update libwebp up to 0.3.0
This commit is contained in:
241
3rdparty/libwebp/enc/analysis.c
vendored
241
3rdparty/libwebp/enc/analysis.c
vendored
@@ -23,10 +23,6 @@ extern "C" {
|
||||
|
||||
#define MAX_ITERS_K_MEANS 6
|
||||
|
||||
static int ClipAlpha(int alpha) {
|
||||
return alpha < 0 ? 0 : alpha > 255 ? 255 : alpha;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Smooth the segment map by replacing isolated block by the majority of its
|
||||
// neighbours.
|
||||
@@ -72,50 +68,10 @@ static void SmoothSegmentMap(VP8Encoder* const enc) {
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Finalize Segment probability based on the coding tree
|
||||
|
||||
static int GetProba(int a, int b) {
|
||||
int proba;
|
||||
const int total = a + b;
|
||||
if (total == 0) return 255; // that's the default probability.
|
||||
proba = (255 * a + total / 2) / total;
|
||||
return proba;
|
||||
}
|
||||
|
||||
static void SetSegmentProbas(VP8Encoder* const enc) {
|
||||
int p[NUM_MB_SEGMENTS] = { 0 };
|
||||
int n;
|
||||
|
||||
for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
|
||||
const VP8MBInfo* const mb = &enc->mb_info_[n];
|
||||
p[mb->segment_]++;
|
||||
}
|
||||
if (enc->pic_->stats) {
|
||||
for (n = 0; n < NUM_MB_SEGMENTS; ++n) {
|
||||
enc->pic_->stats->segment_size[n] = p[n];
|
||||
}
|
||||
}
|
||||
if (enc->segment_hdr_.num_segments_ > 1) {
|
||||
uint8_t* const probas = enc->proba_.segments_;
|
||||
probas[0] = GetProba(p[0] + p[1], p[2] + p[3]);
|
||||
probas[1] = GetProba(p[0], p[1]);
|
||||
probas[2] = GetProba(p[2], p[3]);
|
||||
|
||||
enc->segment_hdr_.update_map_ =
|
||||
(probas[0] != 255) || (probas[1] != 255) || (probas[2] != 255);
|
||||
enc->segment_hdr_.size_ =
|
||||
p[0] * (VP8BitCost(0, probas[0]) + VP8BitCost(0, probas[1])) +
|
||||
p[1] * (VP8BitCost(0, probas[0]) + VP8BitCost(1, probas[1])) +
|
||||
p[2] * (VP8BitCost(1, probas[0]) + VP8BitCost(0, probas[2])) +
|
||||
p[3] * (VP8BitCost(1, probas[0]) + VP8BitCost(1, probas[2]));
|
||||
} else {
|
||||
enc->segment_hdr_.update_map_ = 0;
|
||||
enc->segment_hdr_.size_ = 0;
|
||||
}
|
||||
}
|
||||
// set segment susceptibility alpha_ / beta_
|
||||
|
||||
static WEBP_INLINE int clip(int v, int m, int M) {
|
||||
return v < m ? m : v > M ? M : v;
|
||||
return (v < m) ? m : (v > M) ? M : v;
|
||||
}
|
||||
|
||||
static void SetSegmentAlphas(VP8Encoder* const enc,
|
||||
@@ -141,23 +97,64 @@ static void SetSegmentAlphas(VP8Encoder* const enc,
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Compute susceptibility based on DCT-coeff histograms:
|
||||
// the higher, the "easier" the macroblock is to compress.
|
||||
|
||||
#define MAX_ALPHA 255 // 8b of precision for susceptibilities.
|
||||
#define ALPHA_SCALE (2 * MAX_ALPHA) // scaling factor for alpha.
|
||||
#define DEFAULT_ALPHA (-1)
|
||||
#define IS_BETTER_ALPHA(alpha, best_alpha) ((alpha) > (best_alpha))
|
||||
|
||||
static int FinalAlphaValue(int alpha) {
|
||||
alpha = MAX_ALPHA - alpha;
|
||||
return clip(alpha, 0, MAX_ALPHA);
|
||||
}
|
||||
|
||||
static int GetAlpha(const VP8Histogram* const histo) {
|
||||
int max_value = 0, last_non_zero = 1;
|
||||
int k;
|
||||
int alpha;
|
||||
for (k = 0; k <= MAX_COEFF_THRESH; ++k) {
|
||||
const int value = histo->distribution[k];
|
||||
if (value > 0) {
|
||||
if (value > max_value) max_value = value;
|
||||
last_non_zero = k;
|
||||
}
|
||||
}
|
||||
// 'alpha' will later be clipped to [0..MAX_ALPHA] range, clamping outer
|
||||
// values which happen to be mostly noise. This leaves the maximum precision
|
||||
// for handling the useful small values which contribute most.
|
||||
alpha = (max_value > 1) ? ALPHA_SCALE * last_non_zero / max_value : 0;
|
||||
return alpha;
|
||||
}
|
||||
|
||||
static void MergeHistograms(const VP8Histogram* const in,
|
||||
VP8Histogram* const out) {
|
||||
int i;
|
||||
for (i = 0; i <= MAX_COEFF_THRESH; ++i) {
|
||||
out->distribution[i] += in->distribution[i];
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Simplified k-Means, to assign Nb segments based on alpha-histogram
|
||||
|
||||
static void AssignSegments(VP8Encoder* const enc, const int alphas[256]) {
|
||||
static void AssignSegments(VP8Encoder* const enc,
|
||||
const int alphas[MAX_ALPHA + 1]) {
|
||||
const int nb = enc->segment_hdr_.num_segments_;
|
||||
int centers[NUM_MB_SEGMENTS];
|
||||
int weighted_average = 0;
|
||||
int map[256];
|
||||
int map[MAX_ALPHA + 1];
|
||||
int a, n, k;
|
||||
int min_a = 0, max_a = 255, range_a;
|
||||
int min_a = 0, max_a = MAX_ALPHA, range_a;
|
||||
// 'int' type is ok for histo, and won't overflow
|
||||
int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS];
|
||||
|
||||
// bracket the input
|
||||
for (n = 0; n < 256 && alphas[n] == 0; ++n) {}
|
||||
for (n = 0; n <= MAX_ALPHA && alphas[n] == 0; ++n) {}
|
||||
min_a = n;
|
||||
for (n = 255; n > min_a && alphas[n] == 0; --n) {}
|
||||
for (n = MAX_ALPHA; n > min_a && alphas[n] == 0; --n) {}
|
||||
max_a = n;
|
||||
range_a = max_a - min_a;
|
||||
|
||||
@@ -210,7 +207,7 @@ static void AssignSegments(VP8Encoder* const enc, const int alphas[256]) {
|
||||
VP8MBInfo* const mb = &enc->mb_info_[n];
|
||||
const int alpha = mb->alpha_;
|
||||
mb->segment_ = map[alpha];
|
||||
mb->alpha_ = centers[map[alpha]]; // just for the record.
|
||||
mb->alpha_ = centers[map[alpha]]; // for the record.
|
||||
}
|
||||
|
||||
if (nb > 1) {
|
||||
@@ -218,7 +215,6 @@ static void AssignSegments(VP8Encoder* const enc, const int alphas[256]) {
|
||||
if (smooth) SmoothSegmentMap(enc);
|
||||
}
|
||||
|
||||
SetSegmentProbas(enc); // Assign final proba
|
||||
SetSegmentAlphas(enc, centers, weighted_average); // pick some alphas.
|
||||
}
|
||||
|
||||
@@ -227,24 +223,32 @@ static void AssignSegments(VP8Encoder* const enc, const int alphas[256]) {
|
||||
// susceptibility and set best modes for this macroblock.
|
||||
// Segment assignment is done later.
|
||||
|
||||
// Number of modes to inspect for alpha_ evaluation. For high-quality settings,
|
||||
// we don't need to test all the possible modes during the analysis phase.
|
||||
// Number of modes to inspect for alpha_ evaluation. For high-quality settings
|
||||
// (method >= FAST_ANALYSIS_METHOD) we don't need to test all the possible modes
|
||||
// during the analysis phase.
|
||||
#define FAST_ANALYSIS_METHOD 4 // method above which we do partial analysis
|
||||
#define MAX_INTRA16_MODE 2
|
||||
#define MAX_INTRA4_MODE 2
|
||||
#define MAX_UV_MODE 2
|
||||
|
||||
static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) {
|
||||
const int max_mode = (it->enc_->method_ >= 3) ? MAX_INTRA16_MODE : 4;
|
||||
const int max_mode =
|
||||
(it->enc_->method_ >= FAST_ANALYSIS_METHOD) ? MAX_INTRA16_MODE
|
||||
: NUM_PRED_MODES;
|
||||
int mode;
|
||||
int best_alpha = -1;
|
||||
int best_alpha = DEFAULT_ALPHA;
|
||||
int best_mode = 0;
|
||||
|
||||
VP8MakeLuma16Preds(it);
|
||||
for (mode = 0; mode < max_mode; ++mode) {
|
||||
const int alpha = VP8CollectHistogram(it->yuv_in_ + Y_OFF,
|
||||
it->yuv_p_ + VP8I16ModeOffsets[mode],
|
||||
0, 16);
|
||||
if (alpha > best_alpha) {
|
||||
VP8Histogram histo = { { 0 } };
|
||||
int alpha;
|
||||
|
||||
VP8CollectHistogram(it->yuv_in_ + Y_OFF,
|
||||
it->yuv_p_ + VP8I16ModeOffsets[mode],
|
||||
0, 16, &histo);
|
||||
alpha = GetAlpha(&histo);
|
||||
if (IS_BETTER_ALPHA(alpha, best_alpha)) {
|
||||
best_alpha = alpha;
|
||||
best_mode = mode;
|
||||
}
|
||||
@@ -256,46 +260,63 @@ static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) {
|
||||
static int MBAnalyzeBestIntra4Mode(VP8EncIterator* const it,
|
||||
int best_alpha) {
|
||||
uint8_t modes[16];
|
||||
const int max_mode = (it->enc_->method_ >= 3) ? MAX_INTRA4_MODE : NUM_BMODES;
|
||||
int i4_alpha = 0;
|
||||
const int max_mode =
|
||||
(it->enc_->method_ >= FAST_ANALYSIS_METHOD) ? MAX_INTRA4_MODE
|
||||
: NUM_BMODES;
|
||||
int i4_alpha;
|
||||
VP8Histogram total_histo = { { 0 } };
|
||||
int cur_histo = 0;
|
||||
|
||||
VP8IteratorStartI4(it);
|
||||
do {
|
||||
int mode;
|
||||
int best_mode_alpha = -1;
|
||||
int best_mode_alpha = DEFAULT_ALPHA;
|
||||
VP8Histogram histos[2];
|
||||
const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_];
|
||||
|
||||
VP8MakeIntra4Preds(it);
|
||||
for (mode = 0; mode < max_mode; ++mode) {
|
||||
const int alpha = VP8CollectHistogram(src,
|
||||
it->yuv_p_ + VP8I4ModeOffsets[mode],
|
||||
0, 1);
|
||||
if (alpha > best_mode_alpha) {
|
||||
int alpha;
|
||||
|
||||
memset(&histos[cur_histo], 0, sizeof(histos[cur_histo]));
|
||||
VP8CollectHistogram(src, it->yuv_p_ + VP8I4ModeOffsets[mode],
|
||||
0, 1, &histos[cur_histo]);
|
||||
alpha = GetAlpha(&histos[cur_histo]);
|
||||
if (IS_BETTER_ALPHA(alpha, best_mode_alpha)) {
|
||||
best_mode_alpha = alpha;
|
||||
modes[it->i4_] = mode;
|
||||
cur_histo ^= 1; // keep track of best histo so far.
|
||||
}
|
||||
}
|
||||
i4_alpha += best_mode_alpha;
|
||||
// accumulate best histogram
|
||||
MergeHistograms(&histos[cur_histo ^ 1], &total_histo);
|
||||
// Note: we reuse the original samples for predictors
|
||||
} while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF));
|
||||
|
||||
if (i4_alpha > best_alpha) {
|
||||
i4_alpha = GetAlpha(&total_histo);
|
||||
if (IS_BETTER_ALPHA(i4_alpha, best_alpha)) {
|
||||
VP8SetIntra4Mode(it, modes);
|
||||
best_alpha = ClipAlpha(i4_alpha);
|
||||
best_alpha = i4_alpha;
|
||||
}
|
||||
return best_alpha;
|
||||
}
|
||||
|
||||
static int MBAnalyzeBestUVMode(VP8EncIterator* const it) {
|
||||
int best_alpha = -1;
|
||||
int best_alpha = DEFAULT_ALPHA;
|
||||
int best_mode = 0;
|
||||
const int max_mode = (it->enc_->method_ >= 3) ? MAX_UV_MODE : 4;
|
||||
const int max_mode =
|
||||
(it->enc_->method_ >= FAST_ANALYSIS_METHOD) ? MAX_UV_MODE
|
||||
: NUM_PRED_MODES;
|
||||
int mode;
|
||||
VP8MakeChroma8Preds(it);
|
||||
for (mode = 0; mode < max_mode; ++mode) {
|
||||
const int alpha = VP8CollectHistogram(it->yuv_in_ + U_OFF,
|
||||
it->yuv_p_ + VP8UVModeOffsets[mode],
|
||||
16, 16 + 4 + 4);
|
||||
if (alpha > best_alpha) {
|
||||
VP8Histogram histo = { { 0 } };
|
||||
int alpha;
|
||||
VP8CollectHistogram(it->yuv_in_ + U_OFF,
|
||||
it->yuv_p_ + VP8UVModeOffsets[mode],
|
||||
16, 16 + 4 + 4, &histo);
|
||||
alpha = GetAlpha(&histo);
|
||||
if (IS_BETTER_ALPHA(alpha, best_alpha)) {
|
||||
best_alpha = alpha;
|
||||
best_mode = mode;
|
||||
}
|
||||
@@ -305,7 +326,8 @@ static int MBAnalyzeBestUVMode(VP8EncIterator* const it) {
|
||||
}
|
||||
|
||||
static void MBAnalyze(VP8EncIterator* const it,
|
||||
int alphas[256], int* const uv_alpha) {
|
||||
int alphas[MAX_ALPHA + 1],
|
||||
int* const alpha, int* const uv_alpha) {
|
||||
const VP8Encoder* const enc = it->enc_;
|
||||
int best_alpha, best_uv_alpha;
|
||||
|
||||
@@ -314,7 +336,7 @@ static void MBAnalyze(VP8EncIterator* const it,
|
||||
VP8SetSegment(it, 0); // default segment, spec-wise.
|
||||
|
||||
best_alpha = MBAnalyzeBestIntra16Mode(it);
|
||||
if (enc->method_ != 3) {
|
||||
if (enc->method_ >= 5) {
|
||||
// We go and make a fast decision for intra4/intra16.
|
||||
// It's usually not a good and definitive pick, but helps seeding the stats
|
||||
// about level bit-cost.
|
||||
@@ -324,10 +346,22 @@ static void MBAnalyze(VP8EncIterator* const it,
|
||||
best_uv_alpha = MBAnalyzeBestUVMode(it);
|
||||
|
||||
// Final susceptibility mix
|
||||
best_alpha = (best_alpha + best_uv_alpha + 1) / 2;
|
||||
best_alpha = (3 * best_alpha + best_uv_alpha + 2) >> 2;
|
||||
best_alpha = FinalAlphaValue(best_alpha);
|
||||
alphas[best_alpha]++;
|
||||
it->mb_->alpha_ = best_alpha; // for later remapping.
|
||||
|
||||
// Accumulate for later complexity analysis.
|
||||
*alpha += best_alpha; // mixed susceptibility (not just luma)
|
||||
*uv_alpha += best_uv_alpha;
|
||||
it->mb_->alpha_ = best_alpha; // Informative only.
|
||||
}
|
||||
|
||||
static void DefaultMBInfo(VP8MBInfo* const mb) {
|
||||
mb->type_ = 1; // I16x16
|
||||
mb->uv_mode_ = 0;
|
||||
mb->skip_ = 0; // not skipped
|
||||
mb->segment_ = 0; // default segment
|
||||
mb->alpha_ = 0;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
@@ -340,22 +374,43 @@ static void MBAnalyze(VP8EncIterator* const it,
|
||||
// and decide intra4/intra16, but that's usually almost always a bad choice at
|
||||
// this stage.
|
||||
|
||||
static void ResetAllMBInfo(VP8Encoder* const enc) {
|
||||
int n;
|
||||
for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
|
||||
DefaultMBInfo(&enc->mb_info_[n]);
|
||||
}
|
||||
// Default susceptibilities.
|
||||
enc->dqm_[0].alpha_ = 0;
|
||||
enc->dqm_[0].beta_ = 0;
|
||||
// Note: we can't compute this alpha_ / uv_alpha_.
|
||||
WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_);
|
||||
}
|
||||
|
||||
int VP8EncAnalyze(VP8Encoder* const enc) {
|
||||
int ok = 1;
|
||||
int alphas[256] = { 0 };
|
||||
VP8EncIterator it;
|
||||
|
||||
VP8IteratorInit(enc, &it);
|
||||
const int do_segments =
|
||||
enc->config_->emulate_jpeg_size || // We need the complexity evaluation.
|
||||
(enc->segment_hdr_.num_segments_ > 1) ||
|
||||
(enc->method_ == 0); // for method 0, we need preds_[] to be filled.
|
||||
enc->alpha_ = 0;
|
||||
enc->uv_alpha_ = 0;
|
||||
do {
|
||||
VP8IteratorImport(&it);
|
||||
MBAnalyze(&it, alphas, &enc->uv_alpha_);
|
||||
ok = VP8IteratorProgress(&it, 20);
|
||||
// Let's pretend we have perfect lossless reconstruction.
|
||||
} while (ok && VP8IteratorNext(&it, it.yuv_in_));
|
||||
enc->uv_alpha_ /= enc->mb_w_ * enc->mb_h_;
|
||||
if (ok) AssignSegments(enc, alphas);
|
||||
if (do_segments) {
|
||||
int alphas[MAX_ALPHA + 1] = { 0 };
|
||||
VP8EncIterator it;
|
||||
|
||||
VP8IteratorInit(enc, &it);
|
||||
do {
|
||||
VP8IteratorImport(&it);
|
||||
MBAnalyze(&it, alphas, &enc->alpha_, &enc->uv_alpha_);
|
||||
ok = VP8IteratorProgress(&it, 20);
|
||||
// Let's pretend we have perfect lossless reconstruction.
|
||||
} while (ok && VP8IteratorNext(&it, it.yuv_in_));
|
||||
enc->alpha_ /= enc->mb_w_ * enc->mb_h_;
|
||||
enc->uv_alpha_ /= enc->mb_w_ * enc->mb_h_;
|
||||
if (ok) AssignSegments(enc, alphas);
|
||||
} else { // Use only one default segment.
|
||||
ResetAllMBInfo(enc);
|
||||
}
|
||||
return ok;
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user