update libwebp up to 0.3.0

This commit is contained in:
AoD314
2013-04-02 15:22:10 +04:00
parent db45e04d58
commit 740941c8b8
64 changed files with 5394 additions and 2773 deletions

View File

@@ -23,10 +23,6 @@ extern "C" {
#define MAX_ITERS_K_MEANS 6
static int ClipAlpha(int alpha) {
return alpha < 0 ? 0 : alpha > 255 ? 255 : alpha;
}
//------------------------------------------------------------------------------
// Smooth the segment map by replacing isolated block by the majority of its
// neighbours.
@@ -72,50 +68,10 @@ static void SmoothSegmentMap(VP8Encoder* const enc) {
}
//------------------------------------------------------------------------------
// Finalize Segment probability based on the coding tree
static int GetProba(int a, int b) {
int proba;
const int total = a + b;
if (total == 0) return 255; // that's the default probability.
proba = (255 * a + total / 2) / total;
return proba;
}
static void SetSegmentProbas(VP8Encoder* const enc) {
int p[NUM_MB_SEGMENTS] = { 0 };
int n;
for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
const VP8MBInfo* const mb = &enc->mb_info_[n];
p[mb->segment_]++;
}
if (enc->pic_->stats) {
for (n = 0; n < NUM_MB_SEGMENTS; ++n) {
enc->pic_->stats->segment_size[n] = p[n];
}
}
if (enc->segment_hdr_.num_segments_ > 1) {
uint8_t* const probas = enc->proba_.segments_;
probas[0] = GetProba(p[0] + p[1], p[2] + p[3]);
probas[1] = GetProba(p[0], p[1]);
probas[2] = GetProba(p[2], p[3]);
enc->segment_hdr_.update_map_ =
(probas[0] != 255) || (probas[1] != 255) || (probas[2] != 255);
enc->segment_hdr_.size_ =
p[0] * (VP8BitCost(0, probas[0]) + VP8BitCost(0, probas[1])) +
p[1] * (VP8BitCost(0, probas[0]) + VP8BitCost(1, probas[1])) +
p[2] * (VP8BitCost(1, probas[0]) + VP8BitCost(0, probas[2])) +
p[3] * (VP8BitCost(1, probas[0]) + VP8BitCost(1, probas[2]));
} else {
enc->segment_hdr_.update_map_ = 0;
enc->segment_hdr_.size_ = 0;
}
}
// set segment susceptibility alpha_ / beta_
static WEBP_INLINE int clip(int v, int m, int M) {
return v < m ? m : v > M ? M : v;
return (v < m) ? m : (v > M) ? M : v;
}
static void SetSegmentAlphas(VP8Encoder* const enc,
@@ -141,23 +97,64 @@ static void SetSegmentAlphas(VP8Encoder* const enc,
}
}
//------------------------------------------------------------------------------
// Compute susceptibility based on DCT-coeff histograms:
// the higher, the "easier" the macroblock is to compress.
#define MAX_ALPHA 255 // 8b of precision for susceptibilities.
#define ALPHA_SCALE (2 * MAX_ALPHA) // scaling factor for alpha.
#define DEFAULT_ALPHA (-1)
#define IS_BETTER_ALPHA(alpha, best_alpha) ((alpha) > (best_alpha))
static int FinalAlphaValue(int alpha) {
alpha = MAX_ALPHA - alpha;
return clip(alpha, 0, MAX_ALPHA);
}
static int GetAlpha(const VP8Histogram* const histo) {
int max_value = 0, last_non_zero = 1;
int k;
int alpha;
for (k = 0; k <= MAX_COEFF_THRESH; ++k) {
const int value = histo->distribution[k];
if (value > 0) {
if (value > max_value) max_value = value;
last_non_zero = k;
}
}
// 'alpha' will later be clipped to [0..MAX_ALPHA] range, clamping outer
// values which happen to be mostly noise. This leaves the maximum precision
// for handling the useful small values which contribute most.
alpha = (max_value > 1) ? ALPHA_SCALE * last_non_zero / max_value : 0;
return alpha;
}
static void MergeHistograms(const VP8Histogram* const in,
VP8Histogram* const out) {
int i;
for (i = 0; i <= MAX_COEFF_THRESH; ++i) {
out->distribution[i] += in->distribution[i];
}
}
//------------------------------------------------------------------------------
// Simplified k-Means, to assign Nb segments based on alpha-histogram
static void AssignSegments(VP8Encoder* const enc, const int alphas[256]) {
static void AssignSegments(VP8Encoder* const enc,
const int alphas[MAX_ALPHA + 1]) {
const int nb = enc->segment_hdr_.num_segments_;
int centers[NUM_MB_SEGMENTS];
int weighted_average = 0;
int map[256];
int map[MAX_ALPHA + 1];
int a, n, k;
int min_a = 0, max_a = 255, range_a;
int min_a = 0, max_a = MAX_ALPHA, range_a;
// 'int' type is ok for histo, and won't overflow
int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS];
// bracket the input
for (n = 0; n < 256 && alphas[n] == 0; ++n) {}
for (n = 0; n <= MAX_ALPHA && alphas[n] == 0; ++n) {}
min_a = n;
for (n = 255; n > min_a && alphas[n] == 0; --n) {}
for (n = MAX_ALPHA; n > min_a && alphas[n] == 0; --n) {}
max_a = n;
range_a = max_a - min_a;
@@ -210,7 +207,7 @@ static void AssignSegments(VP8Encoder* const enc, const int alphas[256]) {
VP8MBInfo* const mb = &enc->mb_info_[n];
const int alpha = mb->alpha_;
mb->segment_ = map[alpha];
mb->alpha_ = centers[map[alpha]]; // just for the record.
mb->alpha_ = centers[map[alpha]]; // for the record.
}
if (nb > 1) {
@@ -218,7 +215,6 @@ static void AssignSegments(VP8Encoder* const enc, const int alphas[256]) {
if (smooth) SmoothSegmentMap(enc);
}
SetSegmentProbas(enc); // Assign final proba
SetSegmentAlphas(enc, centers, weighted_average); // pick some alphas.
}
@@ -227,24 +223,32 @@ static void AssignSegments(VP8Encoder* const enc, const int alphas[256]) {
// susceptibility and set best modes for this macroblock.
// Segment assignment is done later.
// Number of modes to inspect for alpha_ evaluation. For high-quality settings,
// we don't need to test all the possible modes during the analysis phase.
// Number of modes to inspect for alpha_ evaluation. For high-quality settings
// (method >= FAST_ANALYSIS_METHOD) we don't need to test all the possible modes
// during the analysis phase.
#define FAST_ANALYSIS_METHOD 4 // method above which we do partial analysis
#define MAX_INTRA16_MODE 2
#define MAX_INTRA4_MODE 2
#define MAX_UV_MODE 2
static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) {
const int max_mode = (it->enc_->method_ >= 3) ? MAX_INTRA16_MODE : 4;
const int max_mode =
(it->enc_->method_ >= FAST_ANALYSIS_METHOD) ? MAX_INTRA16_MODE
: NUM_PRED_MODES;
int mode;
int best_alpha = -1;
int best_alpha = DEFAULT_ALPHA;
int best_mode = 0;
VP8MakeLuma16Preds(it);
for (mode = 0; mode < max_mode; ++mode) {
const int alpha = VP8CollectHistogram(it->yuv_in_ + Y_OFF,
it->yuv_p_ + VP8I16ModeOffsets[mode],
0, 16);
if (alpha > best_alpha) {
VP8Histogram histo = { { 0 } };
int alpha;
VP8CollectHistogram(it->yuv_in_ + Y_OFF,
it->yuv_p_ + VP8I16ModeOffsets[mode],
0, 16, &histo);
alpha = GetAlpha(&histo);
if (IS_BETTER_ALPHA(alpha, best_alpha)) {
best_alpha = alpha;
best_mode = mode;
}
@@ -256,46 +260,63 @@ static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) {
static int MBAnalyzeBestIntra4Mode(VP8EncIterator* const it,
int best_alpha) {
uint8_t modes[16];
const int max_mode = (it->enc_->method_ >= 3) ? MAX_INTRA4_MODE : NUM_BMODES;
int i4_alpha = 0;
const int max_mode =
(it->enc_->method_ >= FAST_ANALYSIS_METHOD) ? MAX_INTRA4_MODE
: NUM_BMODES;
int i4_alpha;
VP8Histogram total_histo = { { 0 } };
int cur_histo = 0;
VP8IteratorStartI4(it);
do {
int mode;
int best_mode_alpha = -1;
int best_mode_alpha = DEFAULT_ALPHA;
VP8Histogram histos[2];
const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_];
VP8MakeIntra4Preds(it);
for (mode = 0; mode < max_mode; ++mode) {
const int alpha = VP8CollectHistogram(src,
it->yuv_p_ + VP8I4ModeOffsets[mode],
0, 1);
if (alpha > best_mode_alpha) {
int alpha;
memset(&histos[cur_histo], 0, sizeof(histos[cur_histo]));
VP8CollectHistogram(src, it->yuv_p_ + VP8I4ModeOffsets[mode],
0, 1, &histos[cur_histo]);
alpha = GetAlpha(&histos[cur_histo]);
if (IS_BETTER_ALPHA(alpha, best_mode_alpha)) {
best_mode_alpha = alpha;
modes[it->i4_] = mode;
cur_histo ^= 1; // keep track of best histo so far.
}
}
i4_alpha += best_mode_alpha;
// accumulate best histogram
MergeHistograms(&histos[cur_histo ^ 1], &total_histo);
// Note: we reuse the original samples for predictors
} while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF));
if (i4_alpha > best_alpha) {
i4_alpha = GetAlpha(&total_histo);
if (IS_BETTER_ALPHA(i4_alpha, best_alpha)) {
VP8SetIntra4Mode(it, modes);
best_alpha = ClipAlpha(i4_alpha);
best_alpha = i4_alpha;
}
return best_alpha;
}
static int MBAnalyzeBestUVMode(VP8EncIterator* const it) {
int best_alpha = -1;
int best_alpha = DEFAULT_ALPHA;
int best_mode = 0;
const int max_mode = (it->enc_->method_ >= 3) ? MAX_UV_MODE : 4;
const int max_mode =
(it->enc_->method_ >= FAST_ANALYSIS_METHOD) ? MAX_UV_MODE
: NUM_PRED_MODES;
int mode;
VP8MakeChroma8Preds(it);
for (mode = 0; mode < max_mode; ++mode) {
const int alpha = VP8CollectHistogram(it->yuv_in_ + U_OFF,
it->yuv_p_ + VP8UVModeOffsets[mode],
16, 16 + 4 + 4);
if (alpha > best_alpha) {
VP8Histogram histo = { { 0 } };
int alpha;
VP8CollectHistogram(it->yuv_in_ + U_OFF,
it->yuv_p_ + VP8UVModeOffsets[mode],
16, 16 + 4 + 4, &histo);
alpha = GetAlpha(&histo);
if (IS_BETTER_ALPHA(alpha, best_alpha)) {
best_alpha = alpha;
best_mode = mode;
}
@@ -305,7 +326,8 @@ static int MBAnalyzeBestUVMode(VP8EncIterator* const it) {
}
static void MBAnalyze(VP8EncIterator* const it,
int alphas[256], int* const uv_alpha) {
int alphas[MAX_ALPHA + 1],
int* const alpha, int* const uv_alpha) {
const VP8Encoder* const enc = it->enc_;
int best_alpha, best_uv_alpha;
@@ -314,7 +336,7 @@ static void MBAnalyze(VP8EncIterator* const it,
VP8SetSegment(it, 0); // default segment, spec-wise.
best_alpha = MBAnalyzeBestIntra16Mode(it);
if (enc->method_ != 3) {
if (enc->method_ >= 5) {
// We go and make a fast decision for intra4/intra16.
// It's usually not a good and definitive pick, but helps seeding the stats
// about level bit-cost.
@@ -324,10 +346,22 @@ static void MBAnalyze(VP8EncIterator* const it,
best_uv_alpha = MBAnalyzeBestUVMode(it);
// Final susceptibility mix
best_alpha = (best_alpha + best_uv_alpha + 1) / 2;
best_alpha = (3 * best_alpha + best_uv_alpha + 2) >> 2;
best_alpha = FinalAlphaValue(best_alpha);
alphas[best_alpha]++;
it->mb_->alpha_ = best_alpha; // for later remapping.
// Accumulate for later complexity analysis.
*alpha += best_alpha; // mixed susceptibility (not just luma)
*uv_alpha += best_uv_alpha;
it->mb_->alpha_ = best_alpha; // Informative only.
}
static void DefaultMBInfo(VP8MBInfo* const mb) {
mb->type_ = 1; // I16x16
mb->uv_mode_ = 0;
mb->skip_ = 0; // not skipped
mb->segment_ = 0; // default segment
mb->alpha_ = 0;
}
//------------------------------------------------------------------------------
@@ -340,22 +374,43 @@ static void MBAnalyze(VP8EncIterator* const it,
// and decide intra4/intra16, but that's usually almost always a bad choice at
// this stage.
static void ResetAllMBInfo(VP8Encoder* const enc) {
int n;
for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
DefaultMBInfo(&enc->mb_info_[n]);
}
// Default susceptibilities.
enc->dqm_[0].alpha_ = 0;
enc->dqm_[0].beta_ = 0;
// Note: we can't compute this alpha_ / uv_alpha_.
WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_);
}
int VP8EncAnalyze(VP8Encoder* const enc) {
int ok = 1;
int alphas[256] = { 0 };
VP8EncIterator it;
VP8IteratorInit(enc, &it);
const int do_segments =
enc->config_->emulate_jpeg_size || // We need the complexity evaluation.
(enc->segment_hdr_.num_segments_ > 1) ||
(enc->method_ == 0); // for method 0, we need preds_[] to be filled.
enc->alpha_ = 0;
enc->uv_alpha_ = 0;
do {
VP8IteratorImport(&it);
MBAnalyze(&it, alphas, &enc->uv_alpha_);
ok = VP8IteratorProgress(&it, 20);
// Let's pretend we have perfect lossless reconstruction.
} while (ok && VP8IteratorNext(&it, it.yuv_in_));
enc->uv_alpha_ /= enc->mb_w_ * enc->mb_h_;
if (ok) AssignSegments(enc, alphas);
if (do_segments) {
int alphas[MAX_ALPHA + 1] = { 0 };
VP8EncIterator it;
VP8IteratorInit(enc, &it);
do {
VP8IteratorImport(&it);
MBAnalyze(&it, alphas, &enc->alpha_, &enc->uv_alpha_);
ok = VP8IteratorProgress(&it, 20);
// Let's pretend we have perfect lossless reconstruction.
} while (ok && VP8IteratorNext(&it, it.yuv_in_));
enc->alpha_ /= enc->mb_w_ * enc->mb_h_;
enc->uv_alpha_ /= enc->mb_w_ * enc->mb_h_;
if (ok) AssignSegments(enc, alphas);
} else { // Use only one default segment.
ResetAllMBInfo(enc);
}
return ok;
}