implemented asynchronous call for gpumat::setTo(), gpumat::copyTo(), gpumat::converTo()

This commit is contained in:
Andrey Morozov 2010-07-26 11:22:16 +00:00
parent 1ead3a5b02
commit 769564c130
4 changed files with 114 additions and 86 deletions

View File

@ -49,24 +49,24 @@
namespace cv
{
namespace gpu
{
{
//////////////////////////////// Initialization ////////////////////////
//! This is the only function that do not throw exceptions if the library is compiled without Cuda.
CV_EXPORTS int getCudaEnabledDeviceCount();
//! Functions below throw cv::Expception if the library is compiled without Cuda.
CV_EXPORTS string getDeviceName(int device);
CV_EXPORTS void setDevice(int device);
CV_EXPORTS int getDevice();
CV_EXPORTS void setDevice(int device);
CV_EXPORTS int getDevice();
CV_EXPORTS void getComputeCapability(int device, int* major, int* minor);
CV_EXPORTS int getNumberOfSMs(int device);
//////////////////////////////// GpuMat ////////////////////////////////
class CudaStrem;
//! Smart pointer for GPU memory with reference counting. Its interface is mostly similar with cv::Mat.
//////////////////////////////// GpuMat ////////////////////////////////
class CudaStream;
//! Smart pointer for GPU memory with reference counting. Its interface is mostly similar with cv::Mat.
class CV_EXPORTS GpuMat
{
public:
@ -81,7 +81,7 @@ namespace cv
GpuMat(Size _size, int _type, const Scalar& _s);
//! copy constructor
GpuMat(const GpuMat& m);
//! constructor for GpuMatrix headers pointing to user-allocated data
GpuMat(int _rows, int _cols, int _type, void* _data, size_t _step = Mat::AUTO_STEP);
GpuMat(Size _size, int _type, void* _data, size_t _step = Mat::AUTO_STEP);
@ -89,7 +89,7 @@ namespace cv
//! creates a matrix header for a part of the bigger matrix
GpuMat(const GpuMat& m, const Range& rowRange, const Range& colRange);
GpuMat(const GpuMat& m, const Rect& roi);
//! builds GpuMat from Mat. Perfom blocking upload to device.
explicit GpuMat (const Mat& m);
@ -99,7 +99,7 @@ namespace cv
//! assignment operators
GpuMat& operator = (const GpuMat& m);
//! assignment operator. Perfom blocking upload to device.
GpuMat& operator = (const Mat& m);
GpuMat& operator = (const Mat& m);
//! returns lightweight DevMem2D_ structure for passing to nvcc-compiled code.
// Contains just image size, data ptr and step.
@ -110,7 +110,7 @@ namespace cv
//! Downloads data from device to host memory. Blocking calls.
operator Mat() const;
void download(cv::Mat& m) const;
void download(cv::Mat& m) const;
//! returns a new GpuMatrix header for the specified row
GpuMat row(int y) const;
@ -161,7 +161,7 @@ namespace cv
//! extracts a rectangular sub-GpuMatrix
// (this is a generalized form of row, rowRange etc.)
GpuMat operator()( Range rowRange, Range colRange ) const;
GpuMat operator()( const Rect& roi ) const;
GpuMat operator()( const Rect& roi ) const;
//! returns true iff the GpuMatrix data is continuous
// (i.e. when there are no gaps between successive rows).
@ -222,33 +222,33 @@ namespace cv
// Page locked memory is only needed for async and faster coping to GPU.
// It is convertable to cv::Mat header without reference counting
// so you can use it with other opencv functions.
class CV_EXPORTS MatPL
{
public:
public:
//Not supported. Now behaviour is like ALLOC_DEFAULT.
//enum { ALLOC_DEFAULT = 0, ALLOC_PORTABLE = 1, ALLOC_WRITE_COMBINED = 4 }
MatPL();
MatPL(const MatPL& m);
MatPL();
MatPL(const MatPL& m);
MatPL(int _rows, int _cols, int _type);
MatPL(Size _size, int _type);
MatPL(Size _size, int _type);
//! creates from cv::Mat with coping data
explicit MatPL(const Mat& m);
~MatPL();
~MatPL();
MatPL& operator = (const MatPL& m);
//! returns deep copy of the matrix, i.e. the data is copied
MatPL clone() const;
//! allocates new matrix data unless the matrix already has specified size and type.
//! allocates new matrix data unless the matrix already has specified size and type.
void create(int _rows, int _cols, int _type);
void create(Size _size, int _type);
void create(Size _size, int _type);
//! decrements reference counter and released memory if needed.
void release();
@ -256,25 +256,25 @@ namespace cv
//! returns matrix header with disabled reference counting for MatPL data.
Mat createMatHeader() const;
operator Mat() const;
// Please see cv::Mat for descriptions
bool isContinuous() const;
size_t elemSize() const;
size_t elemSize1() const;
int type() const;
int depth() const;
int channels() const;
size_t step1() const;
Size size() const;
bool isContinuous() const;
size_t elemSize() const;
size_t elemSize1() const;
int type() const;
int depth() const;
int channels() const;
size_t step1() const;
Size size() const;
bool empty() const;
// Please see cv::Mat for descriptions
int flags;
int rows, cols;
int flags;
int rows, cols;
size_t step;
uchar* data;
int* refcount;
uchar* data;
int* refcount;
uchar* datastart;
uchar* dataend;
@ -288,37 +288,37 @@ namespace cv
class CV_EXPORTS CudaStream
{
public:
CudaStream();
CudaStream();
~CudaStream();
CudaStream(const CudaStream&);
CudaStream(const CudaStream&);
CudaStream& operator=(const CudaStream&);
bool queryIfComplete();
void waitForCompletion();
void waitForCompletion();
//! downloads asynchronously.
//! downloads asynchronously.
// Warning! cv::Mat must point to page locked memory (i.e. to MatPL data or to its subMat)
void enqueueDownload(const GpuMat& src, MatPL& dst);
void enqueueDownload(const GpuMat& src, Mat& dst);
//! uploads asynchronously.
//! uploads asynchronously.
// Warning! cv::Mat must point to page locked memory (i.e. to MatPL data or to its ROI)
void enqueueUpload(const MatPL& src, GpuMat& dst);
void enqueueUpload(const MatPL& src, GpuMat& dst);
void enqueueUpload(const Mat& src, GpuMat& dst);
void enqueueCopy(const GpuMat& src, GpuMat& dst);
void enqueueMemSet(const GpuMat& src, Scalar val);
void enqueueMemSet(const GpuMat& src, Scalar val);
void enqueueMemSet(const GpuMat& src, Scalar val, const GpuMat& mask);
// converts matrix type, ex from float to uchar depending on type
void enqueueConvert(const GpuMat& src, GpuMat& dst, int type, double a = 1, double b = 0);
void enqueueConvert(const GpuMat& src, GpuMat& dst, int type, double a = 1, double b = 0);
private:
void create();
void release();
struct Impl;
Impl *impl;
Impl *impl;
friend struct StreamAccessor;
};
@ -348,7 +348,7 @@ namespace cv
//! Acync version
void operator() ( const GpuMat& left, const GpuMat& right, GpuMat& disparity, const CudaStream& stream);
//! Some heuristics that tries to estmate
//! Some heuristics that tries to estmate
// if current GPU will be faster then CPU in this algorithm.
// It queries current active device.
static bool checkIfGpuCallReasonable();
@ -356,11 +356,11 @@ namespace cv
int ndisp;
int winSize;
int preset;
// If avergeTexThreshold == 0 => post procesing is disabled
// If avergeTexThreshold != 0 then disparity is set 0 in each point (x,y) where for left image
// SumOfHorizontalGradiensInWindow(x, y, winSize) < (winSize * winSize) * avergeTexThreshold
// i.e. input left image is low textured.
// i.e. input left image is low textured.
float avergeTexThreshold;
private:
GpuMat minSSD, leBuf, riBuf;
@ -369,4 +369,4 @@ namespace cv
}
#include "opencv2/gpu/matrix_operations.hpp"
#endif /* __OPENCV_GPU_HPP__ */
#endif /* __OPENCV_GPU_HPP__ */

View File

@ -61,12 +61,12 @@ namespace cv
{
static inline int divUp(int a, int b) { return (a % b == 0) ? a/b : a/b + 1; }
extern "C" void copy_to_with_mask(const DevMem2D& mat_src, const DevMem2D& mat_dst, int depth, const DevMem2D& mask, int channels);
extern "C" void copy_to_with_mask(const DevMem2D& mat_src, const DevMem2D& mat_dst, int depth, const DevMem2D& mask, int channels, const cudaStream_t & stream = 0);
extern "C" void set_to_without_mask (const DevMem2D& mat, int depth, const double * scalar, int channels);
extern "C" void set_to_with_mask (const DevMem2D& mat, int depth, const double * scalar, const DevMem2D& mask, int channels);
extern "C" void set_to_without_mask (const DevMem2D& mat, int depth, const double * scalar, int channels, const cudaStream_t & stream = 0);
extern "C" void set_to_with_mask (const DevMem2D& mat, int depth, const double * scalar, const DevMem2D& mask, int channels, const cudaStream_t & stream = 0);
extern "C" void convert_to(const DevMem2D& src, int sdepth, DevMem2D dst, int ddepth, size_t width, size_t height, double alpha, double beta);
extern "C" void convert_to(const DevMem2D& src, int sdepth, DevMem2D dst, int ddepth, size_t width, size_t height, double alpha, double beta, const cudaStream_t & stream = 0);
}
}
}

View File

@ -42,7 +42,6 @@
#include <stddef.h>
#include <stdio.h>
//#include <iostream>
#include "cuda_shared.hpp"
#include "cuda_runtime.h"
@ -239,19 +238,27 @@ namespace cv
////////////////////////////////// CopyTo /////////////////////////////////
///////////////////////////////////////////////////////////////////////////
typedef void (*CopyToFunc)(const DevMem2D& mat_src, const DevMem2D& mat_dst, const DevMem2D& mask, int channels);
typedef void (*CopyToFunc)(const DevMem2D& mat_src, const DevMem2D& mat_dst, const DevMem2D& mask, int channels, const cudaStream_t & stream);
template<typename T>
void copy_to_with_mask_run(const DevMem2D& mat_src, const DevMem2D& mat_dst, const DevMem2D& mask, int channels)
void copy_to_with_mask_run(const DevMem2D& mat_src, const DevMem2D& mat_dst, const DevMem2D& mask, int channels, const cudaStream_t & stream)
{
dim3 threadsPerBlock(16,16, 1);
dim3 numBlocks ( divUp(mat_src.cols * channels , threadsPerBlock.x) , divUp(mat_src.rows , threadsPerBlock.y), 1);
::mat_operators::kernel_copy_to_with_mask<T><<<numBlocks,threadsPerBlock>>>
((T*)mat_src.ptr, (T*)mat_dst.ptr, (unsigned char*)mask.ptr, mat_src.cols, mat_src.rows, mat_src.step, mask.step, channels);
cudaSafeCall ( cudaThreadSynchronize() );
if (stream == 0)
{
::mat_operators::kernel_copy_to_with_mask<T><<<numBlocks,threadsPerBlock>>>
((T*)mat_src.ptr, (T*)mat_dst.ptr, (unsigned char*)mask.ptr, mat_src.cols, mat_src.rows, mat_src.step, mask.step, channels);
cudaSafeCall ( cudaThreadSynchronize() );
}
else
{
::mat_operators::kernel_copy_to_with_mask<T><<<numBlocks,threadsPerBlock, 0, stream>>>
((T*)mat_src.ptr, (T*)mat_dst.ptr, (unsigned char*)mask.ptr, mat_src.cols, mat_src.rows, mat_src.step, mask.step, channels);
}
}
extern "C" void copy_to_with_mask(const DevMem2D& mat_src, const DevMem2D& mat_dst, int depth, const DevMem2D& mask, int channels)
extern "C" void copy_to_with_mask(const DevMem2D& mat_src, const DevMem2D& mat_dst, int depth, const DevMem2D& mask, int channels, const cudaStream_t & stream)
{
static CopyToFunc tab[8] =
{
@ -269,7 +276,7 @@ namespace cv
if (func == 0) cv::gpu::error("Unsupported convert operation", __FILE__, __LINE__);
func(mat_src, mat_dst, mask, channels);
func(mat_src, mat_dst, mask, channels, stream);
}
@ -277,28 +284,43 @@ namespace cv
////////////////////////////////// SetTo //////////////////////////////////
///////////////////////////////////////////////////////////////////////////
typedef void (*SetToFunc_with_mask)(const DevMem2D& mat, const DevMem2D& mask, int channels);
typedef void (*SetToFunc_without_mask)(const DevMem2D& mat, int channels);
typedef void (*SetToFunc_with_mask)(const DevMem2D& mat, const DevMem2D& mask, int channels, const cudaStream_t & stream);
typedef void (*SetToFunc_without_mask)(const DevMem2D& mat, int channels, const cudaStream_t & stream);
template <typename T>
void set_to_with_mask_run(const DevMem2D& mat, const DevMem2D& mask, int channels)
void set_to_with_mask_run(const DevMem2D& mat, const DevMem2D& mask, int channels, const cudaStream_t & stream)
{
dim3 threadsPerBlock(32, 8, 1);
dim3 numBlocks (mat.cols * channels / threadsPerBlock.x + 1, mat.rows / threadsPerBlock.y + 1, 1);
::mat_operators::kernel_set_to_with_mask<T><<<numBlocks,threadsPerBlock>>>((T*)mat.ptr, (unsigned char *)mask.ptr, mat.cols, mat.rows, mat.step, channels, mask.step);
cudaSafeCall ( cudaThreadSynchronize() );
if (stream == 0)
{
::mat_operators::kernel_set_to_with_mask<T><<<numBlocks,threadsPerBlock>>>((T*)mat.ptr, (unsigned char *)mask.ptr, mat.cols, mat.rows, mat.step, channels, mask.step);
cudaSafeCall ( cudaThreadSynchronize() );
}
else
{
::mat_operators::kernel_set_to_with_mask<T><<<numBlocks,threadsPerBlock, 0, stream>>>((T*)mat.ptr, (unsigned char *)mask.ptr, mat.cols, mat.rows, mat.step, channels, mask.step);
}
}
template <typename T>
void set_to_without_mask_run(const DevMem2D& mat, int channels)
void set_to_without_mask_run(const DevMem2D& mat, int channels, const cudaStream_t & stream)
{
dim3 threadsPerBlock(32, 8, 1);
dim3 numBlocks (mat.cols * channels / threadsPerBlock.x + 1, mat.rows / threadsPerBlock.y + 1, 1);
::mat_operators::kernel_set_to_without_mask<T><<<numBlocks,threadsPerBlock>>>((T*)mat.ptr, mat.cols, mat.rows, mat.step, channels);
cudaSafeCall ( cudaThreadSynchronize() );
if (stream == 0)
{
::mat_operators::kernel_set_to_without_mask<T><<<numBlocks,threadsPerBlock>>>((T*)mat.ptr, mat.cols, mat.rows, mat.step, channels);
cudaSafeCall ( cudaThreadSynchronize() );
}
else
{
::mat_operators::kernel_set_to_without_mask<T><<<numBlocks,threadsPerBlock, 0, stream>>>((T*)mat.ptr, mat.cols, mat.rows, mat.step, channels);
}
}
extern "C" void set_to_without_mask(const DevMem2D& mat, int depth, const double * scalar, int channels)
extern "C" void set_to_without_mask(const DevMem2D& mat, int depth, const double * scalar, int channels, const cudaStream_t & stream)
{
double data[4];
data[0] = scalar[0];
@ -323,11 +345,11 @@ namespace cv
if (func == 0) cv::gpu::error("Unsupported convert operation", __FILE__, __LINE__);
func(mat, channels);
func(mat, channels, stream);
}
extern "C" void set_to_with_mask(const DevMem2D& mat, int depth, const double * scalar, const DevMem2D& mask, int channels)
extern "C" void set_to_with_mask(const DevMem2D& mat, int depth, const double * scalar, const DevMem2D& mask, int channels, const cudaStream_t & stream)
{
double data[4];
data[0] = scalar[0];
@ -352,7 +374,7 @@ namespace cv
if (func == 0) cv::gpu::error("Unsupported convert operation", __FILE__, __LINE__);
func(mat, mask, channels);
func(mat, mask, channels, stream);
}
@ -360,22 +382,27 @@ namespace cv
//////////////////////////////// ConvertTo ////////////////////////////////
///////////////////////////////////////////////////////////////////////////
typedef void (*CvtFunc)(const DevMem2D& src, DevMem2D& dst, size_t width, size_t height, double alpha, double beta);
typedef void (*CvtFunc)(const DevMem2D& src, DevMem2D& dst, size_t width, size_t height, double alpha, double beta, const cudaStream_t & stream);
template<typename T, typename DT>
void cvt_(const DevMem2D& src, DevMem2D& dst, size_t width, size_t height, double alpha, double beta)
void cvt_(const DevMem2D& src, DevMem2D& dst, size_t width, size_t height, double alpha, double beta, const cudaStream_t & stream)
{
const int shift = ::mat_operators::ReadWriteTraits<T, DT, sizeof(T), sizeof(DT)>::shift;
dim3 block(32, 8);
dim3 grid(divUp(width, block.x * shift), divUp(height, block.y));
if (stream == 0)
{
::mat_operators::kernel_convert_to<T, DT><<<grid, block>>>(src.ptr, src.step, dst.ptr, dst.step, width, height, alpha, beta);
cudaSafeCall( cudaThreadSynchronize() );
}
else
{
::mat_operators::kernel_convert_to<T, DT><<<grid, block, 0, stream>>>(src.ptr, src.step, dst.ptr, dst.step, width, height, alpha, beta);
}
}
::mat_operators::kernel_convert_to<T, DT><<<grid, block>>>(src.ptr, src.step, dst.ptr, dst.step, width, height, alpha, beta);
cudaSafeCall( cudaThreadSynchronize() );
}
extern "C" void convert_to(const DevMem2D& src, int sdepth, DevMem2D dst, int ddepth, size_t width, size_t height, double alpha, double beta)
extern "C" void convert_to(const DevMem2D& src, int sdepth, DevMem2D dst, int ddepth, size_t width, size_t height, double alpha, double beta, const cudaStream_t & stream)
{
static CvtFunc tab[8][8] =
{
@ -406,7 +433,7 @@ namespace cv
CvtFunc func = tab[sdepth][ddepth];
if (func == 0)
cv::gpu::error("Unsupported convert operation", __FILE__, __LINE__);
func(src, dst, width, height, alpha, beta);
func(src, dst, width, height, alpha, beta, stream);
}
} // namespace impl
} // namespace gpu

View File

@ -74,6 +74,7 @@ struct CudaStream::Impl
cudaStream_t stream;
int ref_counter;
};
namespace
{
template<class S, class D> void devcopy(const S& src, D& dst, cudaStream_t s, cudaMemcpyKind k)
@ -147,7 +148,7 @@ void cv::gpu::CudaStream::enqueueDownload(const GpuMat& src, Mat& dst)
{
// if not -> allocation will be done, but after that dst will not point to page locked memory
CV_Assert(src.cols == dst.cols && src.rows == dst.rows && src.type() == dst.type() )
devcopy(src, dst, impl->stream, cudaMemcpyDeviceToHost);
devcopy(src, dst, impl->stream, cudaMemcpyDeviceToHost);
}
void cv::gpu::CudaStream::enqueueDownload(const GpuMat& src, MatPL& dst) { devcopy(src, dst, impl->stream, cudaMemcpyDeviceToHost); }