Exposed HierarchicalClusteringIndex in OpenCV wrapper
This commit is contained in:
parent
56200dbd37
commit
7236858bea
@ -137,6 +137,7 @@ enum flann_distance_t
|
||||
FLANN_DIST_CS = 7,
|
||||
FLANN_DIST_KULLBACK_LEIBLER = 8,
|
||||
FLANN_DIST_KL = 8,
|
||||
FLANN_DIST_HAMMING = 9,
|
||||
|
||||
// deprecated constants, should use the FLANN_DIST_* ones instead
|
||||
EUCLIDEAN = 1,
|
||||
|
@ -619,13 +619,13 @@ private:
|
||||
if (checks>=maxChecks) {
|
||||
if (result.full()) return;
|
||||
}
|
||||
checks += node->size;
|
||||
for (int i=0; i<node->size; ++i) {
|
||||
int index = node->indices[i];
|
||||
if (!checked[index]) {
|
||||
DistanceType dist = distance(dataset[index], vec, veclen_);
|
||||
result.addPoint(dist, index);
|
||||
checked[index] = true;
|
||||
++checks;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -100,6 +100,12 @@ struct CV_EXPORTS AutotunedIndexParams : public IndexParams
|
||||
float memory_weight = 0, float sample_fraction = 0.1);
|
||||
};
|
||||
|
||||
struct CV_EXPORTS HierarchicalClusteringIndexParams : public IndexParams
|
||||
{
|
||||
HierarchicalClusteringIndexParams(int branching = 32,
|
||||
cvflann::flann_centers_init_t centers_init = cvflann::FLANN_CENTERS_RANDOM, int trees = 4, int leaf_size = 100 );
|
||||
};
|
||||
|
||||
struct CV_EXPORTS KMeansIndexParams : public IndexParams
|
||||
{
|
||||
KMeansIndexParams(int branching = 32, int iterations = 11,
|
||||
|
@ -256,17 +256,33 @@ KMeansIndexParams::KMeansIndexParams(int branching, int iterations,
|
||||
// cluster boundary index. Used when searching the kmeans tree
|
||||
p["cb_index"] = cb_index;
|
||||
}
|
||||
|
||||
HierarchicalClusteringIndexParams::HierarchicalClusteringIndexParams(int branching ,
|
||||
flann_centers_init_t centers_init,
|
||||
int trees, int leaf_size)
|
||||
{
|
||||
::cvflann::IndexParams& p = get_params(*this);
|
||||
p["algorithm"] = FLANN_INDEX_HIERARCHICAL;
|
||||
// The branching factor used in the hierarchical clustering
|
||||
p["branching"] = branching;
|
||||
// Algorithm used for picking the initial cluster centers
|
||||
p["centers_init"] = centers_init;
|
||||
// number of parallel trees to build
|
||||
p["trees"] = trees;
|
||||
// maximum leaf size
|
||||
p["leaf_size"] = leaf_size;
|
||||
}
|
||||
|
||||
LshIndexParams::LshIndexParams(int table_number, int key_size, int multi_probe_level)
|
||||
{
|
||||
::cvflann::IndexParams& p = get_params(*this);
|
||||
p["algorithm"] = FLANN_INDEX_LSH;
|
||||
// The number of hash tables to use
|
||||
p["table_number"] = (unsigned)table_number;
|
||||
p["table_number"] = table_number;
|
||||
// The length of the key in the hash tables
|
||||
p["key_size"] = (unsigned)key_size;
|
||||
p["key_size"] = key_size;
|
||||
// Number of levels to use in multi-probe (0 for standard LSH)
|
||||
p["multi_probe_level"] = (unsigned)multi_probe_level;
|
||||
p["multi_probe_level"] = multi_probe_level;
|
||||
}
|
||||
|
||||
SavedIndexParams::SavedIndexParams(const std::string& _filename)
|
||||
@ -317,7 +333,6 @@ typedef ::cvflann::Hamming<uchar> HammingDistance;
|
||||
#else
|
||||
typedef ::cvflann::HammingLUT HammingDistance;
|
||||
#endif
|
||||
typedef ::cvflann::LshIndex<HammingDistance> LshIndex;
|
||||
|
||||
Index::Index()
|
||||
{
|
||||
@ -351,14 +366,11 @@ void Index::build(InputArray _data, const IndexParams& params, flann_distance_t
|
||||
featureType = data.type();
|
||||
distType = _distType;
|
||||
|
||||
if( algo == FLANN_INDEX_LSH )
|
||||
{
|
||||
buildIndex_<HammingDistance, LshIndex>(index, data, params);
|
||||
return;
|
||||
}
|
||||
|
||||
switch( distType )
|
||||
{
|
||||
case FLANN_DIST_HAMMING:
|
||||
buildIndex< HammingDistance >(index, data, params);
|
||||
break;
|
||||
case FLANN_DIST_L2:
|
||||
buildIndex< ::cvflann::L2<float> >(index, data, params);
|
||||
break;
|
||||
@ -406,15 +418,12 @@ void Index::release()
|
||||
{
|
||||
if( !index )
|
||||
return;
|
||||
if( algo == FLANN_INDEX_LSH )
|
||||
|
||||
switch( distType )
|
||||
{
|
||||
deleteIndex_<LshIndex>(index);
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_Assert( featureType == CV_32F );
|
||||
switch( distType )
|
||||
{
|
||||
case FLANN_DIST_HAMMING:
|
||||
deleteIndex< HammingDistance >(index);
|
||||
break;
|
||||
case FLANN_DIST_L2:
|
||||
deleteIndex< ::cvflann::L2<float> >(index);
|
||||
break;
|
||||
@ -440,7 +449,6 @@ void Index::release()
|
||||
#endif
|
||||
default:
|
||||
CV_Error(CV_StsBadArg, "Unknown/unsupported distance type");
|
||||
}
|
||||
}
|
||||
index = 0;
|
||||
}
|
||||
@ -539,18 +547,15 @@ void Index::knnSearch(InputArray _query, OutputArray _indices,
|
||||
OutputArray _dists, int knn, const SearchParams& params)
|
||||
{
|
||||
Mat query = _query.getMat(), indices, dists;
|
||||
int dtype = algo == FLANN_INDEX_LSH ? CV_32S : CV_32F;
|
||||
int dtype = distType == FLANN_DIST_HAMMING ? CV_32S : CV_32F;
|
||||
|
||||
createIndicesDists( _indices, _dists, indices, dists, query.rows, knn, knn, dtype );
|
||||
|
||||
if( algo == FLANN_INDEX_LSH )
|
||||
{
|
||||
runKnnSearch_<HammingDistance, LshIndex>(index, query, indices, dists, knn, params);
|
||||
return;
|
||||
}
|
||||
|
||||
switch( distType )
|
||||
{
|
||||
case FLANN_DIST_HAMMING:
|
||||
runKnnSearch<HammingDistance>(index, query, indices, dists, knn, params);
|
||||
break;
|
||||
case FLANN_DIST_L2:
|
||||
runKnnSearch< ::cvflann::L2<float> >(index, query, indices, dists, knn, params);
|
||||
break;
|
||||
@ -584,7 +589,7 @@ int Index::radiusSearch(InputArray _query, OutputArray _indices,
|
||||
const SearchParams& params)
|
||||
{
|
||||
Mat query = _query.getMat(), indices, dists;
|
||||
int dtype = algo == FLANN_INDEX_LSH ? CV_32S : CV_32F;
|
||||
int dtype = distType == FLANN_DIST_HAMMING ? CV_32S : CV_32F;
|
||||
CV_Assert( maxResults > 0 );
|
||||
createIndicesDists( _indices, _dists, indices, dists, query.rows, maxResults, INT_MAX, dtype );
|
||||
|
||||
@ -593,6 +598,9 @@ int Index::radiusSearch(InputArray _query, OutputArray _indices,
|
||||
|
||||
switch( distType )
|
||||
{
|
||||
case FLANN_DIST_HAMMING:
|
||||
return runRadiusSearch< HammingDistance >(index, query, indices, dists, radius, params);
|
||||
|
||||
case FLANN_DIST_L2:
|
||||
return runRadiusSearch< ::cvflann::L2<float> >(index, query, indices, dists, radius, params);
|
||||
case FLANN_DIST_L1:
|
||||
@ -647,15 +655,11 @@ void Index::save(const std::string& filename) const
|
||||
if (fout == NULL)
|
||||
CV_Error_( CV_StsError, ("Can not open file %s for writing FLANN index\n", filename.c_str()) );
|
||||
|
||||
if( algo == FLANN_INDEX_LSH )
|
||||
{
|
||||
saveIndex_<LshIndex>(this, index, fout);
|
||||
fclose(fout);
|
||||
return;
|
||||
}
|
||||
|
||||
switch( distType )
|
||||
{
|
||||
case FLANN_DIST_HAMMING:
|
||||
saveIndex< HammingDistance >(this, index, fout);
|
||||
break;
|
||||
case FLANN_DIST_L2:
|
||||
saveIndex< ::cvflann::L2<float> >(this, index, fout);
|
||||
break;
|
||||
@ -739,54 +743,51 @@ bool Index::load(InputArray _data, const std::string& filename)
|
||||
return false;
|
||||
}
|
||||
|
||||
if( !((algo == FLANN_INDEX_LSH && featureType == CV_8U) ||
|
||||
(algo != FLANN_INDEX_LSH && featureType == CV_32F)) )
|
||||
int idistType = 0;
|
||||
::cvflann::load_value(fin, idistType);
|
||||
distType = (flann_distance_t)idistType;
|
||||
|
||||
if( !((distType == FLANN_DIST_HAMMING && featureType == CV_8U) ||
|
||||
(distType != FLANN_DIST_HAMMING && featureType == CV_32F)) )
|
||||
{
|
||||
fprintf(stderr, "Reading FLANN index error: unsupported feature type %d for the index type %d\n", featureType, algo);
|
||||
fclose(fin);
|
||||
return false;
|
||||
}
|
||||
int idistType = 0;
|
||||
::cvflann::load_value(fin, idistType);
|
||||
distType = (flann_distance_t)idistType;
|
||||
|
||||
if( algo == FLANN_INDEX_LSH )
|
||||
switch( distType )
|
||||
{
|
||||
loadIndex_<HammingDistance, LshIndex>(this, index, data, fin);
|
||||
case FLANN_DIST_HAMMING:
|
||||
loadIndex< HammingDistance >(this, index, data, fin);
|
||||
break;
|
||||
case FLANN_DIST_L2:
|
||||
loadIndex< ::cvflann::L2<float> >(this, index, data, fin);
|
||||
break;
|
||||
case FLANN_DIST_L1:
|
||||
loadIndex< ::cvflann::L1<float> >(this, index, data, fin);
|
||||
break;
|
||||
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
|
||||
case FLANN_DIST_MAX:
|
||||
loadIndex< ::cvflann::MaxDistance<float> >(this, index, data, fin);
|
||||
break;
|
||||
case FLANN_DIST_HIST_INTERSECT:
|
||||
loadIndex< ::cvflann::HistIntersectionDistance<float> >(index, data, fin);
|
||||
break;
|
||||
case FLANN_DIST_HELLINGER:
|
||||
loadIndex< ::cvflann::HellingerDistance<float> >(this, index, data, fin);
|
||||
break;
|
||||
case FLANN_DIST_CHI_SQUARE:
|
||||
loadIndex< ::cvflann::ChiSquareDistance<float> >(this, index, data, fin);
|
||||
break;
|
||||
case FLANN_DIST_KL:
|
||||
loadIndex< ::cvflann::KL_Divergence<float> >(this, index, data, fin);
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
fprintf(stderr, "Reading FLANN index error: unsupported distance type %d\n", distType);
|
||||
ok = false;
|
||||
}
|
||||
else
|
||||
{
|
||||
switch( distType )
|
||||
{
|
||||
case FLANN_DIST_L2:
|
||||
loadIndex< ::cvflann::L2<float> >(this, index, data, fin);
|
||||
break;
|
||||
case FLANN_DIST_L1:
|
||||
loadIndex< ::cvflann::L1<float> >(this, index, data, fin);
|
||||
break;
|
||||
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
|
||||
case FLANN_DIST_MAX:
|
||||
loadIndex< ::cvflann::MaxDistance<float> >(this, index, data, fin);
|
||||
break;
|
||||
case FLANN_DIST_HIST_INTERSECT:
|
||||
loadIndex< ::cvflann::HistIntersectionDistance<float> >(index, data, fin);
|
||||
break;
|
||||
case FLANN_DIST_HELLINGER:
|
||||
loadIndex< ::cvflann::HellingerDistance<float> >(this, index, data, fin);
|
||||
break;
|
||||
case FLANN_DIST_CHI_SQUARE:
|
||||
loadIndex< ::cvflann::ChiSquareDistance<float> >(this, index, data, fin);
|
||||
break;
|
||||
case FLANN_DIST_KL:
|
||||
loadIndex< ::cvflann::KL_Divergence<float> >(this, index, data, fin);
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
fprintf(stderr, "Reading FLANN index error: unsupported distance type %d\n", distType);
|
||||
ok = false;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if( fin )
|
||||
fclose(fin);
|
||||
return ok;
|
||||
|
Loading…
Reference in New Issue
Block a user