) * 0.00625;
else pyrScale = 0.85;
if (maxD) {
levels = 0;
while ( pow(pyrScale, levels) * maxD > 1.5) levels ++;
levels++;
}
switch(penalization) {
case PENALIZATION_TICHONOV: cycle = CYCLE_V; break;
case PENALIZATION_CHARBONNIER: cycle = CYCLE_O; break;
case PENALIZATION_PERONA_MALIK: cycle = CYCLE_O; break;
}
}
void StereoVar::operator ()( const Mat& left, const Mat& right, Mat& disp )
{
CV_Assert(left.size() == right.size() && left.type() == right.type());
CvSize imgSize = left.size();
int MaxD = MAX(std::abs(minDisp), std::abs(maxDisp));
int MaxD = MAX(labs(minDisp), labs(maxDisp));
int SignD = 1; if (MIN(minDisp, maxDisp) < 0) SignD = -1;
if (minDisp >= maxDisp) {MaxD = 256; SignD = 1;}
@ -290,6 +379,11 @@ void StereoVar::operator ()( const Mat& left, const Mat& right, Mat& disp )
GaussianBlur(rightgray, rightgray, cvSize(poly_n, poly_n), poly_sigma);
}
if (flags & USE_AUTO_PARAMS) {
penalization = PENALIZATION_TICHONOV;
autoParams();
}
Mat I1, I2;
leftgray.convertTo(I1, CV_32FC1);
rightgray.convertTo(I2, CV_32FC1);

View File

@ -20,7 +20,7 @@ void print_help()
{
printf("\nDemo stereo matching converting L and R images into disparity and point clouds\n");
printf("\nUsage: stereo_match <left_image> <right_image> [--algorithm=bm|sgbm|hh|var] [--blocksize=<block_size>]\n"
"[--max-disparity=<max_disparity>] [-i <intrinsic_filename>] [-e <extrinsic_filename>]\n"
"[--max-disparity=<max_disparity>] [--scale=scale_factor>] [-i <intrinsic_filename>] [-e <extrinsic_filename>]\n"
"[--no-display] [-o <disparity_image>] [-p <point_cloud_file>]\n");
}
@ -40,18 +40,18 @@ void saveXYZ(const char* filename, const Mat& mat)
fclose(fp);
}
int main(int argc, char** argv)
{
const char* algorithm_opt = "--algorithm=";
const char* maxdisp_opt = "--max-disparity=";
const char* blocksize_opt = "--blocksize=";
const char* nodisplay_opt = "--no-display=";
const char* scale_opt = "--scale=";
if(argc < 3)
{
print_help();
return 0;
return 0;
}
const char* img1_filename = 0;
const char* img2_filename = 0;
@ -64,6 +64,7 @@ int main(int argc, char** argv)
int alg = STEREO_SGBM;
int SADWindowSize = 0, numberOfDisparities = 0;
bool no_display = false;
float scale = 1.f;
StereoBM bm;
StereoSGBM sgbm;
@ -111,6 +112,14 @@ int main(int argc, char** argv)
return -1;
}
}
else if( strncmp(argv[i], scale_opt, strlen(scale_opt)) == 0 )
{
if( sscanf( argv[i] + strlen(scale_opt), "%f", &scale ) != 1 || scale < 0 )
{
printf("Command-line parameter error: The scale factor (--scale=<...>) must be a positive floating-point number\n");
return -1;
}
}
else if( strcmp(argv[i], nodisplay_opt) == 0 )
no_display = true;
else if( strcmp(argv[i], "-i" ) == 0 )
@ -149,6 +158,17 @@ int main(int argc, char** argv)
int color_mode = alg == STEREO_BM ? 0 : -1;
Mat img1 = imread(img1_filename, color_mode);
Mat img2 = imread(img2_filename, color_mode);
if( scale != 1.f )
{
Mat temp1, temp2;
int method = scale < 1 ? INTER_AREA : INTER_CUBIC;
resize(img1, temp1, Size(), scale, scale, method);
img1 = temp1;
resize(img2, temp2, Size(), scale, scale, method);
img2 = temp2;
}
Size img_size = img1.size();
Rect roi1, roi2;
@ -224,18 +244,18 @@ int main(int argc, char** argv)
sgbm.disp12MaxDiff = 1;
sgbm.fullDP = alg == STEREO_HH;
var.levels = 6;
var.pyrScale = 0.6;
var.nIt = 3;
var.minDisp = -numberOfDisparities;
var.levels = 3; // ignored with USE_AUTO_PARAMS
var.pyrScale = 0.5; // ignored with USE_AUTO_PARAMS
var.nIt = 25;
var.minDisp = -numberOfDisparities;
var.maxDisp = 0;
var.poly_n = 3;
var.poly_sigma = 0.0;
var.fi = 5.0f;
var.lambda = 0.1;
var.penalization = var.PENALIZATION_TICHONOV;
var.cycle = var.CYCLE_V;
var.flags = var.USE_SMART_ID | var.USE_INITIAL_DISPARITY | 1 * var.USE_MEDIAN_FILTERING ;
var.fi = 15.0f;
var.lambda = 0.03f;
var.penalization = var.PENALIZATION_TICHONOV; // ignored with USE_AUTO_PARAMS
var.cycle = var.CYCLE_V; // ignored with USE_AUTO_PARAMS
var.flags = var.USE_SMART_ID | var.USE_AUTO_PARAMS | var.USE_INITIAL_DISPARITY | var.USE_MEDIAN_FILTERING ;
Mat disp, disp8;
//Mat img1p, img2p, dispp;
@ -245,8 +265,9 @@ int main(int argc, char** argv)
int64 t = getTickCount();
if( alg == STEREO_BM )
bm(img1, img2, disp);
else if( alg == STEREO_VAR )
else if( alg == STEREO_VAR ) {
var(img1, img2, disp);
}
else if( alg == STEREO_SGBM || alg == STEREO_HH )
sgbm(img1, img2, disp);
t = getTickCount() - t;