ocl: correct disabling of OpenCL code

This commit is contained in:
Alexander Alekhin
2015-06-19 20:52:14 +03:00
parent 190d00ea3e
commit 7213e5f68a
16 changed files with 127 additions and 18 deletions

View File

@@ -250,6 +250,7 @@ void FAST_t(InputArray _img, std::vector<KeyPoint>& keypoints, int threshold, bo
}
}
#ifdef HAVE_OPENCL
template<typename pt>
struct cmp_pt
{
@@ -326,16 +327,18 @@ static bool ocl_FAST( InputArray _img, std::vector<KeyPoint>& keypoints,
return true;
}
#endif
void FAST(InputArray _img, std::vector<KeyPoint>& keypoints, int threshold, bool nonmax_suppression, int type)
{
#ifdef HAVE_OPENCL
if( ocl::useOpenCL() && _img.isUMat() && type == FastFeatureDetector::TYPE_9_16 &&
ocl_FAST(_img, keypoints, threshold, nonmax_suppression, 10000))
{
CV_IMPL_ADD(CV_IMPL_OCL);
return;
}
#endif
switch(type) {
case FastFeatureDetector::TYPE_5_8:

View File

@@ -52,6 +52,7 @@ namespace cv
/////////////////////// ocl functions for BFMatcher ///////////////////////////
#ifdef HAVE_OPENCL
static void ensureSizeIsEnough(int rows, int cols, int type, UMat &m)
{
if (m.type() == type && m.rows >= rows && m.cols >= cols)
@@ -390,6 +391,7 @@ static bool ocl_radiusMatchDownload(const UMat &trainIdx, const UMat &distance,
return ocl_radiusMatchConvert(trainIdxCPU, distanceCPU, nMatchesCPU, matches, compactResult);
}
#endif
/****************************************************************************************\
* DescriptorMatcher *
@@ -693,6 +695,7 @@ Ptr<DescriptorMatcher> BFMatcher::clone( bool emptyTrainData ) const
return matcher;
}
#ifdef HAVE_OPENCL
static bool ocl_match(InputArray query, InputArray _train, std::vector< std::vector<DMatch> > &matches, int dstType)
{
UMat trainIdx, distance;
@@ -714,6 +717,7 @@ static bool ocl_knnMatch(InputArray query, InputArray _train, std::vector< std::
return false;
return true;
}
#endif
void BFMatcher::knnMatchImpl( InputArray _queryDescriptors, std::vector<std::vector<DMatch> >& matches, int knn,
InputArrayOfArrays _masks, bool compactResult )
@@ -744,6 +748,7 @@ void BFMatcher::knnMatchImpl( InputArray _queryDescriptors, std::vector<std::vec
utrainDescCollection.clear();
}
#ifdef HAVE_OPENCL
int trainDescVectorSize = trainDescCollection.empty() ? (int)utrainDescCollection.size() : (int)trainDescCollection.size();
Size trainDescSize = trainDescCollection.empty() ? utrainDescCollection[0].size() : trainDescCollection[0].size();
int trainDescOffset = trainDescCollection.empty() ? (int)utrainDescCollection[0].offset : 0;
@@ -791,6 +796,7 @@ void BFMatcher::knnMatchImpl( InputArray _queryDescriptors, std::vector<std::vec
}
}
}
#endif
Mat queryDescriptors = _queryDescriptors.getMat();
if(trainDescCollection.empty() && !utrainDescCollection.empty())
@@ -851,6 +857,7 @@ void BFMatcher::knnMatchImpl( InputArray _queryDescriptors, std::vector<std::vec
}
}
#ifdef HAVE_OPENCL
static bool ocl_radiusMatch(InputArray query, InputArray _train, std::vector< std::vector<DMatch> > &matches,
float maxDistance, int dstType, bool compactResult)
{
@@ -861,6 +868,7 @@ static bool ocl_radiusMatch(InputArray query, InputArray _train, std::vector< st
return false;
return true;
}
#endif
void BFMatcher::radiusMatchImpl( InputArray _queryDescriptors, std::vector<std::vector<DMatch> >& matches,
float maxDistance, InputArrayOfArrays _masks, bool compactResult )
@@ -888,6 +896,7 @@ void BFMatcher::radiusMatchImpl( InputArray _queryDescriptors, std::vector<std::
utrainDescCollection.clear();
}
#ifdef HAVE_OPENCL
int trainDescVectorSize = trainDescCollection.empty() ? (int)utrainDescCollection.size() : (int)trainDescCollection.size();
Size trainDescSize = trainDescCollection.empty() ? utrainDescCollection[0].size() : trainDescCollection[0].size();
int trainDescOffset = trainDescCollection.empty() ? (int)utrainDescCollection[0].offset : 0;
@@ -913,6 +922,7 @@ void BFMatcher::radiusMatchImpl( InputArray _queryDescriptors, std::vector<std::
}
}
}
#endif
Mat queryDescriptors = _queryDescriptors.getMat();
if(trainDescCollection.empty() && !utrainDescCollection.empty())

View File

@@ -57,6 +57,7 @@ template<typename _Tp> inline void copyVectorToUMat(const std::vector<_Tp>& v, O
Mat(1, (int)(v.size()*sizeof(v[0])), CV_8U, (void*)&v[0]).copyTo(um);
}
#ifdef HAVE_OPENCL
static bool
ocl_HarrisResponses(const UMat& imgbuf,
const UMat& layerinfo,
@@ -120,7 +121,7 @@ ocl_computeOrbDescriptors(const UMat& imgbuf, const UMat& layerInfo,
ocl::KernelArg::PtrReadOnly(pattern),
nkeypoints, dsize).run(1, globalSize, 0, true);
}
#endif
/**
* Function that computes the Harris responses in a
@@ -726,6 +727,7 @@ int ORB_Impl::defaultNorm() const
return NORM_HAMMING;
}
#ifdef HAVE_OPENCL
static void uploadORBKeypoints(const std::vector<KeyPoint>& src, std::vector<Vec3i>& buf, OutputArray dst)
{
size_t i, n = src.size();
@@ -758,7 +760,7 @@ static void uploadORBKeypoints(const std::vector<KeyPoint>& src,
}
copyVectorToUMat(buf, dst);
}
#endif
/** Compute the ORB_Impl keypoints on an image
* @param image_pyramid the image pyramid to compute the features and descriptors on
@@ -776,6 +778,10 @@ static void computeKeyPoints(const Mat& imagePyramid,
int edgeThreshold, int patchSize, int scoreType,
bool useOCL, int fastThreshold )
{
#ifndef HAVE_OPENCL
(void)uimagePyramid;(void)ulayerInfo;(void)useOCL;
#endif
int i, nkeypoints, level, nlevels = (int)layerInfo.size();
std::vector<int> nfeaturesPerLevel(nlevels);
@@ -862,6 +868,7 @@ static void computeKeyPoints(const Mat& imagePyramid,
// Select best features using the Harris cornerness (better scoring than FAST)
if( scoreType == ORB_Impl::HARRIS_SCORE )
{
#ifdef HAVE_OPENCL
if( useOCL )
{
uploadORBKeypoints(allKeypoints, ukeypoints_buf, ukeypoints);
@@ -877,6 +884,7 @@ static void computeKeyPoints(const Mat& imagePyramid,
}
if( !useOCL )
#endif
HarrisResponses(imagePyramid, layerInfo, allKeypoints, 7, HARRIS_K);
std::vector<KeyPoint> newAllKeypoints;
@@ -902,6 +910,8 @@ static void computeKeyPoints(const Mat& imagePyramid,
}
nkeypoints = (int)allKeypoints.size();
#ifdef HAVE_OPENCL
if( useOCL )
{
UMat uumax;
@@ -922,6 +932,7 @@ static void computeKeyPoints(const Mat& imagePyramid,
}
if( !useOCL )
#endif
{
ICAngles(imagePyramid, layerInfo, allKeypoints, umax, halfPatchSize);
}
@@ -1147,6 +1158,7 @@ void ORB_Impl::detectAndCompute( InputArray _image, InputArray _mask,
GaussianBlur(workingMat, workingMat, Size(7, 7), 2, 2, BORDER_REFLECT_101);
}
#ifdef HAVE_OPENCL
if( useOCL )
{
imagePyramid.copyTo(uimagePyramid);
@@ -1166,6 +1178,7 @@ void ORB_Impl::detectAndCompute( InputArray _image, InputArray _mask,
}
if( !useOCL )
#endif
{
Mat descriptors = _descriptors.getMat();
computeOrbDescriptors(imagePyramid, layerInfo, layerScale,