fix the haar kernel problems on Nvidia and Intel OCL

This commit is contained in:
yao 2013-02-23 15:19:46 +08:00
parent e6dd4e840d
commit 720eaf1e1a
2 changed files with 220 additions and 215 deletions

View File

@ -926,7 +926,7 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
if( gimg.cols < minSize.width || gimg.rows < minSize.height ) if( gimg.cols < minSize.width || gimg.rows < minSize.height )
CV_Error(CV_StsError, "Image too small"); CV_Error(CV_StsError, "Image too small");
if( (flags & CV_HAAR_SCALE_IMAGE) && gimg.clCxt->impl->devName.find("Intel(R) HD Graphics") == string::npos ) if( (flags & CV_HAAR_SCALE_IMAGE) )
{ {
CvSize winSize0 = cascade->orig_window_size; CvSize winSize0 = cascade->orig_window_size;
//float scalefactor = 1.1f; //float scalefactor = 1.1f;

View File

@ -9,6 +9,7 @@
// Niko Li, newlife20080214@gmail.com // Niko Li, newlife20080214@gmail.com
// Wang Weiyan, wangweiyanster@gmail.com // Wang Weiyan, wangweiyanster@gmail.com
// Jia Haipeng, jiahaipeng95@gmail.com // Jia Haipeng, jiahaipeng95@gmail.com
// Nathan, liujun@multicorewareinc.com
// Redistribution and use in source and binary forms, with or without modification, // Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met: // are permitted provided that the following conditions are met:
// //
@ -47,14 +48,14 @@ typedef float sqsumtype;
typedef struct __attribute__((aligned (128))) GpuHidHaarFeature typedef struct __attribute__((aligned (128))) GpuHidHaarFeature
{ {
struct __attribute__((aligned (32))) struct __attribute__((aligned (32)))
{ {
int p0 __attribute__((aligned (4))); int p0 __attribute__((aligned (4)));
int p1 __attribute__((aligned (4))); int p1 __attribute__((aligned (4)));
int p2 __attribute__((aligned (4))); int p2 __attribute__((aligned (4)));
int p3 __attribute__((aligned (4))); int p3 __attribute__((aligned (4)));
float weight __attribute__((aligned (4))); float weight __attribute__((aligned (4)));
} }
rect[CV_HAAR_FEATURE_MAX] __attribute__((aligned (32))); rect[CV_HAAR_FEATURE_MAX] __attribute__((aligned (32)));
} }
GpuHidHaarFeature; GpuHidHaarFeature;
@ -108,7 +109,7 @@ typedef struct __attribute__((aligned (64))) GpuHidHaarClassifierCascade
int p2 __attribute__((aligned (4))); int p2 __attribute__((aligned (4)));
int p3 __attribute__((aligned (4))); int p3 __attribute__((aligned (4)));
float inv_window_area __attribute__((aligned (4))); float inv_window_area __attribute__((aligned (4)));
}GpuHidHaarClassifierCascade; } GpuHidHaarClassifierCascade;
__kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCascade(//constant GpuHidHaarClassifierCascade * cascade, __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCascade(//constant GpuHidHaarClassifierCascade * cascade,
@ -132,7 +133,7 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
//const int height, //const int height,
//const int grpnumperline, //const int grpnumperline,
//const int totalgrp //const int totalgrp
) )
{ {
int grpszx = get_local_size(0); int grpszx = get_local_size(0);
int grpszy = get_local_size(1); int grpszy = get_local_size(1);
@ -184,7 +185,7 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
__global const int * sum = sum1 + imgoff; __global const int * sum = sum1 + imgoff;
__global const float * sqsum = sqsum1 + imgoff; __global const float * sqsum = sqsum1 + imgoff;
for(int grploop=grpidx;grploop<totalgrp;grploop+=grpnumx) for(int grploop=grpidx; grploop<totalgrp; grploop+=grpnumx)
{ {
int grpidy = grploop / grpnumperline; int grpidy = grploop / grpnumperline;
int grpidx = grploop - mul24(grpidy, grpnumperline); int grpidx = grploop - mul24(grpidy, grpnumperline);
@ -195,7 +196,7 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
int grpoffx = x-lclidx; int grpoffx = x-lclidx;
int grpoffy = y-lclidy; int grpoffy = y-lclidy;
for(int i=0;i<read_loop;i++) for(int i=0; i<read_loop; i++)
{ {
int pos_id = mad24(i,lcl_sz,lcl_id); int pos_id = mad24(i,lcl_sz,lcl_id);
pos_id = pos_id < total_read ? pos_id : 0; pos_id = pos_id < total_read ? pos_id : 0;
@ -299,8 +300,9 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
} }
barrier(CLK_LOCAL_MEM_FENCE); barrier(CLK_LOCAL_MEM_FENCE);
int queuecount = lclcount[0]; int queuecount = lclcount[0];
barrier(CLK_LOCAL_MEM_FENCE);
nodecounter = splitnode; nodecounter = splitnode;
for(int stageloop = split_stage; stageloop< end_stage && queuecount>0;stageloop++) for(int stageloop = split_stage; stageloop< end_stage && queuecount>0; stageloop++)
{ {
//barrier(CLK_LOCAL_MEM_FENCE); //barrier(CLK_LOCAL_MEM_FENCE);
//if(lcl_id == 0) //if(lcl_id == 0)
@ -316,7 +318,7 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
int lcl_compute_win_id = (lcl_id >>(6-perfscale)); int lcl_compute_win_id = (lcl_id >>(6-perfscale));
int lcl_loops = (stageinfo.x + lcl_compute_win -1) >> (6-perfscale); int lcl_loops = (stageinfo.x + lcl_compute_win -1) >> (6-perfscale);
int lcl_compute_id = lcl_id - (lcl_compute_win_id << (6-perfscale)); int lcl_compute_id = lcl_id - (lcl_compute_win_id << (6-perfscale));
for(int queueloop=0;queueloop<queuecount_loop/* && lcl_compute_win_id < queuecount*/;queueloop++) for(int queueloop=0; queueloop<queuecount_loop/* && lcl_compute_win_id < queuecount*/; queueloop++)
{ {
float stage_sum = 0.f; float stage_sum = 0.f;
int temp_coord = lcloutindex[lcl_compute_win_id<<1]; int temp_coord = lcloutindex[lcl_compute_win_id<<1];
@ -324,11 +326,12 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
int queue_pixel = mad24(((temp_coord & (int)0xffff0000)>>16),readwidth,temp_coord & 0xffff); int queue_pixel = mad24(((temp_coord & (int)0xffff0000)>>16),readwidth,temp_coord & 0xffff);
//barrier(CLK_LOCAL_MEM_FENCE); //barrier(CLK_LOCAL_MEM_FENCE);
if(lcl_compute_win_id < queuecount) { if(lcl_compute_win_id < queuecount)
{
int tempnodecounter = lcl_compute_id; int tempnodecounter = lcl_compute_id;
float part_sum = 0.f; float part_sum = 0.f;
for(int lcl_loop=0;lcl_loop<lcl_loops && tempnodecounter<stageinfo.x;lcl_loop++) for(int lcl_loop=0; lcl_loop<lcl_loops && tempnodecounter<stageinfo.x; lcl_loop++)
{ {
__global GpuHidHaarTreeNode* currentnodeptr = (nodeptr + nodecounter + tempnodecounter); __global GpuHidHaarTreeNode* currentnodeptr = (nodeptr + nodecounter + tempnodecounter);
@ -363,8 +366,9 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
partialsum[lcl_id]=part_sum; partialsum[lcl_id]=part_sum;
} }
barrier(CLK_LOCAL_MEM_FENCE); barrier(CLK_LOCAL_MEM_FENCE);
if(lcl_compute_win_id < queuecount) { if(lcl_compute_win_id < queuecount)
for(int i=0;i<lcl_compute_win && (lcl_compute_id==0);i++) {
for(int i=0; i<lcl_compute_win && (lcl_compute_id==0); i++)
{ {
stage_sum += partialsum[lcl_id+i]; stage_sum += partialsum[lcl_id+i];
} }
@ -378,8 +382,9 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
} }
barrier(CLK_LOCAL_MEM_FENCE); barrier(CLK_LOCAL_MEM_FENCE);
}//end for(int queueloop=0;queueloop<queuecount_loop;queueloop++) }//end for(int queueloop=0;queueloop<queuecount_loop;queueloop++)
barrier(CLK_LOCAL_MEM_FENCE); //barrier(CLK_LOCAL_MEM_FENCE);
queuecount = lclcount[0]; queuecount = lclcount[0];
barrier(CLK_LOCAL_MEM_FENCE);
nodecounter += stageinfo.x; nodecounter += stageinfo.x;
}//end for(int stageloop = splitstage; stageloop< endstage && queuecount>0;stageloop++) }//end for(int stageloop = splitstage; stageloop< endstage && queuecount>0;stageloop++)
//barrier(CLK_LOCAL_MEM_FENCE); //barrier(CLK_LOCAL_MEM_FENCE);
@ -420,9 +425,9 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
/* /*
if(stagecascade->two_rects) if(stagecascade->two_rects)
{ {
#pragma unroll #pragma unroll
for( n = 0; n < stagecascade->count; n++ ) for( n = 0; n < stagecascade->count; n++ )
{ {
@ -435,9 +440,9 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
counter++; counter++;
} }
} }
else else
{ {
#pragma unroll #pragma unroll
for( n = 0; n < stagecascade->count; n++ ) for( n = 0; n < stagecascade->count; n++ )
{ {
@ -452,9 +457,9 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
counter++; counter++;
} }
} }
*/ */
/* /*
__kernel void gpuRunHaarClassifierCascade_ScaleWindow( __kernel void gpuRunHaarClassifierCascade_ScaleWindow(
constant GpuHidHaarClassifierCascade * _cascade, constant GpuHidHaarClassifierCascade * _cascade,
global GpuHidHaarStageClassifier * stagecascadeptr, global GpuHidHaarStageClassifier * stagecascadeptr,
@ -477,51 +482,51 @@ __kernel void gpuRunHaarClassifierCascade_ScaleWindow(
int outputstep) int outputstep)
//float scalefactor) //float scalefactor)
{ {
unsigned int x1 = get_global_id(0); unsigned int x1 = get_global_id(0);
unsigned int y1 = get_global_id(1); unsigned int y1 = get_global_id(1);
int p_offset; int p_offset;
int m, n; int m, n;
int result; int result;
int counter; int counter;
float mean, variance_norm_factor; float mean, variance_norm_factor;
for(int i=0;i<loopcount;i++) for(int i=0;i<loopcount;i++)
{ {
constant GpuHidHaarClassifierCascade * cascade = _cascade + i; constant GpuHidHaarClassifierCascade * cascade = _cascade + i;
global int * candidate = _candidate + i*outputstep; global int * candidate = _candidate + i*outputstep;
int window_width = cascade->p1 - cascade->p0; int window_width = cascade->p1 - cascade->p0;
int window_height = window_width; int window_height = window_width;
result = 1; result = 1;
counter = 0; counter = 0;
unsigned int x = mul24(x1,ystep); unsigned int x = mul24(x1,ystep);
unsigned int y = mul24(y1,ystep); unsigned int y = mul24(y1,ystep);
if((x < cols - window_width - 1) && (y < rows - window_height -1)) if((x < cols - window_width - 1) && (y < rows - window_height -1))
{ {
global GpuHidHaarStageClassifier *stagecascade = stagecascadeptr +cascade->count*i+ start_stage; global GpuHidHaarStageClassifier *stagecascade = stagecascadeptr +cascade->count*i+ start_stage;
//global GpuHidHaarClassifier *classifier = classifierptr; //global GpuHidHaarClassifier *classifier = classifierptr;
global GpuHidHaarTreeNode *node = nodeptr + nodenum*i; global GpuHidHaarTreeNode *node = nodeptr + nodenum*i;
p_offset = mad24(y, pixel_step, x);// modify p_offset = mad24(y, pixel_step, x);// modify
mean = (*(sum + p_offset + (int)cascade->p0) - *(sum + p_offset + (int)cascade->p1) - mean = (*(sum + p_offset + (int)cascade->p0) - *(sum + p_offset + (int)cascade->p1) -
*(sum + p_offset + (int)cascade->p2) + *(sum + p_offset + (int)cascade->p3)) *(sum + p_offset + (int)cascade->p2) + *(sum + p_offset + (int)cascade->p3))
*cascade->inv_window_area; *cascade->inv_window_area;
variance_norm_factor = *(sqsum + p_offset + cascade->p0) - *(sqsum + cascade->p1 + p_offset) - variance_norm_factor = *(sqsum + p_offset + cascade->p0) - *(sqsum + cascade->p1 + p_offset) -
*(sqsum + p_offset + cascade->p2) + *(sqsum + cascade->p3 + p_offset); *(sqsum + p_offset + cascade->p2) + *(sqsum + cascade->p3 + p_offset);
variance_norm_factor = variance_norm_factor * cascade->inv_window_area - mean * mean; variance_norm_factor = variance_norm_factor * cascade->inv_window_area - mean * mean;
variance_norm_factor = variance_norm_factor >=0.f ? sqrt(variance_norm_factor) : 1;//modify variance_norm_factor = variance_norm_factor >=0.f ? sqrt(variance_norm_factor) : 1;//modify
// if( cascade->is_stump_based ) // if( cascade->is_stump_based )
//{ //{
for( m = start_stage; m < end_stage; m++ ) for( m = start_stage; m < end_stage; m++ )
{ {
float stage_sum = 0.f; float stage_sum = 0.f;
float t, classsum; float t, classsum;
GpuHidHaarTreeNode t1; GpuHidHaarTreeNode t1;
//#pragma unroll //#pragma unroll
for( n = 0; n < stagecascade->count; n++ ) for( n = 0; n < stagecascade->count; n++ )
{ {
t1 = *(node + counter); t1 = *(node + counter);
t = t1.threshold * variance_norm_factor; t = t1.threshold * variance_norm_factor;
classsum = calc_sum1(t1, p_offset ,0) * t1.weight[0] + calc_sum1(t1, p_offset ,1) * t1.weight[1]; classsum = calc_sum1(t1, p_offset ,0) * t1.weight[0] + calc_sum1(t1, p_offset ,1) * t1.weight[1];
@ -531,27 +536,27 @@ __kernel void gpuRunHaarClassifierCascade_ScaleWindow(
stage_sum += classsum >= t ? t1.alpha[1] : t1.alpha[0];// modify stage_sum += classsum >= t ? t1.alpha[1] : t1.alpha[0];// modify
counter++; counter++;
} }
if (stage_sum < stagecascade->threshold) if (stage_sum < stagecascade->threshold)
{ {
result = 0; result = 0;
break; break;
} }
stagecascade++; stagecascade++;
} }
if(result) if(result)
{ {
candidate[4 * (y1 * detect_width + x1)] = x; candidate[4 * (y1 * detect_width + x1)] = x;
candidate[4 * (y1 * detect_width + x1) + 1] = y; candidate[4 * (y1 * detect_width + x1) + 1] = y;
candidate[4 * (y1 * detect_width + x1)+2] = window_width; candidate[4 * (y1 * detect_width + x1)+2] = window_width;
candidate[4 * (y1 * detect_width + x1) + 3] = window_height; candidate[4 * (y1 * detect_width + x1) + 3] = window_height;
} }
//} //}
} }
} }
} }
*/ */