Merge branch 'master' of https://github.com/Itseez/opencv
Conflicts: modules/features2d/include/opencv2/features2d.hpp modules/features2d/src/freak.cpp modules/features2d/src/stardetector.cpp
This commit is contained in:
@@ -44,7 +44,7 @@
|
||||
namespace cv
|
||||
{
|
||||
|
||||
BOWTrainer::BOWTrainer()
|
||||
BOWTrainer::BOWTrainer() : size(0)
|
||||
{}
|
||||
|
||||
BOWTrainer::~BOWTrainer()
|
||||
@@ -72,7 +72,7 @@ const std::vector<Mat>& BOWTrainer::getDescriptors() const
|
||||
return descriptors;
|
||||
}
|
||||
|
||||
int BOWTrainer::descripotorsCount() const
|
||||
int BOWTrainer::descriptorsCount() const
|
||||
{
|
||||
return descriptors.empty() ? 0 : size;
|
||||
}
|
||||
@@ -121,6 +121,10 @@ BOWImgDescriptorExtractor::BOWImgDescriptorExtractor( const Ptr<DescriptorExtrac
|
||||
dextractor(_dextractor), dmatcher(_dmatcher)
|
||||
{}
|
||||
|
||||
BOWImgDescriptorExtractor::BOWImgDescriptorExtractor( const Ptr<DescriptorMatcher>& _dmatcher ) :
|
||||
dmatcher(_dmatcher)
|
||||
{}
|
||||
|
||||
BOWImgDescriptorExtractor::~BOWImgDescriptorExtractor()
|
||||
{}
|
||||
|
||||
@@ -136,50 +140,23 @@ const Mat& BOWImgDescriptorExtractor::getVocabulary() const
|
||||
return vocabulary;
|
||||
}
|
||||
|
||||
void BOWImgDescriptorExtractor::compute( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& imgDescriptor,
|
||||
std::vector<std::vector<int> >* pointIdxsOfClusters, Mat* _descriptors )
|
||||
void BOWImgDescriptorExtractor::compute( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray imgDescriptor,
|
||||
std::vector<std::vector<int> >* pointIdxsOfClusters, Mat* descriptors )
|
||||
{
|
||||
imgDescriptor.release();
|
||||
|
||||
if( keypoints.empty() )
|
||||
return;
|
||||
|
||||
int clusterCount = descriptorSize(); // = vocabulary.rows
|
||||
|
||||
// Compute descriptors for the image.
|
||||
Mat descriptors;
|
||||
dextractor->compute( image, keypoints, descriptors );
|
||||
Mat _descriptors;
|
||||
dextractor->compute( image, keypoints, _descriptors );
|
||||
|
||||
// Match keypoint descriptors to cluster center (to vocabulary)
|
||||
std::vector<DMatch> matches;
|
||||
dmatcher->match( descriptors, matches );
|
||||
|
||||
// Compute image descriptor
|
||||
if( pointIdxsOfClusters )
|
||||
{
|
||||
pointIdxsOfClusters->clear();
|
||||
pointIdxsOfClusters->resize(clusterCount);
|
||||
}
|
||||
|
||||
imgDescriptor = Mat( 1, clusterCount, descriptorType(), Scalar::all(0.0) );
|
||||
float *dptr = (float*)imgDescriptor.data;
|
||||
for( size_t i = 0; i < matches.size(); i++ )
|
||||
{
|
||||
int queryIdx = matches[i].queryIdx;
|
||||
int trainIdx = matches[i].trainIdx; // cluster index
|
||||
CV_Assert( queryIdx == (int)i );
|
||||
|
||||
dptr[trainIdx] = dptr[trainIdx] + 1.f;
|
||||
if( pointIdxsOfClusters )
|
||||
(*pointIdxsOfClusters)[trainIdx].push_back( queryIdx );
|
||||
}
|
||||
|
||||
// Normalize image descriptor.
|
||||
imgDescriptor /= descriptors.rows;
|
||||
compute( _descriptors, imgDescriptor, pointIdxsOfClusters );
|
||||
|
||||
// Add the descriptors of image keypoints
|
||||
if (_descriptors) {
|
||||
*_descriptors = descriptors.clone();
|
||||
if (descriptors) {
|
||||
*descriptors = _descriptors.clone();
|
||||
}
|
||||
}
|
||||
|
||||
@@ -193,4 +170,42 @@ int BOWImgDescriptorExtractor::descriptorType() const
|
||||
return CV_32FC1;
|
||||
}
|
||||
|
||||
void BOWImgDescriptorExtractor::compute( InputArray keypointDescriptors, OutputArray _imgDescriptor, std::vector<std::vector<int> >* pointIdxsOfClusters )
|
||||
{
|
||||
CV_Assert( !vocabulary.empty() );
|
||||
|
||||
int clusterCount = descriptorSize(); // = vocabulary.rows
|
||||
|
||||
// Match keypoint descriptors to cluster center (to vocabulary)
|
||||
std::vector<DMatch> matches;
|
||||
dmatcher->match( keypointDescriptors, matches );
|
||||
|
||||
// Compute image descriptor
|
||||
if( pointIdxsOfClusters )
|
||||
{
|
||||
pointIdxsOfClusters->clear();
|
||||
pointIdxsOfClusters->resize(clusterCount);
|
||||
}
|
||||
|
||||
_imgDescriptor.create(1, clusterCount, descriptorType());
|
||||
_imgDescriptor.setTo(Scalar::all(0));
|
||||
|
||||
Mat imgDescriptor = _imgDescriptor.getMat();
|
||||
|
||||
float *dptr = (float*)imgDescriptor.data;
|
||||
for( size_t i = 0; i < matches.size(); i++ )
|
||||
{
|
||||
int queryIdx = matches[i].queryIdx;
|
||||
int trainIdx = matches[i].trainIdx; // cluster index
|
||||
CV_Assert( queryIdx == (int)i );
|
||||
|
||||
dptr[trainIdx] = dptr[trainIdx] + 1.f;
|
||||
if( pointIdxsOfClusters )
|
||||
(*pointIdxsOfClusters)[trainIdx].push_back( queryIdx );
|
||||
}
|
||||
|
||||
// Normalize image descriptor.
|
||||
imgDescriptor /= keypointDescriptors.size().height;
|
||||
}
|
||||
|
||||
}
|
||||
|
@@ -163,8 +163,9 @@ void SimpleBlobDetector::write( cv::FileStorage& fs ) const
|
||||
params.write(fs);
|
||||
}
|
||||
|
||||
void SimpleBlobDetector::findBlobs(const cv::Mat &image, const cv::Mat &binaryImage, std::vector<Center> ¢ers) const
|
||||
void SimpleBlobDetector::findBlobs(InputArray _image, InputArray _binaryImage, std::vector<Center> ¢ers) const
|
||||
{
|
||||
Mat image = _image.getMat(), binaryImage = _binaryImage.getMat();
|
||||
(void)image;
|
||||
centers.clear();
|
||||
|
||||
@@ -276,7 +277,7 @@ void SimpleBlobDetector::findBlobs(const cv::Mat &image, const cv::Mat &binaryIm
|
||||
#endif
|
||||
}
|
||||
|
||||
void SimpleBlobDetector::detectImpl(const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints, const cv::Mat&) const
|
||||
void SimpleBlobDetector::detectImpl(InputArray image, std::vector<cv::KeyPoint>& keypoints, InputArray) const
|
||||
{
|
||||
//TODO: support mask
|
||||
keypoints.clear();
|
||||
@@ -284,7 +285,7 @@ void SimpleBlobDetector::detectImpl(const cv::Mat& image, std::vector<cv::KeyPoi
|
||||
if (image.channels() == 3)
|
||||
cvtColor(image, grayscaleImage, COLOR_BGR2GRAY);
|
||||
else
|
||||
grayscaleImage = image;
|
||||
grayscaleImage = image.getMat();
|
||||
|
||||
std::vector < std::vector<Center> > centers;
|
||||
for (double thresh = params.minThreshold; thresh < params.maxThreshold; thresh += params.thresholdStep)
|
||||
@@ -292,20 +293,11 @@ void SimpleBlobDetector::detectImpl(const cv::Mat& image, std::vector<cv::KeyPoi
|
||||
Mat binarizedImage;
|
||||
threshold(grayscaleImage, binarizedImage, thresh, 255, THRESH_BINARY);
|
||||
|
||||
#ifdef DEBUG_BLOB_DETECTOR
|
||||
// Mat keypointsImage;
|
||||
// cvtColor( binarizedImage, keypointsImage, CV_GRAY2RGB );
|
||||
#endif
|
||||
|
||||
std::vector < Center > curCenters;
|
||||
findBlobs(grayscaleImage, binarizedImage, curCenters);
|
||||
std::vector < std::vector<Center> > newCenters;
|
||||
for (size_t i = 0; i < curCenters.size(); i++)
|
||||
{
|
||||
#ifdef DEBUG_BLOB_DETECTOR
|
||||
// circle(keypointsImage, curCenters[i].location, curCenters[i].radius, Scalar(0,0,255),-1);
|
||||
#endif
|
||||
|
||||
bool isNew = true;
|
||||
for (size_t j = 0; j < centers.size(); j++)
|
||||
{
|
||||
@@ -327,17 +319,9 @@ void SimpleBlobDetector::detectImpl(const cv::Mat& image, std::vector<cv::KeyPoi
|
||||
}
|
||||
}
|
||||
if (isNew)
|
||||
{
|
||||
newCenters.push_back(std::vector<Center> (1, curCenters[i]));
|
||||
//centers.push_back(std::vector<Center> (1, curCenters[i]));
|
||||
}
|
||||
}
|
||||
std::copy(newCenters.begin(), newCenters.end(), std::back_inserter(centers));
|
||||
|
||||
#ifdef DEBUG_BLOB_DETECTOR
|
||||
// imshow("binarized", keypointsImage );
|
||||
//waitKey();
|
||||
#endif
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < centers.size(); i++)
|
||||
@@ -352,19 +336,7 @@ void SimpleBlobDetector::detectImpl(const cv::Mat& image, std::vector<cv::KeyPoi
|
||||
normalizer += centers[i][j].confidence;
|
||||
}
|
||||
sumPoint *= (1. / normalizer);
|
||||
KeyPoint kpt(sumPoint, (float)(centers[i][centers[i].size() / 2].radius));
|
||||
KeyPoint kpt(sumPoint, (float)(centers[i][centers[i].size() / 2].radius) * 2.0f);
|
||||
keypoints.push_back(kpt);
|
||||
}
|
||||
|
||||
#ifdef DEBUG_BLOB_DETECTOR
|
||||
namedWindow("keypoints", CV_WINDOW_NORMAL);
|
||||
Mat outImg = image.clone();
|
||||
for(size_t i=0; i<keypoints.size(); i++)
|
||||
{
|
||||
circle(outImg, keypoints[i].pt, keypoints[i].size, Scalar(255, 0, 255), -1);
|
||||
}
|
||||
//drawKeypoints(image, keypoints, outImg);
|
||||
imshow("keypoints", outImg);
|
||||
waitKey();
|
||||
#endif
|
||||
}
|
||||
|
@@ -61,8 +61,9 @@ inline int smoothedSum(const Mat& sum, const KeyPoint& pt, int y, int x)
|
||||
+ sum.at<int>(img_y - HALF_KERNEL, img_x - HALF_KERNEL);
|
||||
}
|
||||
|
||||
static void pixelTests16(const Mat& sum, const std::vector<KeyPoint>& keypoints, Mat& descriptors)
|
||||
static void pixelTests16(InputArray _sum, const std::vector<KeyPoint>& keypoints, OutputArray _descriptors)
|
||||
{
|
||||
Mat sum = _sum.getMat(), descriptors = _descriptors.getMat();
|
||||
for (int i = 0; i < (int)keypoints.size(); ++i)
|
||||
{
|
||||
uchar* desc = descriptors.ptr(i);
|
||||
@@ -71,8 +72,9 @@ static void pixelTests16(const Mat& sum, const std::vector<KeyPoint>& keypoints,
|
||||
}
|
||||
}
|
||||
|
||||
static void pixelTests32(const Mat& sum, const std::vector<KeyPoint>& keypoints, Mat& descriptors)
|
||||
static void pixelTests32(InputArray _sum, const std::vector<KeyPoint>& keypoints, OutputArray _descriptors)
|
||||
{
|
||||
Mat sum = _sum.getMat(), descriptors = _descriptors.getMat();
|
||||
for (int i = 0; i < (int)keypoints.size(); ++i)
|
||||
{
|
||||
uchar* desc = descriptors.ptr(i);
|
||||
@@ -82,8 +84,9 @@ static void pixelTests32(const Mat& sum, const std::vector<KeyPoint>& keypoints,
|
||||
}
|
||||
}
|
||||
|
||||
static void pixelTests64(const Mat& sum, const std::vector<KeyPoint>& keypoints, Mat& descriptors)
|
||||
static void pixelTests64(InputArray _sum, const std::vector<KeyPoint>& keypoints, OutputArray _descriptors)
|
||||
{
|
||||
Mat sum = _sum.getMat(), descriptors = _descriptors.getMat();
|
||||
for (int i = 0; i < (int)keypoints.size(); ++i)
|
||||
{
|
||||
uchar* desc = descriptors.ptr(i);
|
||||
@@ -125,6 +128,11 @@ int BriefDescriptorExtractor::descriptorType() const
|
||||
return CV_8UC1;
|
||||
}
|
||||
|
||||
int BriefDescriptorExtractor::defaultNorm() const
|
||||
{
|
||||
return NORM_HAMMING;
|
||||
}
|
||||
|
||||
void BriefDescriptorExtractor::read( const FileNode& fn)
|
||||
{
|
||||
int dSize = fn["descriptorSize"];
|
||||
@@ -150,12 +158,12 @@ void BriefDescriptorExtractor::write( FileStorage& fs) const
|
||||
fs << "descriptorSize" << bytes_;
|
||||
}
|
||||
|
||||
void BriefDescriptorExtractor::computeImpl(const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors) const
|
||||
void BriefDescriptorExtractor::computeImpl(InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors) const
|
||||
{
|
||||
// Construct integral image for fast smoothing (box filter)
|
||||
Mat sum;
|
||||
|
||||
Mat grayImage = image;
|
||||
Mat grayImage = image.getMat();
|
||||
if( image.type() != CV_8U ) cvtColor( image, grayImage, COLOR_BGR2GRAY );
|
||||
|
||||
///TODO allow the user to pass in a precomputed integral image
|
||||
@@ -168,7 +176,8 @@ void BriefDescriptorExtractor::computeImpl(const Mat& image, std::vector<KeyPoin
|
||||
//Remove keypoints very close to the border
|
||||
KeyPointsFilter::runByImageBorder(keypoints, image.size(), PATCH_SIZE/2 + KERNEL_SIZE/2);
|
||||
|
||||
descriptors = Mat::zeros((int)keypoints.size(), bytes_, CV_8U);
|
||||
descriptors.create((int)keypoints.size(), bytes_, CV_8U);
|
||||
descriptors.setTo(Scalar::all(0));
|
||||
test_fn_(sum, keypoints, descriptors);
|
||||
}
|
||||
|
||||
|
@@ -224,6 +224,8 @@ BRISK::BRISK(std::vector<float> &radiusList, std::vector<int> &numberList, float
|
||||
std::vector<int> indexChange)
|
||||
{
|
||||
generateKernel(radiusList, numberList, dMax, dMin, indexChange);
|
||||
threshold = 20;
|
||||
octaves = 3;
|
||||
}
|
||||
|
||||
void
|
||||
@@ -712,6 +714,12 @@ BRISK::descriptorType() const
|
||||
return CV_8U;
|
||||
}
|
||||
|
||||
int
|
||||
BRISK::defaultNorm() const
|
||||
{
|
||||
return NORM_HAMMING;
|
||||
}
|
||||
|
||||
BRISK::~BRISK()
|
||||
{
|
||||
delete[] patternPoints_;
|
||||
@@ -745,13 +753,13 @@ BRISK::computeKeypointsNoOrientation(InputArray _image, InputArray _mask, std::v
|
||||
|
||||
|
||||
void
|
||||
BRISK::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask) const
|
||||
BRISK::detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask) const
|
||||
{
|
||||
(*this)(image, mask, keypoints);
|
||||
(*this)(image.getMat(), mask.getMat(), keypoints);
|
||||
}
|
||||
|
||||
void
|
||||
BRISK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors) const
|
||||
BRISK::computeImpl( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors) const
|
||||
{
|
||||
(*this)(image, Mat(), keypoints, descriptors, true);
|
||||
}
|
||||
@@ -2223,7 +2231,7 @@ BriskLayer::halfsample(const cv::Mat& srcimg, cv::Mat& dstimg)
|
||||
CV_Assert(srcimg.cols / 2 == dstimg.cols);
|
||||
CV_Assert(srcimg.rows / 2 == dstimg.rows);
|
||||
|
||||
// handle non-SSE case
|
||||
// handle non-SSE case
|
||||
resize(srcimg, dstimg, dstimg.size(), 0, 0, INTER_AREA);
|
||||
}
|
||||
|
||||
|
@@ -54,7 +54,7 @@ namespace cv
|
||||
DescriptorExtractor::~DescriptorExtractor()
|
||||
{}
|
||||
|
||||
void DescriptorExtractor::compute( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors ) const
|
||||
void DescriptorExtractor::compute( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors ) const
|
||||
{
|
||||
if( image.empty() || keypoints.empty() )
|
||||
{
|
||||
@@ -68,8 +68,11 @@ void DescriptorExtractor::compute( const Mat& image, std::vector<KeyPoint>& keyp
|
||||
computeImpl( image, keypoints, descriptors );
|
||||
}
|
||||
|
||||
void DescriptorExtractor::compute( const std::vector<Mat>& imageCollection, std::vector<std::vector<KeyPoint> >& pointCollection, std::vector<Mat>& descCollection ) const
|
||||
void DescriptorExtractor::compute( InputArrayOfArrays _imageCollection, std::vector<std::vector<KeyPoint> >& pointCollection, OutputArrayOfArrays _descCollection ) const
|
||||
{
|
||||
std::vector<Mat> imageCollection, descCollection;
|
||||
_imageCollection.getMatVector(imageCollection);
|
||||
_descCollection.getMatVector(descCollection);
|
||||
CV_Assert( imageCollection.size() == pointCollection.size() );
|
||||
descCollection.resize( imageCollection.size() );
|
||||
for( size_t i = 0; i < imageCollection.size(); i++ )
|
||||
@@ -106,7 +109,7 @@ Ptr<DescriptorExtractor> DescriptorExtractor::create(const String& descriptorExt
|
||||
}
|
||||
|
||||
|
||||
CV_WRAP void Feature2D::compute( const Mat& image, CV_OUT CV_IN_OUT std::vector<KeyPoint>& keypoints, CV_OUT Mat& descriptors ) const
|
||||
CV_WRAP void Feature2D::compute( InputArray image, CV_OUT CV_IN_OUT std::vector<KeyPoint>& keypoints, OutputArray descriptors ) const
|
||||
{
|
||||
DescriptorExtractor::compute(image, keypoints, descriptors);
|
||||
}
|
||||
@@ -157,8 +160,9 @@ struct KP_LessThan
|
||||
const std::vector<KeyPoint>* kp;
|
||||
};
|
||||
|
||||
void OpponentColorDescriptorExtractor::computeImpl( const Mat& bgrImage, std::vector<KeyPoint>& keypoints, Mat& descriptors ) const
|
||||
void OpponentColorDescriptorExtractor::computeImpl( InputArray _bgrImage, std::vector<KeyPoint>& keypoints, OutputArray descriptors ) const
|
||||
{
|
||||
Mat bgrImage = _bgrImage.getMat();
|
||||
std::vector<Mat> opponentChannels;
|
||||
convertBGRImageToOpponentColorSpace( bgrImage, opponentChannels );
|
||||
|
||||
@@ -247,6 +251,11 @@ int OpponentColorDescriptorExtractor::descriptorType() const
|
||||
return descriptorExtractor->descriptorType();
|
||||
}
|
||||
|
||||
int OpponentColorDescriptorExtractor::defaultNorm() const
|
||||
{
|
||||
return descriptorExtractor->defaultNorm();
|
||||
}
|
||||
|
||||
bool OpponentColorDescriptorExtractor::empty() const
|
||||
{
|
||||
return !descriptorExtractor || descriptorExtractor->empty();
|
||||
|
@@ -51,7 +51,7 @@ namespace cv
|
||||
FeatureDetector::~FeatureDetector()
|
||||
{}
|
||||
|
||||
void FeatureDetector::detect( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask ) const
|
||||
void FeatureDetector::detect( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask ) const
|
||||
{
|
||||
keypoints.clear();
|
||||
|
||||
@@ -63,11 +63,29 @@ void FeatureDetector::detect( const Mat& image, std::vector<KeyPoint>& keypoints
|
||||
detectImpl( image, keypoints, mask );
|
||||
}
|
||||
|
||||
void FeatureDetector::detect(const std::vector<Mat>& imageCollection, std::vector<std::vector<KeyPoint> >& pointCollection, const std::vector<Mat>& masks ) const
|
||||
void FeatureDetector::detect(InputArrayOfArrays _imageCollection, std::vector<std::vector<KeyPoint> >& pointCollection,
|
||||
InputArrayOfArrays _masks ) const
|
||||
{
|
||||
if (_imageCollection.isUMatVector())
|
||||
{
|
||||
std::vector<UMat> uimageCollection, umasks;
|
||||
_imageCollection.getUMatVector(uimageCollection);
|
||||
_masks.getUMatVector(umasks);
|
||||
|
||||
pointCollection.resize( uimageCollection.size() );
|
||||
for( size_t i = 0; i < uimageCollection.size(); i++ )
|
||||
detect( uimageCollection[i], pointCollection[i], umasks.empty() ? noArray() : umasks[i] );
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
std::vector<Mat> imageCollection, masks;
|
||||
_imageCollection.getMatVector(imageCollection);
|
||||
_masks.getMatVector(masks);
|
||||
|
||||
pointCollection.resize( imageCollection.size() );
|
||||
for( size_t i = 0; i < imageCollection.size(); i++ )
|
||||
detect( imageCollection[i], pointCollection[i], masks.empty() ? Mat() : masks[i] );
|
||||
detect( imageCollection[i], pointCollection[i], masks.empty() ? noArray() : masks[i] );
|
||||
}
|
||||
|
||||
/*void FeatureDetector::read( const FileNode& )
|
||||
@@ -125,21 +143,37 @@ GFTTDetector::GFTTDetector( int _nfeatures, double _qualityLevel,
|
||||
{
|
||||
}
|
||||
|
||||
void GFTTDetector::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask) const
|
||||
void GFTTDetector::detectImpl( InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask) const
|
||||
{
|
||||
Mat grayImage = image;
|
||||
if( image.type() != CV_8U ) cvtColor( image, grayImage, COLOR_BGR2GRAY );
|
||||
|
||||
std::vector<Point2f> corners;
|
||||
goodFeaturesToTrack( grayImage, corners, nfeatures, qualityLevel, minDistance, mask,
|
||||
blockSize, useHarrisDetector, k );
|
||||
|
||||
if (_image.isUMat())
|
||||
{
|
||||
UMat ugrayImage;
|
||||
if( _image.type() != CV_8U )
|
||||
cvtColor( _image, ugrayImage, COLOR_BGR2GRAY );
|
||||
else
|
||||
ugrayImage = _image.getUMat();
|
||||
|
||||
goodFeaturesToTrack( ugrayImage, corners, nfeatures, qualityLevel, minDistance, _mask,
|
||||
blockSize, useHarrisDetector, k );
|
||||
}
|
||||
else
|
||||
{
|
||||
Mat image = _image.getMat(), grayImage = image;
|
||||
if( image.type() != CV_8U )
|
||||
cvtColor( image, grayImage, COLOR_BGR2GRAY );
|
||||
|
||||
goodFeaturesToTrack( grayImage, corners, nfeatures, qualityLevel, minDistance, _mask,
|
||||
blockSize, useHarrisDetector, k );
|
||||
}
|
||||
|
||||
keypoints.resize(corners.size());
|
||||
std::vector<Point2f>::const_iterator corner_it = corners.begin();
|
||||
std::vector<KeyPoint>::iterator keypoint_it = keypoints.begin();
|
||||
for( ; corner_it != corners.end(); ++corner_it, ++keypoint_it )
|
||||
{
|
||||
*keypoint_it = KeyPoint( *corner_it, (float)blockSize );
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@@ -157,8 +191,10 @@ DenseFeatureDetector::DenseFeatureDetector( float _initFeatureScale, int _featur
|
||||
{}
|
||||
|
||||
|
||||
void DenseFeatureDetector::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask ) const
|
||||
void DenseFeatureDetector::detectImpl( InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask ) const
|
||||
{
|
||||
Mat image = _image.getMat(), mask = _mask.getMat();
|
||||
|
||||
float curScale = static_cast<float>(initFeatureScale);
|
||||
int curStep = initXyStep;
|
||||
int curBound = initImgBound;
|
||||
@@ -271,9 +307,9 @@ public:
|
||||
};
|
||||
} // namepace
|
||||
|
||||
void GridAdaptedFeatureDetector::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask ) const
|
||||
void GridAdaptedFeatureDetector::detectImpl( InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask ) const
|
||||
{
|
||||
if (image.empty() || maxTotalKeypoints < gridRows * gridCols)
|
||||
if (_image.empty() || maxTotalKeypoints < gridRows * gridCols)
|
||||
{
|
||||
keypoints.clear();
|
||||
return;
|
||||
@@ -281,6 +317,8 @@ void GridAdaptedFeatureDetector::detectImpl( const Mat& image, std::vector<KeyPo
|
||||
keypoints.reserve(maxTotalKeypoints);
|
||||
int maxPerCell = maxTotalKeypoints / (gridRows * gridCols);
|
||||
|
||||
Mat image = _image.getMat(), mask = _mask.getMat();
|
||||
|
||||
cv::Mutex kptLock;
|
||||
cv::parallel_for_(cv::Range(0, gridRows * gridCols),
|
||||
GridAdaptedFeatureDetectorInvoker(detector, image, mask, keypoints, maxPerCell, gridRows, gridCols, &kptLock));
|
||||
@@ -298,8 +336,9 @@ bool PyramidAdaptedFeatureDetector::empty() const
|
||||
return !detector || detector->empty();
|
||||
}
|
||||
|
||||
void PyramidAdaptedFeatureDetector::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask ) const
|
||||
void PyramidAdaptedFeatureDetector::detectImpl( InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask ) const
|
||||
{
|
||||
Mat image = _image.getMat(), mask = _mask.getMat();
|
||||
Mat src = image;
|
||||
Mat src_mask = mask;
|
||||
|
||||
|
@@ -50,7 +50,7 @@ namespace cv
|
||||
/*
|
||||
* Functions to draw keypoints and matches.
|
||||
*/
|
||||
static inline void _drawKeypoint( Mat& img, const KeyPoint& p, const Scalar& color, int flags )
|
||||
static inline void _drawKeypoint( InputOutputArray img, const KeyPoint& p, const Scalar& color, int flags )
|
||||
{
|
||||
CV_Assert( !img.empty() );
|
||||
Point center( cvRound(p.pt.x * draw_multiplier), cvRound(p.pt.y * draw_multiplier) );
|
||||
@@ -88,7 +88,7 @@ static inline void _drawKeypoint( Mat& img, const KeyPoint& p, const Scalar& col
|
||||
}
|
||||
}
|
||||
|
||||
void drawKeypoints( const Mat& image, const std::vector<KeyPoint>& keypoints, Mat& outImage,
|
||||
void drawKeypoints( InputArray image, const std::vector<KeyPoint>& keypoints, InputOutputArray outImage,
|
||||
const Scalar& _color, int flags )
|
||||
{
|
||||
if( !(flags & DrawMatchesFlags::DRAW_OVER_OUTIMG) )
|
||||
@@ -120,25 +120,29 @@ void drawKeypoints( const Mat& image, const std::vector<KeyPoint>& keypoints, Ma
|
||||
}
|
||||
}
|
||||
|
||||
static void _prepareImgAndDrawKeypoints( const Mat& img1, const std::vector<KeyPoint>& keypoints1,
|
||||
const Mat& img2, const std::vector<KeyPoint>& keypoints2,
|
||||
Mat& outImg, Mat& outImg1, Mat& outImg2,
|
||||
static void _prepareImgAndDrawKeypoints( InputArray img1, const std::vector<KeyPoint>& keypoints1,
|
||||
InputArray img2, const std::vector<KeyPoint>& keypoints2,
|
||||
InputOutputArray _outImg, Mat& outImg1, Mat& outImg2,
|
||||
const Scalar& singlePointColor, int flags )
|
||||
{
|
||||
Size size( img1.cols + img2.cols, MAX(img1.rows, img2.rows) );
|
||||
Mat outImg;
|
||||
Size img1size = img1.size(), img2size = img2.size();
|
||||
Size size( img1size.width + img2size.width, MAX(img1size.height, img2size.height) );
|
||||
if( flags & DrawMatchesFlags::DRAW_OVER_OUTIMG )
|
||||
{
|
||||
outImg = _outImg.getMat();
|
||||
if( size.width > outImg.cols || size.height > outImg.rows )
|
||||
CV_Error( Error::StsBadSize, "outImg has size less than need to draw img1 and img2 together" );
|
||||
outImg1 = outImg( Rect(0, 0, img1.cols, img1.rows) );
|
||||
outImg2 = outImg( Rect(img1.cols, 0, img2.cols, img2.rows) );
|
||||
outImg1 = outImg( Rect(0, 0, img1size.width, img1size.height) );
|
||||
outImg2 = outImg( Rect(img1size.width, 0, img2size.width, img2size.height) );
|
||||
}
|
||||
else
|
||||
{
|
||||
outImg.create( size, CV_MAKETYPE(img1.depth(), 3) );
|
||||
_outImg.create( size, CV_MAKETYPE(img1.depth(), 3) );
|
||||
outImg = _outImg.getMat();
|
||||
outImg = Scalar::all(0);
|
||||
outImg1 = outImg( Rect(0, 0, img1.cols, img1.rows) );
|
||||
outImg2 = outImg( Rect(img1.cols, 0, img2.cols, img2.rows) );
|
||||
outImg1 = outImg( Rect(0, 0, img1size.width, img1size.height) );
|
||||
outImg2 = outImg( Rect(img1size.width, 0, img2size.width, img2size.height) );
|
||||
|
||||
if( img1.type() == CV_8U )
|
||||
cvtColor( img1, outImg1, COLOR_GRAY2BGR );
|
||||
@@ -154,15 +158,15 @@ static void _prepareImgAndDrawKeypoints( const Mat& img1, const std::vector<KeyP
|
||||
// draw keypoints
|
||||
if( !(flags & DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS) )
|
||||
{
|
||||
Mat _outImg1 = outImg( Rect(0, 0, img1.cols, img1.rows) );
|
||||
Mat _outImg1 = outImg( Rect(0, 0, img1size.width, img1size.height) );
|
||||
drawKeypoints( _outImg1, keypoints1, _outImg1, singlePointColor, flags + DrawMatchesFlags::DRAW_OVER_OUTIMG );
|
||||
|
||||
Mat _outImg2 = outImg( Rect(img1.cols, 0, img2.cols, img2.rows) );
|
||||
Mat _outImg2 = outImg( Rect(img1size.width, 0, img2size.width, img2size.height) );
|
||||
drawKeypoints( _outImg2, keypoints2, _outImg2, singlePointColor, flags + DrawMatchesFlags::DRAW_OVER_OUTIMG );
|
||||
}
|
||||
}
|
||||
|
||||
static inline void _drawMatch( Mat& outImg, Mat& outImg1, Mat& outImg2 ,
|
||||
static inline void _drawMatch( InputOutputArray outImg, InputOutputArray outImg1, InputOutputArray outImg2 ,
|
||||
const KeyPoint& kp1, const KeyPoint& kp2, const Scalar& matchColor, int flags )
|
||||
{
|
||||
RNG& rng = theRNG();
|
||||
@@ -174,7 +178,7 @@ static inline void _drawMatch( Mat& outImg, Mat& outImg1, Mat& outImg2 ,
|
||||
|
||||
Point2f pt1 = kp1.pt,
|
||||
pt2 = kp2.pt,
|
||||
dpt2 = Point2f( std::min(pt2.x+outImg1.cols, float(outImg.cols-1)), pt2.y );
|
||||
dpt2 = Point2f( std::min(pt2.x+outImg1.size().width, float(outImg.size().width-1)), pt2.y );
|
||||
|
||||
line( outImg,
|
||||
Point(cvRound(pt1.x*draw_multiplier), cvRound(pt1.y*draw_multiplier)),
|
||||
@@ -182,9 +186,9 @@ static inline void _drawMatch( Mat& outImg, Mat& outImg1, Mat& outImg2 ,
|
||||
color, 1, LINE_AA, draw_shift_bits );
|
||||
}
|
||||
|
||||
void drawMatches( const Mat& img1, const std::vector<KeyPoint>& keypoints1,
|
||||
const Mat& img2, const std::vector<KeyPoint>& keypoints2,
|
||||
const std::vector<DMatch>& matches1to2, Mat& outImg,
|
||||
void drawMatches( InputArray img1, const std::vector<KeyPoint>& keypoints1,
|
||||
InputArray img2, const std::vector<KeyPoint>& keypoints2,
|
||||
const std::vector<DMatch>& matches1to2, InputOutputArray outImg,
|
||||
const Scalar& matchColor, const Scalar& singlePointColor,
|
||||
const std::vector<char>& matchesMask, int flags )
|
||||
{
|
||||
@@ -211,9 +215,9 @@ void drawMatches( const Mat& img1, const std::vector<KeyPoint>& keypoints1,
|
||||
}
|
||||
}
|
||||
|
||||
void drawMatches( const Mat& img1, const std::vector<KeyPoint>& keypoints1,
|
||||
const Mat& img2, const std::vector<KeyPoint>& keypoints2,
|
||||
const std::vector<std::vector<DMatch> >& matches1to2, Mat& outImg,
|
||||
void drawMatches( InputArray img1, const std::vector<KeyPoint>& keypoints1,
|
||||
InputArray img2, const std::vector<KeyPoint>& keypoints2,
|
||||
const std::vector<std::vector<DMatch> >& matches1to2, InputOutputArray outImg,
|
||||
const Scalar& matchColor, const Scalar& singlePointColor,
|
||||
const std::vector<std::vector<char> >& matchesMask, int flags )
|
||||
{
|
||||
|
@@ -54,8 +54,10 @@ bool DynamicAdaptedFeatureDetector::empty() const
|
||||
return !adjuster_ || adjuster_->empty();
|
||||
}
|
||||
|
||||
void DynamicAdaptedFeatureDetector::detectImpl(const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask) const
|
||||
void DynamicAdaptedFeatureDetector::detectImpl(InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask) const
|
||||
{
|
||||
Mat image = _image.getMat(), mask = _mask.getMat();
|
||||
|
||||
//for oscillation testing
|
||||
bool down = false;
|
||||
bool up = false;
|
||||
@@ -98,7 +100,7 @@ FastAdjuster::FastAdjuster( int init_thresh, bool nonmax, int min_thresh, int ma
|
||||
min_thresh_(min_thresh), max_thresh_(max_thresh)
|
||||
{}
|
||||
|
||||
void FastAdjuster::detectImpl(const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask) const
|
||||
void FastAdjuster::detectImpl(InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask) const
|
||||
{
|
||||
FastFeatureDetector(thresh_, nonmax_).detect(image, keypoints, mask);
|
||||
}
|
||||
@@ -133,7 +135,7 @@ StarAdjuster::StarAdjuster(double initial_thresh, double min_thresh, double max_
|
||||
min_thresh_(min_thresh), max_thresh_(max_thresh)
|
||||
{}
|
||||
|
||||
void StarAdjuster::detectImpl(const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask) const
|
||||
void StarAdjuster::detectImpl(InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask) const
|
||||
{
|
||||
StarFeatureDetector detector_tmp(16, cvRound(thresh_), 10, 8, 3);
|
||||
detector_tmp.detect(image, keypoints, mask);
|
||||
@@ -167,7 +169,7 @@ SurfAdjuster::SurfAdjuster( double initial_thresh, double min_thresh, double max
|
||||
min_thresh_(min_thresh), max_thresh_(max_thresh)
|
||||
{}
|
||||
|
||||
void SurfAdjuster::detectImpl(const Mat& image, std::vector<KeyPoint>& keypoints, const cv::Mat& mask) const
|
||||
void SurfAdjuster::detectImpl(InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask) const
|
||||
{
|
||||
Ptr<FeatureDetector> surf = FeatureDetector::create("SURF");
|
||||
surf->set("hessianThreshold", thresh_);
|
||||
|
@@ -283,10 +283,11 @@ FastFeatureDetector::FastFeatureDetector( int _threshold, bool _nonmaxSuppressio
|
||||
: threshold(_threshold), nonmaxSuppression(_nonmaxSuppression), type((short)_type)
|
||||
{}
|
||||
|
||||
void FastFeatureDetector::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask ) const
|
||||
void FastFeatureDetector::detectImpl( InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask ) const
|
||||
{
|
||||
Mat grayImage = image;
|
||||
if( image.type() != CV_8U ) cvtColor( image, grayImage, COLOR_BGR2GRAY );
|
||||
Mat image = _image.getMat(), mask = _mask.getMat(), grayImage = image;
|
||||
if( image.type() != CV_8U )
|
||||
cvtColor( image, grayImage, COLOR_BGR2GRAY );
|
||||
FAST( grayImage, keypoints, threshold, nonmaxSuppression, type );
|
||||
KeyPointsFilter::runByPixelsMask( keypoints, mask );
|
||||
}
|
||||
|
@@ -58,19 +58,19 @@ Ptr<Feature2D> Feature2D::create( const String& feature2DType )
|
||||
|
||||
CV_INIT_ALGORITHM(BRISK, "Feature2D.BRISK",
|
||||
obj.info()->addParam(obj, "thres", obj.threshold);
|
||||
obj.info()->addParam(obj, "octaves", obj.octaves));
|
||||
obj.info()->addParam(obj, "octaves", obj.octaves))
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
CV_INIT_ALGORITHM(BriefDescriptorExtractor, "Feature2D.BRIEF",
|
||||
obj.info()->addParam(obj, "bytes", obj.bytes_));
|
||||
obj.info()->addParam(obj, "bytes", obj.bytes_))
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
CV_INIT_ALGORITHM(FastFeatureDetector, "Feature2D.FAST",
|
||||
obj.info()->addParam(obj, "threshold", obj.threshold);
|
||||
obj.info()->addParam(obj, "nonmaxSuppression", obj.nonmaxSuppression);
|
||||
obj.info()->addParam(obj, "type", obj.type));
|
||||
obj.info()->addParam(obj, "type", obj.type))
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@@ -79,7 +79,7 @@ CV_INIT_ALGORITHM(StarDetector, "Feature2D.STAR",
|
||||
obj.info()->addParam(obj, "responseThreshold", obj.responseThreshold);
|
||||
obj.info()->addParam(obj, "lineThresholdProjected", obj.lineThresholdProjected);
|
||||
obj.info()->addParam(obj, "lineThresholdBinarized", obj.lineThresholdBinarized);
|
||||
obj.info()->addParam(obj, "suppressNonmaxSize", obj.suppressNonmaxSize));
|
||||
obj.info()->addParam(obj, "suppressNonmaxSize", obj.suppressNonmaxSize))
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@@ -92,7 +92,7 @@ CV_INIT_ALGORITHM(MSER, "Feature2D.MSER",
|
||||
obj.info()->addParam(obj, "maxEvolution", obj.maxEvolution);
|
||||
obj.info()->addParam(obj, "areaThreshold", obj.areaThreshold);
|
||||
obj.info()->addParam(obj, "minMargin", obj.minMargin);
|
||||
obj.info()->addParam(obj, "edgeBlurSize", obj.edgeBlurSize));
|
||||
obj.info()->addParam(obj, "edgeBlurSize", obj.edgeBlurSize))
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@@ -104,7 +104,7 @@ CV_INIT_ALGORITHM(ORB, "Feature2D.ORB",
|
||||
obj.info()->addParam(obj, "edgeThreshold", obj.edgeThreshold);
|
||||
obj.info()->addParam(obj, "patchSize", obj.patchSize);
|
||||
obj.info()->addParam(obj, "WTA_K", obj.WTA_K);
|
||||
obj.info()->addParam(obj, "scoreType", obj.scoreType));
|
||||
obj.info()->addParam(obj, "scoreType", obj.scoreType))
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@@ -112,7 +112,7 @@ CV_INIT_ALGORITHM(FREAK, "Feature2D.FREAK",
|
||||
obj.info()->addParam(obj, "orientationNormalized", obj.orientationNormalized);
|
||||
obj.info()->addParam(obj, "scaleNormalized", obj.scaleNormalized);
|
||||
obj.info()->addParam(obj, "patternScale", obj.patternScale);
|
||||
obj.info()->addParam(obj, "nbOctave", obj.nOctaves));
|
||||
obj.info()->addParam(obj, "nbOctave", obj.nOctaves))
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@@ -121,7 +121,7 @@ CV_INIT_ALGORITHM(GFTTDetector, "Feature2D.GFTT",
|
||||
obj.info()->addParam(obj, "qualityLevel", obj.qualityLevel);
|
||||
obj.info()->addParam(obj, "minDistance", obj.minDistance);
|
||||
obj.info()->addParam(obj, "useHarrisDetector", obj.useHarrisDetector);
|
||||
obj.info()->addParam(obj, "k", obj.k));
|
||||
obj.info()->addParam(obj, "k", obj.k))
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@@ -141,7 +141,7 @@ CV_INIT_ALGORITHM(SimpleBlobDetector, "Feature2D.SimpleBlob",
|
||||
obj.info()->addParam(obj, "maxInertiaRatio", obj.params.maxInertiaRatio);
|
||||
obj.info()->addParam(obj, "filterByConvexity", obj.params.filterByConvexity);
|
||||
obj.info()->addParam(obj, "maxConvexity", obj.params.maxConvexity);
|
||||
);
|
||||
)
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@@ -162,7 +162,7 @@ CV_INIT_ALGORITHM(HarrisDetector, "Feature2D.HARRIS",
|
||||
obj.info()->addParam(obj, "qualityLevel", obj.qualityLevel);
|
||||
obj.info()->addParam(obj, "minDistance", obj.minDistance);
|
||||
obj.info()->addParam(obj, "useHarrisDetector", obj.useHarrisDetector);
|
||||
obj.info()->addParam(obj, "k", obj.k));
|
||||
obj.info()->addParam(obj, "k", obj.k))
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@@ -173,21 +173,21 @@ CV_INIT_ALGORITHM(DenseFeatureDetector, "Feature2D.Dense",
|
||||
obj.info()->addParam(obj, "initXyStep", obj.initXyStep);
|
||||
obj.info()->addParam(obj, "initImgBound", obj.initImgBound);
|
||||
obj.info()->addParam(obj, "varyXyStepWithScale", obj.varyXyStepWithScale);
|
||||
obj.info()->addParam(obj, "varyImgBoundWithScale", obj.varyImgBoundWithScale));
|
||||
obj.info()->addParam(obj, "varyImgBoundWithScale", obj.varyImgBoundWithScale))
|
||||
|
||||
CV_INIT_ALGORITHM(GridAdaptedFeatureDetector, "Feature2D.Grid",
|
||||
obj.info()->addParam<FeatureDetector>(obj, "detector", obj.detector, false, 0, 0); // Extra params added to avoid VS2013 fatal error in opencv2/core.hpp (decl. of addParam)
|
||||
obj.info()->addParam(obj, "maxTotalKeypoints", obj.maxTotalKeypoints);
|
||||
obj.info()->addParam(obj, "gridRows", obj.gridRows);
|
||||
obj.info()->addParam(obj, "gridCols", obj.gridCols));
|
||||
obj.info()->addParam(obj, "gridCols", obj.gridCols))
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
CV_INIT_ALGORITHM(BFMatcher, "DescriptorMatcher.BFMatcher",
|
||||
obj.info()->addParam(obj, "normType", obj.normType);
|
||||
obj.info()->addParam(obj, "crossCheck", obj.crossCheck));
|
||||
obj.info()->addParam(obj, "crossCheck", obj.crossCheck))
|
||||
|
||||
CV_INIT_ALGORITHM(FlannBasedMatcher, "DescriptorMatcher.FlannBasedMatcher",);
|
||||
CV_INIT_ALGORITHM(FlannBasedMatcher, "DescriptorMatcher.FlannBasedMatcher",)
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
@@ -54,8 +54,9 @@ static const int FREAK_NB_SCALES = FREAK::NB_SCALES;
|
||||
static const int FREAK_NB_PAIRS = FREAK::NB_PAIRS;
|
||||
static const int FREAK_NB_ORIENPAIRS = FREAK::NB_ORIENPAIRS;
|
||||
|
||||
// default pairs
|
||||
static const int FREAK_DEF_PAIRS[FREAK::NB_PAIRS] =
|
||||
{ // default pairs
|
||||
{
|
||||
404,431,818,511,181,52,311,874,774,543,719,230,417,205,11,
|
||||
560,149,265,39,306,165,857,250,8,61,15,55,717,44,412,
|
||||
592,134,761,695,660,782,625,487,549,516,271,665,762,392,178,
|
||||
@@ -92,15 +93,17 @@ static const int FREAK_DEF_PAIRS[FREAK::NB_PAIRS] =
|
||||
670,249,36,581,389,605,331,518,442,822
|
||||
};
|
||||
|
||||
// used to sort pairs during pairs selection
|
||||
struct PairStat
|
||||
{ // used to sort pairs during pairs selection
|
||||
{
|
||||
double mean;
|
||||
int idx;
|
||||
};
|
||||
|
||||
struct sortMean
|
||||
{
|
||||
bool operator()( const PairStat& a, const PairStat& b ) const {
|
||||
bool operator()( const PairStat& a, const PairStat& b ) const
|
||||
{
|
||||
return a.mean < b.mean;
|
||||
}
|
||||
};
|
||||
@@ -130,17 +133,21 @@ void FREAK::buildPattern()
|
||||
radius[6]/2.0, radius[6]/2.0
|
||||
};
|
||||
// fill the lookup table
|
||||
for( int scaleIdx=0; scaleIdx < FREAK_NB_SCALES; ++scaleIdx ) {
|
||||
for( int scaleIdx=0; scaleIdx < FREAK_NB_SCALES; ++scaleIdx )
|
||||
{
|
||||
patternSizes[scaleIdx] = 0; // proper initialization
|
||||
scalingFactor = std::pow(scaleStep,scaleIdx); //scale of the pattern, scaleStep ^ scaleIdx
|
||||
|
||||
for( int orientationIdx = 0; orientationIdx < FREAK_NB_ORIENTATION; ++orientationIdx ) {
|
||||
for( int orientationIdx = 0; orientationIdx < FREAK_NB_ORIENTATION; ++orientationIdx )
|
||||
{
|
||||
theta = double(orientationIdx)* 2*CV_PI/double(FREAK_NB_ORIENTATION); // orientation of the pattern
|
||||
int pointIdx = 0;
|
||||
|
||||
PatternPoint* patternLookupPtr = &patternLookup[0];
|
||||
for( size_t i = 0; i < 8; ++i ) {
|
||||
for( int k = 0 ; k < n[i]; ++k ) {
|
||||
for( size_t i = 0; i < 8; ++i )
|
||||
{
|
||||
for( int k = 0 ; k < n[i]; ++k )
|
||||
{
|
||||
beta = CV_PI/n[i] * (i%2); // orientation offset so that groups of points on each circles are staggered
|
||||
alpha = double(k)* 2*CV_PI/double(n[i])+beta+theta;
|
||||
|
||||
@@ -182,7 +189,8 @@ void FREAK::buildPattern()
|
||||
orientationPairs[39].i=30; orientationPairs[39].j=33; orientationPairs[40].i=31; orientationPairs[40].j=34; orientationPairs[41].i=32; orientationPairs[41].j=35;
|
||||
orientationPairs[42].i=36; orientationPairs[42].j=39; orientationPairs[43].i=37; orientationPairs[43].j=40; orientationPairs[44].i=38; orientationPairs[44].j=41;
|
||||
|
||||
for( unsigned m = FREAK_NB_ORIENPAIRS; m--; ) {
|
||||
for( unsigned m = FREAK_NB_ORIENPAIRS; m--; )
|
||||
{
|
||||
const float dx = patternLookup[orientationPairs[m].i].x-patternLookup[orientationPairs[m].j].x;
|
||||
const float dy = patternLookup[orientationPairs[m].i].y-patternLookup[orientationPairs[m].j].y;
|
||||
const float norm_sq = (dx*dx+dy*dy);
|
||||
@@ -192,31 +200,38 @@ void FREAK::buildPattern()
|
||||
|
||||
// build the list of description pairs
|
||||
std::vector<DescriptionPair> allPairs;
|
||||
for( unsigned int i = 1; i < (unsigned int)FREAK_NB_POINTS; ++i ) {
|
||||
for( unsigned int i = 1; i < (unsigned int)FREAK_NB_POINTS; ++i )
|
||||
{
|
||||
// (generate all the pairs)
|
||||
for( unsigned int j = 0; (unsigned int)j < i; ++j ) {
|
||||
for( unsigned int j = 0; (unsigned int)j < i; ++j )
|
||||
{
|
||||
DescriptionPair pair = {(uchar)i,(uchar)j};
|
||||
allPairs.push_back(pair);
|
||||
}
|
||||
}
|
||||
// Input vector provided
|
||||
if( !selectedPairs0.empty() ) {
|
||||
if( (int)selectedPairs0.size() == FREAK_NB_PAIRS ) {
|
||||
if( !selectedPairs0.empty() )
|
||||
{
|
||||
if( (int)selectedPairs0.size() == FREAK_NB_PAIRS )
|
||||
{
|
||||
for( int i = 0; i < FREAK_NB_PAIRS; ++i )
|
||||
descriptionPairs[i] = allPairs[selectedPairs0.at(i)];
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
CV_Error(Error::StsVecLengthErr, "Input vector does not match the required size");
|
||||
}
|
||||
}
|
||||
else { // default selected pairs
|
||||
else // default selected pairs
|
||||
{
|
||||
for( int i = 0; i < FREAK_NB_PAIRS; ++i )
|
||||
descriptionPairs[i] = allPairs[FREAK_DEF_PAIRS[i]];
|
||||
}
|
||||
}
|
||||
|
||||
void FREAK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors ) const {
|
||||
|
||||
void FREAK::computeImpl( InputArray _image, std::vector<KeyPoint>& keypoints, OutputArray _descriptors ) const
|
||||
{
|
||||
Mat image = _image.getMat();
|
||||
if( image.empty() )
|
||||
return;
|
||||
if( keypoints.empty() )
|
||||
@@ -235,21 +250,21 @@ void FREAK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat
|
||||
{
|
||||
// Create the integral image appropriate for our type & usage
|
||||
if (image.depth() == CV_8U)
|
||||
computeDescriptors<uchar, int>(grayImage, keypoints, descriptors);
|
||||
computeDescriptors<uchar, int>(grayImage, keypoints, _descriptors);
|
||||
else if (image.depth() == CV_8S)
|
||||
computeDescriptors<char, int>(grayImage, keypoints, descriptors);
|
||||
computeDescriptors<char, int>(grayImage, keypoints, _descriptors);
|
||||
else
|
||||
CV_Error( Error::StsUnsupportedFormat, "" );
|
||||
} else {
|
||||
// Create the integral image appropriate for our type & usage
|
||||
if ( image.depth() == CV_8U )
|
||||
computeDescriptors<uchar, double>(grayImage, keypoints, descriptors);
|
||||
computeDescriptors<uchar, double>(grayImage, keypoints, _descriptors);
|
||||
else if ( image.depth() == CV_8S )
|
||||
computeDescriptors<char, double>(grayImage, keypoints, descriptors);
|
||||
computeDescriptors<char, double>(grayImage, keypoints, _descriptors);
|
||||
else if ( image.depth() == CV_16U )
|
||||
computeDescriptors<ushort, double>(grayImage, keypoints, descriptors);
|
||||
computeDescriptors<ushort, double>(grayImage, keypoints, _descriptors);
|
||||
else if ( image.depth() == CV_16S )
|
||||
computeDescriptors<short, double>(grayImage, keypoints, descriptors);
|
||||
computeDescriptors<short, double>(grayImage, keypoints, _descriptors);
|
||||
else
|
||||
CV_Error( Error::StsUnsupportedFormat, "" );
|
||||
}
|
||||
@@ -337,8 +352,9 @@ void FREAK::extractDescriptor(uchar *pointsValue, void ** ptr) const
|
||||
#endif
|
||||
|
||||
template <typename srcMatType, typename iiMatType>
|
||||
void FREAK::computeDescriptors( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors ) const {
|
||||
void FREAK::computeDescriptors( InputArray _image, std::vector<KeyPoint>& keypoints, OutputArray _descriptors ) const {
|
||||
|
||||
Mat image = _image.getMat();
|
||||
Mat imgIntegral;
|
||||
integral(image, imgIntegral, DataType<iiMatType>::type);
|
||||
std::vector<int> kpScaleIdx(keypoints.size()); // used to save pattern scale index corresponding to each keypoints
|
||||
@@ -351,8 +367,10 @@ void FREAK::computeDescriptors( const Mat& image, std::vector<KeyPoint>& keypoin
|
||||
int direction1;
|
||||
|
||||
// compute the scale index corresponding to the keypoint size and remove keypoints close to the border
|
||||
if( scaleNormalized ) {
|
||||
for( size_t k = keypoints.size(); k--; ) {
|
||||
if( scaleNormalized )
|
||||
{
|
||||
for( size_t k = keypoints.size(); k--; )
|
||||
{
|
||||
//Is k non-zero? If so, decrement it and continue"
|
||||
kpScaleIdx[k] = std::max( (int)(std::log(keypoints[k].size/FREAK_SMALLEST_KP_SIZE)*sizeCst+0.5) ,0);
|
||||
if( kpScaleIdx[k] >= FREAK_NB_SCALES )
|
||||
@@ -362,24 +380,29 @@ void FREAK::computeDescriptors( const Mat& image, std::vector<KeyPoint>& keypoin
|
||||
keypoints[k].pt.y <= patternSizes[kpScaleIdx[k]] ||
|
||||
keypoints[k].pt.x >= image.cols-patternSizes[kpScaleIdx[k]] ||
|
||||
keypoints[k].pt.y >= image.rows-patternSizes[kpScaleIdx[k]]
|
||||
) {
|
||||
)
|
||||
{
|
||||
keypoints.erase(kpBegin+k);
|
||||
kpScaleIdx.erase(ScaleIdxBegin+k);
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
const int scIdx = std::max( (int)(1.0986122886681*sizeCst+0.5) ,0);
|
||||
for( size_t k = keypoints.size(); k--; ) {
|
||||
for( size_t k = keypoints.size(); k--; )
|
||||
{
|
||||
kpScaleIdx[k] = scIdx; // equivalent to the formule when the scale is normalized with a constant size of keypoints[k].size=3*SMALLEST_KP_SIZE
|
||||
if( kpScaleIdx[k] >= FREAK_NB_SCALES ) {
|
||||
if( kpScaleIdx[k] >= FREAK_NB_SCALES )
|
||||
{
|
||||
kpScaleIdx[k] = FREAK_NB_SCALES-1;
|
||||
}
|
||||
if( keypoints[k].pt.x <= patternSizes[kpScaleIdx[k]] ||
|
||||
keypoints[k].pt.y <= patternSizes[kpScaleIdx[k]] ||
|
||||
keypoints[k].pt.x >= image.cols-patternSizes[kpScaleIdx[k]] ||
|
||||
keypoints[k].pt.y >= image.rows-patternSizes[kpScaleIdx[k]]
|
||||
) {
|
||||
)
|
||||
{
|
||||
keypoints.erase(kpBegin+k);
|
||||
kpScaleIdx.erase(ScaleIdxBegin+k);
|
||||
}
|
||||
@@ -387,18 +410,24 @@ void FREAK::computeDescriptors( const Mat& image, std::vector<KeyPoint>& keypoin
|
||||
}
|
||||
|
||||
// allocate descriptor memory, estimate orientations, extract descriptors
|
||||
if( !extAll ) {
|
||||
if( !extAll )
|
||||
{
|
||||
// extract the best comparisons only
|
||||
descriptors = cv::Mat::zeros((int)keypoints.size(), FREAK_NB_PAIRS/8, CV_8U);
|
||||
_descriptors.create((int)keypoints.size(), FREAK_NB_PAIRS/8, CV_8U);
|
||||
_descriptors.setTo(Scalar::all(0));
|
||||
Mat descriptors = _descriptors.getMat();
|
||||
|
||||
void *ptr = descriptors.data+(keypoints.size()-1)*descriptors.step[0];
|
||||
|
||||
for( size_t k = keypoints.size(); k--; ) {
|
||||
// estimate orientation (gradient)
|
||||
if( !orientationNormalized ) {
|
||||
if( !orientationNormalized )
|
||||
{
|
||||
thetaIdx = 0; // assign 0° to all keypoints
|
||||
keypoints[k].angle = 0.0;
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
// get the points intensity value in the un-rotated pattern
|
||||
for( int i = FREAK_NB_POINTS; i--; ) {
|
||||
pointsValue[i] = meanIntensity<srcMatType, iiMatType>(image, imgIntegral,
|
||||
@@ -407,7 +436,8 @@ void FREAK::computeDescriptors( const Mat& image, std::vector<KeyPoint>& keypoin
|
||||
}
|
||||
direction0 = 0;
|
||||
direction1 = 0;
|
||||
for( int m = 45; m--; ) {
|
||||
for( int m = 45; m--; )
|
||||
{
|
||||
//iterate through the orientation pairs
|
||||
const int delta = (pointsValue[ orientationPairs[m].i ]-pointsValue[ orientationPairs[m].j ]);
|
||||
direction0 += delta*(orientationPairs[m].weight_dx)/2048;
|
||||
@@ -433,17 +463,23 @@ void FREAK::computeDescriptors( const Mat& image, std::vector<KeyPoint>& keypoin
|
||||
extractDescriptor<srcMatType>(pointsValue, &ptr);
|
||||
}
|
||||
}
|
||||
else { // extract all possible comparisons for selection
|
||||
descriptors = cv::Mat::zeros((int)keypoints.size(), 128, CV_8U);
|
||||
else // extract all possible comparisons for selection
|
||||
{
|
||||
_descriptors.create((int)keypoints.size(), 128, CV_8U);
|
||||
_descriptors.setTo(Scalar::all(0));
|
||||
Mat descriptors = _descriptors.getMat();
|
||||
std::bitset<1024>* ptr = (std::bitset<1024>*) (descriptors.data+(keypoints.size()-1)*descriptors.step[0]);
|
||||
|
||||
for( size_t k = keypoints.size(); k--; ) {
|
||||
for( size_t k = keypoints.size(); k--; )
|
||||
{
|
||||
//estimate orientation (gradient)
|
||||
if( !orientationNormalized ) {
|
||||
if( !orientationNormalized )
|
||||
{
|
||||
thetaIdx = 0;//assign 0° to all keypoints
|
||||
keypoints[k].angle = 0.0;
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
//get the points intensity value in the un-rotated pattern
|
||||
for( int i = FREAK_NB_POINTS;i--; )
|
||||
pointsValue[i] = meanIntensity<srcMatType, iiMatType>(image, imgIntegral,
|
||||
@@ -452,7 +488,8 @@ void FREAK::computeDescriptors( const Mat& image, std::vector<KeyPoint>& keypoin
|
||||
|
||||
direction0 = 0;
|
||||
direction1 = 0;
|
||||
for( int m = 45; m--; ) {
|
||||
for( int m = 45; m--; )
|
||||
{
|
||||
//iterate through the orientation pairs
|
||||
const int delta = (pointsValue[ orientationPairs[m].i ]-pointsValue[ orientationPairs[m].j ]);
|
||||
direction0 += delta*(orientationPairs[m].weight_dx)/2048;
|
||||
@@ -476,9 +513,11 @@ void FREAK::computeDescriptors( const Mat& image, std::vector<KeyPoint>& keypoin
|
||||
}
|
||||
|
||||
int cnt(0);
|
||||
for( int i = 1; i < FREAK_NB_POINTS; ++i ) {
|
||||
for( int i = 1; i < FREAK_NB_POINTS; ++i )
|
||||
{
|
||||
//(generate all the pairs)
|
||||
for( int j = 0; j < i; ++j ) {
|
||||
for( int j = 0; j < i; ++j )
|
||||
{
|
||||
ptr->set(cnt, pointsValue[i] >= pointsValue[j] );
|
||||
++cnt;
|
||||
}
|
||||
@@ -490,12 +529,13 @@ void FREAK::computeDescriptors( const Mat& image, std::vector<KeyPoint>& keypoin
|
||||
|
||||
// simply take average on a square patch, not even gaussian approx
|
||||
template <typename imgType, typename iiType>
|
||||
imgType FREAK::meanIntensity( const cv::Mat& image, const cv::Mat& integral,
|
||||
imgType FREAK::meanIntensity( InputArray _image, InputArray _integral,
|
||||
const float kp_x,
|
||||
const float kp_y,
|
||||
const unsigned int scale,
|
||||
const unsigned int rot,
|
||||
const unsigned int point) const {
|
||||
Mat image = _image.getMat(), integral = _integral.getMat();
|
||||
// get point position in image
|
||||
const PatternPoint& FreakPoint = patternLookup[scale*FREAK_NB_ORIENTATION*FREAK_NB_POINTS + rot*FREAK_NB_POINTS + point];
|
||||
const float xf = FreakPoint.x+kp_x;
|
||||
@@ -507,7 +547,8 @@ imgType FREAK::meanIntensity( const cv::Mat& image, const cv::Mat& integral,
|
||||
const float radius = FreakPoint.sigma;
|
||||
|
||||
// calculate output:
|
||||
if( radius < 0.5 ) {
|
||||
if( radius < 0.5 )
|
||||
{
|
||||
// interpolation multipliers:
|
||||
const int r_x = static_cast<int>((xf-x)*1024);
|
||||
const int r_y = static_cast<int>((yf-y)*1024);
|
||||
@@ -555,7 +596,8 @@ std::vector<int> FREAK::selectPairs(const std::vector<Mat>& images
|
||||
if( verbose )
|
||||
std::cout << "Number of images: " << images.size() << std::endl;
|
||||
|
||||
for( size_t i = 0;i < images.size(); ++i ) {
|
||||
for( size_t i = 0;i < images.size(); ++i )
|
||||
{
|
||||
Mat descriptorsTmp;
|
||||
computeImpl(images[i],keypoints[i],descriptorsTmp);
|
||||
descriptors.push_back(descriptorsTmp);
|
||||
@@ -568,8 +610,10 @@ std::vector<int> FREAK::selectPairs(const std::vector<Mat>& images
|
||||
Mat descriptorsFloat = Mat::zeros(descriptors.rows, 903, CV_32F);
|
||||
|
||||
std::bitset<1024>* ptr = (std::bitset<1024>*) (descriptors.data+(descriptors.rows-1)*descriptors.step[0]);
|
||||
for( int m = descriptors.rows; m--; ) {
|
||||
for( int n = 903; n--; ) {
|
||||
for( int m = descriptors.rows; m--; )
|
||||
{
|
||||
for( int n = 903; n--; )
|
||||
{
|
||||
if( ptr->test(n) == true )
|
||||
descriptorsFloat.at<float>(m,n)=1.0f;
|
||||
}
|
||||
@@ -577,7 +621,8 @@ std::vector<int> FREAK::selectPairs(const std::vector<Mat>& images
|
||||
}
|
||||
|
||||
std::vector<PairStat> pairStat;
|
||||
for( int n = 903; n--; ) {
|
||||
for( int n = 903; n--; )
|
||||
{
|
||||
// the higher the variance, the better --> mean = 0.5
|
||||
PairStat tmp = { fabs( mean(descriptorsFloat.col(n))[0]-0.5 ) ,n};
|
||||
pairStat.push_back(tmp);
|
||||
@@ -586,19 +631,22 @@ std::vector<int> FREAK::selectPairs(const std::vector<Mat>& images
|
||||
std::sort( pairStat.begin(),pairStat.end(), sortMean() );
|
||||
|
||||
std::vector<PairStat> bestPairs;
|
||||
for( int m = 0; m < 903; ++m ) {
|
||||
for( int m = 0; m < 903; ++m )
|
||||
{
|
||||
if( verbose )
|
||||
std::cout << m << ":" << bestPairs.size() << " " << std::flush;
|
||||
double corrMax(0);
|
||||
|
||||
for( size_t n = 0; n < bestPairs.size(); ++n ) {
|
||||
for( size_t n = 0; n < bestPairs.size(); ++n )
|
||||
{
|
||||
int idxA = bestPairs[n].idx;
|
||||
int idxB = pairStat[m].idx;
|
||||
double corr(0);
|
||||
// compute correlation between 2 pairs
|
||||
corr = fabs(compareHist(descriptorsFloat.col(idxA), descriptorsFloat.col(idxB), HISTCMP_CORREL));
|
||||
|
||||
if( corr > corrMax ) {
|
||||
if( corr > corrMax )
|
||||
{
|
||||
corrMax = corr;
|
||||
if( corrMax >= corrTresh )
|
||||
break;
|
||||
@@ -608,7 +656,8 @@ std::vector<int> FREAK::selectPairs(const std::vector<Mat>& images
|
||||
if( corrMax < corrTresh/*0.7*/ )
|
||||
bestPairs.push_back(pairStat[m]);
|
||||
|
||||
if( bestPairs.size() >= 512 ) {
|
||||
if( bestPairs.size() >= 512 )
|
||||
{
|
||||
if( verbose )
|
||||
std::cout << m << std::endl;
|
||||
break;
|
||||
@@ -616,11 +665,13 @@ std::vector<int> FREAK::selectPairs(const std::vector<Mat>& images
|
||||
}
|
||||
|
||||
std::vector<int> idxBestPairs;
|
||||
if( (int)bestPairs.size() >= FREAK_NB_PAIRS ) {
|
||||
if( (int)bestPairs.size() >= FREAK_NB_PAIRS )
|
||||
{
|
||||
for( int i = 0; i < FREAK_NB_PAIRS; ++i )
|
||||
idxBestPairs.push_back(bestPairs[i].idx);
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
if( verbose )
|
||||
std::cout << "correlation threshold too small (restrictive)" << std::endl;
|
||||
CV_Error(Error::StsError, "correlation threshold too small (restrictive)");
|
||||
@@ -631,11 +682,13 @@ std::vector<int> FREAK::selectPairs(const std::vector<Mat>& images
|
||||
|
||||
|
||||
/*
|
||||
// create an image showing the brisk pattern
|
||||
void FREAKImpl::drawPattern()
|
||||
{ // create an image showing the brisk pattern
|
||||
{
|
||||
Mat pattern = Mat::zeros(1000, 1000, CV_8UC3) + Scalar(255,255,255);
|
||||
int sFac = 500 / patternScale;
|
||||
for( int n = 0; n < kNB_POINTS; ++n ) {
|
||||
for( int n = 0; n < kNB_POINTS; ++n )
|
||||
{
|
||||
PatternPoint& pt = patternLookup[n];
|
||||
circle(pattern, Point( pt.x*sFac,pt.y*sFac)+Point(500,500), pt.sigma*sFac, Scalar(0,0,255),2);
|
||||
// rectangle(pattern, Point( (pt.x-pt.sigma)*sFac,(pt.y-pt.sigma)*sFac)+Point(500,500), Point( (pt.x+pt.sigma)*sFac,(pt.y+pt.sigma)*sFac)+Point(500,500), Scalar(0,0,255),2);
|
||||
@@ -663,12 +716,19 @@ FREAK::~FREAK()
|
||||
{
|
||||
}
|
||||
|
||||
int FREAK::descriptorSize() const {
|
||||
int FREAK::descriptorSize() const
|
||||
{
|
||||
return FREAK_NB_PAIRS / 8; // descriptor length in bytes
|
||||
}
|
||||
|
||||
int FREAK::descriptorType() const {
|
||||
int FREAK::descriptorType() const
|
||||
{
|
||||
return CV_8U;
|
||||
}
|
||||
|
||||
int FREAK::defaultNorm() const
|
||||
{
|
||||
return NORM_HAMMING;
|
||||
}
|
||||
|
||||
} // END NAMESPACE CV
|
||||
|
File diff suppressed because it is too large
Load Diff
@@ -1266,11 +1266,11 @@ MSER::MSER( int _delta, int _min_area, int _max_area,
|
||||
{
|
||||
}
|
||||
|
||||
void MSER::operator()( const Mat& image, std::vector<std::vector<Point> >& dstcontours, const Mat& mask ) const
|
||||
void MSER::operator()( InputArray image, std::vector<std::vector<Point> >& dstcontours, InputArray mask ) const
|
||||
{
|
||||
CvMat _image = image, _mask, *pmask = 0;
|
||||
if( mask.data )
|
||||
pmask = &(_mask = mask);
|
||||
CvMat _image = image.getMat(), _mask, *pmask = 0;
|
||||
if( !mask.empty() )
|
||||
pmask = &(_mask = mask.getMat());
|
||||
MemStorage storage(cvCreateMemStorage(0));
|
||||
Seq<CvSeq*> contours;
|
||||
extractMSER( &_image, pmask, &contours.seq, storage,
|
||||
@@ -1284,8 +1284,9 @@ void MSER::operator()( const Mat& image, std::vector<std::vector<Point> >& dstco
|
||||
}
|
||||
|
||||
|
||||
void MserFeatureDetector::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask ) const
|
||||
void MserFeatureDetector::detectImpl( InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask ) const
|
||||
{
|
||||
Mat image = _image.getMat(), mask = _mask.getMat();
|
||||
std::vector<std::vector<Point> > msers;
|
||||
|
||||
(*this)(image, msers, mask);
|
||||
|
789
modules/features2d/src/opencl/brute_force_match.cl
Normal file
789
modules/features2d/src/opencl/brute_force_match.cl
Normal file
@@ -0,0 +1,789 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Nathan, liujun@multicorewareinc.com
|
||||
// Peng Xiao, pengxiao@outlook.com
|
||||
// Baichuan Su, baichuan@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics:enable
|
||||
#define MAX_FLOAT 3.40282e+038f
|
||||
|
||||
#ifndef T
|
||||
#define T float
|
||||
#endif
|
||||
|
||||
#ifndef BLOCK_SIZE
|
||||
#define BLOCK_SIZE 16
|
||||
#endif
|
||||
#ifndef MAX_DESC_LEN
|
||||
#define MAX_DESC_LEN 64
|
||||
#endif
|
||||
|
||||
#ifndef DIST_TYPE
|
||||
#define DIST_TYPE 2
|
||||
#endif
|
||||
|
||||
// dirty fix for non-template support
|
||||
#if (DIST_TYPE == 2) // L1Dist
|
||||
# ifdef T_FLOAT
|
||||
# define DIST(x, y) fabs((x) - (y))
|
||||
typedef float value_type;
|
||||
typedef float result_type;
|
||||
# else
|
||||
# define DIST(x, y) abs((x) - (y))
|
||||
typedef int value_type;
|
||||
typedef int result_type;
|
||||
# endif
|
||||
#define DIST_RES(x) (x)
|
||||
#elif (DIST_TYPE == 4) // L2Dist
|
||||
#define DIST(x, y) (((x) - (y)) * ((x) - (y)))
|
||||
typedef float value_type;
|
||||
typedef float result_type;
|
||||
#define DIST_RES(x) sqrt(x)
|
||||
#elif (DIST_TYPE == 6) // Hamming
|
||||
//http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
|
||||
inline int bit1Count(int v)
|
||||
{
|
||||
v = v - ((v >> 1) & 0x55555555); // reuse input as temporary
|
||||
v = (v & 0x33333333) + ((v >> 2) & 0x33333333); // temp
|
||||
return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; // count
|
||||
}
|
||||
#define DIST(x, y) bit1Count( (x) ^ (y) )
|
||||
typedef int value_type;
|
||||
typedef int result_type;
|
||||
#define DIST_RES(x) (x)
|
||||
#endif
|
||||
|
||||
inline result_type reduce_block(
|
||||
__local value_type *s_query,
|
||||
__local value_type *s_train,
|
||||
int lidx,
|
||||
int lidy
|
||||
)
|
||||
{
|
||||
result_type result = 0;
|
||||
#pragma unroll
|
||||
for (int j = 0 ; j < BLOCK_SIZE ; j++)
|
||||
{
|
||||
result += DIST(
|
||||
s_query[lidy * BLOCK_SIZE + j],
|
||||
s_train[j * BLOCK_SIZE + lidx]);
|
||||
}
|
||||
return DIST_RES(result);
|
||||
}
|
||||
|
||||
inline result_type reduce_block_match(
|
||||
__local value_type *s_query,
|
||||
__local value_type *s_train,
|
||||
int lidx,
|
||||
int lidy
|
||||
)
|
||||
{
|
||||
result_type result = 0;
|
||||
#pragma unroll
|
||||
for (int j = 0 ; j < BLOCK_SIZE ; j++)
|
||||
{
|
||||
result += DIST(
|
||||
s_query[lidy * BLOCK_SIZE + j],
|
||||
s_train[j * BLOCK_SIZE + lidx]);
|
||||
}
|
||||
return (result);
|
||||
}
|
||||
|
||||
inline result_type reduce_multi_block(
|
||||
__local value_type *s_query,
|
||||
__local value_type *s_train,
|
||||
int block_index,
|
||||
int lidx,
|
||||
int lidy
|
||||
)
|
||||
{
|
||||
result_type result = 0;
|
||||
#pragma unroll
|
||||
for (int j = 0 ; j < BLOCK_SIZE ; j++)
|
||||
{
|
||||
result += DIST(
|
||||
s_query[lidy * MAX_DESC_LEN + block_index * BLOCK_SIZE + j],
|
||||
s_train[j * BLOCK_SIZE + lidx]);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/* 2dim launch, global size: dim0 is (query rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, dim1 is BLOCK_SIZE
|
||||
local size: dim0 is BLOCK_SIZE, dim1 is BLOCK_SIZE.
|
||||
*/
|
||||
__kernel void BruteForceMatch_UnrollMatch(
|
||||
__global T *query,
|
||||
__global T *train,
|
||||
//__global float *mask,
|
||||
__global int *bestTrainIdx,
|
||||
__global float *bestDistance,
|
||||
__local float *sharebuffer,
|
||||
int query_rows,
|
||||
int query_cols,
|
||||
int train_rows,
|
||||
int train_cols,
|
||||
int step
|
||||
)
|
||||
{
|
||||
const int lidx = get_local_id(0);
|
||||
const int lidy = get_local_id(1);
|
||||
const int groupidx = get_group_id(0);
|
||||
|
||||
__local value_type *s_query = (__local value_type *)sharebuffer;
|
||||
__local value_type *s_train = (__local value_type *)sharebuffer + BLOCK_SIZE * MAX_DESC_LEN;
|
||||
|
||||
int queryIdx = groupidx * BLOCK_SIZE + lidy;
|
||||
// load the query into local memory.
|
||||
#pragma unroll
|
||||
for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE; i ++)
|
||||
{
|
||||
int loadx = lidx + i * BLOCK_SIZE;
|
||||
s_query[lidy * MAX_DESC_LEN + loadx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
||||
}
|
||||
|
||||
float myBestDistance = MAX_FLOAT;
|
||||
int myBestTrainIdx = -1;
|
||||
|
||||
// loopUnrolledCached to find the best trainIdx and best distance.
|
||||
for (int t = 0, endt = (train_rows + BLOCK_SIZE - 1) / BLOCK_SIZE; t < endt; t++)
|
||||
{
|
||||
result_type result = 0;
|
||||
#pragma unroll
|
||||
for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE ; i++)
|
||||
{
|
||||
//load a BLOCK_SIZE * BLOCK_SIZE block into local train.
|
||||
const int loadx = lidx + i * BLOCK_SIZE;
|
||||
s_train[lidx * BLOCK_SIZE + lidy] = loadx < train_cols ? train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
||||
|
||||
//synchronize to make sure each elem for reduceIteration in share memory is written already.
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
result += reduce_multi_block(s_query, s_train, i, lidx, lidy);
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
result = DIST_RES(result);
|
||||
|
||||
int trainIdx = t * BLOCK_SIZE + lidx;
|
||||
|
||||
if (queryIdx < query_rows && trainIdx < train_rows && result < myBestDistance/* && mask(queryIdx, trainIdx)*/)
|
||||
{
|
||||
myBestDistance = result;
|
||||
myBestTrainIdx = trainIdx;
|
||||
}
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
__local float *s_distance = (__local float*)(sharebuffer);
|
||||
__local int* s_trainIdx = (__local int *)(sharebuffer + BLOCK_SIZE * BLOCK_SIZE);
|
||||
|
||||
//find BestMatch
|
||||
s_distance += lidy * BLOCK_SIZE;
|
||||
s_trainIdx += lidy * BLOCK_SIZE;
|
||||
s_distance[lidx] = myBestDistance;
|
||||
s_trainIdx[lidx] = myBestTrainIdx;
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
//reduce -- now all reduce implement in each threads.
|
||||
#pragma unroll
|
||||
for (int k = 0 ; k < BLOCK_SIZE; k++)
|
||||
{
|
||||
if (myBestDistance > s_distance[k])
|
||||
{
|
||||
myBestDistance = s_distance[k];
|
||||
myBestTrainIdx = s_trainIdx[k];
|
||||
}
|
||||
}
|
||||
|
||||
if (queryIdx < query_rows && lidx == 0)
|
||||
{
|
||||
bestTrainIdx[queryIdx] = myBestTrainIdx;
|
||||
bestDistance[queryIdx] = myBestDistance;
|
||||
}
|
||||
}
|
||||
|
||||
__kernel void BruteForceMatch_Match(
|
||||
__global T *query,
|
||||
__global T *train,
|
||||
//__global float *mask,
|
||||
__global int *bestTrainIdx,
|
||||
__global float *bestDistance,
|
||||
__local float *sharebuffer,
|
||||
int query_rows,
|
||||
int query_cols,
|
||||
int train_rows,
|
||||
int train_cols,
|
||||
int step
|
||||
)
|
||||
{
|
||||
const int lidx = get_local_id(0);
|
||||
const int lidy = get_local_id(1);
|
||||
const int groupidx = get_group_id(0);
|
||||
|
||||
const int queryIdx = groupidx * BLOCK_SIZE + lidy;
|
||||
|
||||
float myBestDistance = MAX_FLOAT;
|
||||
int myBestTrainIdx = -1;
|
||||
|
||||
__local value_type *s_query = (__local value_type *)sharebuffer;
|
||||
__local value_type *s_train = (__local value_type *)sharebuffer + BLOCK_SIZE * BLOCK_SIZE;
|
||||
|
||||
// loop
|
||||
for (int t = 0 ; t < (train_rows + BLOCK_SIZE - 1) / BLOCK_SIZE ; t++)
|
||||
{
|
||||
result_type result = 0;
|
||||
for (int i = 0 ; i < (query_cols + BLOCK_SIZE - 1) / BLOCK_SIZE ; i++)
|
||||
{
|
||||
const int loadx = lidx + i * BLOCK_SIZE;
|
||||
//load query and train into local memory
|
||||
s_query[lidy * BLOCK_SIZE + lidx] = 0;
|
||||
s_train[lidx * BLOCK_SIZE + lidy] = 0;
|
||||
|
||||
if (loadx < query_cols)
|
||||
{
|
||||
s_query[lidy * BLOCK_SIZE + lidx] = query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx];
|
||||
s_train[lidx * BLOCK_SIZE + lidy] = train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx];
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
result += reduce_block_match(s_query, s_train, lidx, lidy);
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
result = DIST_RES(result);
|
||||
|
||||
const int trainIdx = t * BLOCK_SIZE + lidx;
|
||||
|
||||
if (queryIdx < query_rows && trainIdx < train_rows && result < myBestDistance /*&& mask(queryIdx, trainIdx)*/)
|
||||
{
|
||||
myBestDistance = result;
|
||||
myBestTrainIdx = trainIdx;
|
||||
}
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
__local float *s_distance = (__local float *)sharebuffer;
|
||||
__local int *s_trainIdx = (__local int *)(sharebuffer + BLOCK_SIZE * BLOCK_SIZE);
|
||||
|
||||
//findBestMatch
|
||||
s_distance += lidy * BLOCK_SIZE;
|
||||
s_trainIdx += lidy * BLOCK_SIZE;
|
||||
s_distance[lidx] = myBestDistance;
|
||||
s_trainIdx[lidx] = myBestTrainIdx;
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
//reduce -- now all reduce implement in each threads.
|
||||
for (int k = 0 ; k < BLOCK_SIZE; k++)
|
||||
{
|
||||
if (myBestDistance > s_distance[k])
|
||||
{
|
||||
myBestDistance = s_distance[k];
|
||||
myBestTrainIdx = s_trainIdx[k];
|
||||
}
|
||||
}
|
||||
|
||||
if (queryIdx < query_rows && lidx == 0)
|
||||
{
|
||||
bestTrainIdx[queryIdx] = myBestTrainIdx;
|
||||
bestDistance[queryIdx] = myBestDistance;
|
||||
}
|
||||
}
|
||||
|
||||
//radius_unrollmatch
|
||||
__kernel void BruteForceMatch_RadiusUnrollMatch(
|
||||
__global T *query,
|
||||
__global T *train,
|
||||
float maxDistance,
|
||||
//__global float *mask,
|
||||
__global int *bestTrainIdx,
|
||||
__global float *bestDistance,
|
||||
__global int *nMatches,
|
||||
__local float *sharebuffer,
|
||||
int query_rows,
|
||||
int query_cols,
|
||||
int train_rows,
|
||||
int train_cols,
|
||||
int bestTrainIdx_cols,
|
||||
int step,
|
||||
int ostep
|
||||
)
|
||||
{
|
||||
const int lidx = get_local_id(0);
|
||||
const int lidy = get_local_id(1);
|
||||
const int groupidx = get_group_id(0);
|
||||
const int groupidy = get_group_id(1);
|
||||
|
||||
const int queryIdx = groupidy * BLOCK_SIZE + lidy;
|
||||
const int trainIdx = groupidx * BLOCK_SIZE + lidx;
|
||||
|
||||
__local value_type *s_query = (__local value_type *)sharebuffer;
|
||||
__local value_type *s_train = (__local value_type *)sharebuffer + BLOCK_SIZE * BLOCK_SIZE;
|
||||
|
||||
result_type result = 0;
|
||||
for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE ; ++i)
|
||||
{
|
||||
//load a BLOCK_SIZE * BLOCK_SIZE block into local train.
|
||||
const int loadx = lidx + i * BLOCK_SIZE;
|
||||
|
||||
s_query[lidy * BLOCK_SIZE + lidx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
||||
s_train[lidx * BLOCK_SIZE + lidy] = loadx < query_cols ? train[min(groupidx * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
||||
|
||||
//synchronize to make sure each elem for reduceIteration in share memory is written already.
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
result += reduce_block(s_query, s_train, lidx, lidy);
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
if (queryIdx < query_rows && trainIdx < train_rows &&
|
||||
convert_float(result) < maxDistance/* && mask(queryIdx, trainIdx)*/)
|
||||
{
|
||||
int ind = atom_inc(nMatches + queryIdx/*, (unsigned int) -1*/);
|
||||
|
||||
if(ind < bestTrainIdx_cols)
|
||||
{
|
||||
bestTrainIdx[queryIdx * (ostep / sizeof(int)) + ind] = trainIdx;
|
||||
bestDistance[queryIdx * (ostep / sizeof(float)) + ind] = result;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//radius_match
|
||||
__kernel void BruteForceMatch_RadiusMatch(
|
||||
__global T *query,
|
||||
__global T *train,
|
||||
float maxDistance,
|
||||
//__global float *mask,
|
||||
__global int *bestTrainIdx,
|
||||
__global float *bestDistance,
|
||||
__global int *nMatches,
|
||||
__local float *sharebuffer,
|
||||
int query_rows,
|
||||
int query_cols,
|
||||
int train_rows,
|
||||
int train_cols,
|
||||
int bestTrainIdx_cols,
|
||||
int step,
|
||||
int ostep
|
||||
)
|
||||
{
|
||||
const int lidx = get_local_id(0);
|
||||
const int lidy = get_local_id(1);
|
||||
const int groupidx = get_group_id(0);
|
||||
const int groupidy = get_group_id(1);
|
||||
|
||||
const int queryIdx = groupidy * BLOCK_SIZE + lidy;
|
||||
const int trainIdx = groupidx * BLOCK_SIZE + lidx;
|
||||
|
||||
__local value_type *s_query = (__local value_type *)sharebuffer;
|
||||
__local value_type *s_train = (__local value_type *)sharebuffer + BLOCK_SIZE * BLOCK_SIZE;
|
||||
|
||||
result_type result = 0;
|
||||
for (int i = 0 ; i < (query_cols + BLOCK_SIZE - 1) / BLOCK_SIZE ; ++i)
|
||||
{
|
||||
//load a BLOCK_SIZE * BLOCK_SIZE block into local train.
|
||||
const int loadx = lidx + i * BLOCK_SIZE;
|
||||
|
||||
s_query[lidy * BLOCK_SIZE + lidx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
||||
s_train[lidx * BLOCK_SIZE + lidy] = loadx < query_cols ? train[min(groupidx * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
||||
|
||||
//synchronize to make sure each elem for reduceIteration in share memory is written already.
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
result += reduce_block(s_query, s_train, lidx, lidy);
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
if (queryIdx < query_rows && trainIdx < train_rows &&
|
||||
convert_float(result) < maxDistance/* && mask(queryIdx, trainIdx)*/)
|
||||
{
|
||||
int ind = atom_inc(nMatches + queryIdx);
|
||||
|
||||
if(ind < bestTrainIdx_cols)
|
||||
{
|
||||
bestTrainIdx[queryIdx * (ostep / sizeof(int)) + ind] = trainIdx;
|
||||
bestDistance[queryIdx * (ostep / sizeof(float)) + ind] = result;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
__kernel void BruteForceMatch_knnUnrollMatch(
|
||||
__global T *query,
|
||||
__global T *train,
|
||||
//__global float *mask,
|
||||
__global int2 *bestTrainIdx,
|
||||
__global float2 *bestDistance,
|
||||
__local float *sharebuffer,
|
||||
int query_rows,
|
||||
int query_cols,
|
||||
int train_rows,
|
||||
int train_cols,
|
||||
int step
|
||||
)
|
||||
{
|
||||
const int lidx = get_local_id(0);
|
||||
const int lidy = get_local_id(1);
|
||||
const int groupidx = get_group_id(0);
|
||||
|
||||
const int queryIdx = groupidx * BLOCK_SIZE + lidy;
|
||||
__local value_type *s_query = (__local value_type *)sharebuffer;
|
||||
__local value_type *s_train = (__local value_type *)sharebuffer + BLOCK_SIZE * MAX_DESC_LEN;
|
||||
|
||||
// load the query into local memory.
|
||||
for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE; i ++)
|
||||
{
|
||||
int loadx = lidx + i * BLOCK_SIZE;
|
||||
s_query[lidy * MAX_DESC_LEN + loadx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
||||
}
|
||||
|
||||
float myBestDistance1 = MAX_FLOAT;
|
||||
float myBestDistance2 = MAX_FLOAT;
|
||||
int myBestTrainIdx1 = -1;
|
||||
int myBestTrainIdx2 = -1;
|
||||
|
||||
//loopUnrolledCached
|
||||
for (int t = 0 ; t < (train_rows + BLOCK_SIZE - 1) / BLOCK_SIZE ; t++)
|
||||
{
|
||||
result_type result = 0;
|
||||
for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE ; i++)
|
||||
{
|
||||
//load a BLOCK_SIZE * BLOCK_SIZE block into local train.
|
||||
const int loadx = lidx + i * BLOCK_SIZE;
|
||||
s_train[lidx * BLOCK_SIZE + lidy] = loadx < train_cols ? train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
||||
|
||||
//synchronize to make sure each elem for reduceIteration in share memory is written already.
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
result += reduce_multi_block(s_query, s_train, i, lidx, lidy);
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
result = DIST_RES(result);
|
||||
|
||||
const int trainIdx = t * BLOCK_SIZE + lidx;
|
||||
|
||||
if (queryIdx < query_rows && trainIdx < train_rows)
|
||||
{
|
||||
if (result < myBestDistance1)
|
||||
{
|
||||
myBestDistance2 = myBestDistance1;
|
||||
myBestTrainIdx2 = myBestTrainIdx1;
|
||||
myBestDistance1 = result;
|
||||
myBestTrainIdx1 = trainIdx;
|
||||
}
|
||||
else if (result < myBestDistance2)
|
||||
{
|
||||
myBestDistance2 = result;
|
||||
myBestTrainIdx2 = trainIdx;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
__local float *s_distance = (local float *)sharebuffer;
|
||||
__local int *s_trainIdx = (local int *)(sharebuffer + BLOCK_SIZE * BLOCK_SIZE);
|
||||
|
||||
// find BestMatch
|
||||
s_distance += lidy * BLOCK_SIZE;
|
||||
s_trainIdx += lidy * BLOCK_SIZE;
|
||||
|
||||
s_distance[lidx] = myBestDistance1;
|
||||
s_trainIdx[lidx] = myBestTrainIdx1;
|
||||
|
||||
float bestDistance1 = MAX_FLOAT;
|
||||
float bestDistance2 = MAX_FLOAT;
|
||||
int bestTrainIdx1 = -1;
|
||||
int bestTrainIdx2 = -1;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (lidx == 0)
|
||||
{
|
||||
for (int i = 0 ; i < BLOCK_SIZE ; i++)
|
||||
{
|
||||
float val = s_distance[i];
|
||||
if (val < bestDistance1)
|
||||
{
|
||||
bestDistance2 = bestDistance1;
|
||||
bestTrainIdx2 = bestTrainIdx1;
|
||||
|
||||
bestDistance1 = val;
|
||||
bestTrainIdx1 = s_trainIdx[i];
|
||||
}
|
||||
else if (val < bestDistance2)
|
||||
{
|
||||
bestDistance2 = val;
|
||||
bestTrainIdx2 = s_trainIdx[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
s_distance[lidx] = myBestDistance2;
|
||||
s_trainIdx[lidx] = myBestTrainIdx2;
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (lidx == 0)
|
||||
{
|
||||
for (int i = 0 ; i < BLOCK_SIZE ; i++)
|
||||
{
|
||||
float val = s_distance[i];
|
||||
|
||||
if (val < bestDistance2)
|
||||
{
|
||||
bestDistance2 = val;
|
||||
bestTrainIdx2 = s_trainIdx[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
myBestDistance1 = bestDistance1;
|
||||
myBestDistance2 = bestDistance2;
|
||||
|
||||
myBestTrainIdx1 = bestTrainIdx1;
|
||||
myBestTrainIdx2 = bestTrainIdx2;
|
||||
|
||||
if (queryIdx < query_rows && lidx == 0)
|
||||
{
|
||||
bestTrainIdx[queryIdx] = (int2)(myBestTrainIdx1, myBestTrainIdx2);
|
||||
bestDistance[queryIdx] = (float2)(myBestDistance1, myBestDistance2);
|
||||
}
|
||||
}
|
||||
|
||||
__kernel void BruteForceMatch_knnMatch(
|
||||
__global T *query,
|
||||
__global T *train,
|
||||
//__global float *mask,
|
||||
__global int2 *bestTrainIdx,
|
||||
__global float2 *bestDistance,
|
||||
__local float *sharebuffer,
|
||||
int query_rows,
|
||||
int query_cols,
|
||||
int train_rows,
|
||||
int train_cols,
|
||||
int step
|
||||
)
|
||||
{
|
||||
const int lidx = get_local_id(0);
|
||||
const int lidy = get_local_id(1);
|
||||
const int groupidx = get_group_id(0);
|
||||
|
||||
const int queryIdx = groupidx * BLOCK_SIZE + lidy;
|
||||
__local value_type *s_query = (__local value_type *)sharebuffer;
|
||||
__local value_type *s_train = (__local value_type *)sharebuffer + BLOCK_SIZE * BLOCK_SIZE;
|
||||
|
||||
float myBestDistance1 = MAX_FLOAT;
|
||||
float myBestDistance2 = MAX_FLOAT;
|
||||
int myBestTrainIdx1 = -1;
|
||||
int myBestTrainIdx2 = -1;
|
||||
|
||||
//loop
|
||||
for (int t = 0 ; t < (train_rows + BLOCK_SIZE - 1) / BLOCK_SIZE ; t++)
|
||||
{
|
||||
result_type result = 0.0f;
|
||||
for (int i = 0 ; i < (query_cols + BLOCK_SIZE -1) / BLOCK_SIZE ; i++)
|
||||
{
|
||||
const int loadx = lidx + i * BLOCK_SIZE;
|
||||
//load query and train into local memory
|
||||
s_query[lidy * BLOCK_SIZE + lidx] = 0;
|
||||
s_train[lidx * BLOCK_SIZE + lidy] = 0;
|
||||
|
||||
if (loadx < query_cols)
|
||||
{
|
||||
s_query[lidy * BLOCK_SIZE + lidx] = query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx];
|
||||
s_train[lidx * BLOCK_SIZE + lidy] = train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx];
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
result += reduce_block_match(s_query, s_train, lidx, lidy);
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
result = DIST_RES(result);
|
||||
|
||||
const int trainIdx = t * BLOCK_SIZE + lidx;
|
||||
|
||||
if (queryIdx < query_rows && trainIdx < train_rows /*&& mask(queryIdx, trainIdx)*/)
|
||||
{
|
||||
if (result < myBestDistance1)
|
||||
{
|
||||
myBestDistance2 = myBestDistance1;
|
||||
myBestTrainIdx2 = myBestTrainIdx1;
|
||||
myBestDistance1 = result;
|
||||
myBestTrainIdx1 = trainIdx;
|
||||
}
|
||||
else if (result < myBestDistance2)
|
||||
{
|
||||
myBestDistance2 = result;
|
||||
myBestTrainIdx2 = trainIdx;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
__local float *s_distance = (__local float *)sharebuffer;
|
||||
__local int *s_trainIdx = (__local int *)(sharebuffer + BLOCK_SIZE * BLOCK_SIZE);
|
||||
|
||||
//findBestMatch
|
||||
s_distance += lidy * BLOCK_SIZE;
|
||||
s_trainIdx += lidy * BLOCK_SIZE;
|
||||
|
||||
s_distance[lidx] = myBestDistance1;
|
||||
s_trainIdx[lidx] = myBestTrainIdx1;
|
||||
|
||||
float bestDistance1 = MAX_FLOAT;
|
||||
float bestDistance2 = MAX_FLOAT;
|
||||
int bestTrainIdx1 = -1;
|
||||
int bestTrainIdx2 = -1;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (lidx == 0)
|
||||
{
|
||||
for (int i = 0 ; i < BLOCK_SIZE ; i++)
|
||||
{
|
||||
float val = s_distance[i];
|
||||
if (val < bestDistance1)
|
||||
{
|
||||
bestDistance2 = bestDistance1;
|
||||
bestTrainIdx2 = bestTrainIdx1;
|
||||
|
||||
bestDistance1 = val;
|
||||
bestTrainIdx1 = s_trainIdx[i];
|
||||
}
|
||||
else if (val < bestDistance2)
|
||||
{
|
||||
bestDistance2 = val;
|
||||
bestTrainIdx2 = s_trainIdx[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
s_distance[lidx] = myBestDistance2;
|
||||
s_trainIdx[lidx] = myBestTrainIdx2;
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (lidx == 0)
|
||||
{
|
||||
for (int i = 0 ; i < BLOCK_SIZE ; i++)
|
||||
{
|
||||
float val = s_distance[i];
|
||||
|
||||
if (val < bestDistance2)
|
||||
{
|
||||
bestDistance2 = val;
|
||||
bestTrainIdx2 = s_trainIdx[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
myBestDistance1 = bestDistance1;
|
||||
myBestDistance2 = bestDistance2;
|
||||
|
||||
myBestTrainIdx1 = bestTrainIdx1;
|
||||
myBestTrainIdx2 = bestTrainIdx2;
|
||||
|
||||
if (queryIdx < query_rows && lidx == 0)
|
||||
{
|
||||
bestTrainIdx[queryIdx] = (int2)(myBestTrainIdx1, myBestTrainIdx2);
|
||||
bestDistance[queryIdx] = (float2)(myBestDistance1, myBestDistance2);
|
||||
}
|
||||
}
|
||||
|
||||
kernel void BruteForceMatch_calcDistanceUnrolled(
|
||||
__global T *query,
|
||||
__global T *train,
|
||||
//__global float *mask,
|
||||
__global float *allDist,
|
||||
__local float *sharebuffer,
|
||||
int query_rows,
|
||||
int query_cols,
|
||||
int train_rows,
|
||||
int train_cols,
|
||||
int step)
|
||||
{
|
||||
/* Todo */
|
||||
}
|
||||
|
||||
kernel void BruteForceMatch_calcDistance(
|
||||
__global T *query,
|
||||
__global T *train,
|
||||
//__global float *mask,
|
||||
__global float *allDist,
|
||||
__local float *sharebuffer,
|
||||
int query_rows,
|
||||
int query_cols,
|
||||
int train_rows,
|
||||
int train_cols,
|
||||
int step)
|
||||
{
|
||||
/* Todo */
|
||||
}
|
||||
|
||||
kernel void BruteForceMatch_findBestMatch(
|
||||
__global float *allDist,
|
||||
__global int *bestTrainIdx,
|
||||
__global float *bestDistance,
|
||||
int k
|
||||
)
|
||||
{
|
||||
/* Todo */
|
||||
}
|
@@ -575,6 +575,11 @@ int ORB::descriptorType() const
|
||||
return CV_8U;
|
||||
}
|
||||
|
||||
int ORB::defaultNorm() const
|
||||
{
|
||||
return NORM_HAMMING;
|
||||
}
|
||||
|
||||
/** Compute the ORB features and descriptors on an image
|
||||
* @param img the image to compute the features and descriptors on
|
||||
* @param mask the mask to apply
|
||||
@@ -938,12 +943,12 @@ void ORB::operator()( InputArray _image, InputArray _mask, std::vector<KeyPoint>
|
||||
}
|
||||
}
|
||||
|
||||
void ORB::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask) const
|
||||
void ORB::detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask) const
|
||||
{
|
||||
(*this)(image, mask, keypoints, noArray(), false);
|
||||
(*this)(image.getMat(), mask.getMat(), keypoints, noArray(), false);
|
||||
}
|
||||
|
||||
void ORB::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors) const
|
||||
void ORB::computeImpl( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors) const
|
||||
{
|
||||
(*this)(image, Mat(), keypoints, descriptors, true);
|
||||
}
|
||||
|
@@ -48,6 +48,7 @@
|
||||
|
||||
#include "opencv2/core/utility.hpp"
|
||||
#include "opencv2/core/private.hpp"
|
||||
#include "opencv2/core/ocl.hpp"
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
|
@@ -441,9 +441,9 @@ StarDetector::StarDetector(int _maxSize, int _responseThreshold,
|
||||
{}
|
||||
|
||||
|
||||
void StarDetector::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask ) const
|
||||
void StarDetector::detectImpl( InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask ) const
|
||||
{
|
||||
Mat grayImage = image;
|
||||
Mat image = _image.getMat(), mask = _mask.getMat(), grayImage = image;
|
||||
if( image.channels() > 1 ) cvtColor( image, grayImage, COLOR_BGR2GRAY );
|
||||
|
||||
(*this)(grayImage, keypoints);
|
||||
|
Reference in New Issue
Block a user