Prepare KAZE and AKAZE sources for integration
This commit is contained in:
parent
7a59435490
commit
703e012a5b
@ -33,7 +33,7 @@ using namespace cv;
|
||||
* @param options AKAZE configuration options
|
||||
* @note This constructor allocates memory for the nonlinear scale space
|
||||
*/
|
||||
AKAZE::AKAZE(const AKAZEOptions& options) {
|
||||
AKAZEFeatures::AKAZEFeatures(const AKAZEOptions& options) {
|
||||
|
||||
soffset_ = options.soffset;
|
||||
factor_size_ = DEFAULT_FACTOR_SIZE;
|
||||
@ -75,7 +75,7 @@ AKAZE::AKAZE(const AKAZEOptions& options) {
|
||||
/**
|
||||
* @brief AKAZE destructor
|
||||
*/
|
||||
AKAZE::~AKAZE(void) {
|
||||
AKAZEFeatures::~AKAZEFeatures(void) {
|
||||
|
||||
evolution_.clear();
|
||||
}
|
||||
@ -86,7 +86,7 @@ AKAZE::~AKAZE(void) {
|
||||
/**
|
||||
* @brief This method allocates the memory for the nonlinear diffusion evolution
|
||||
*/
|
||||
void AKAZE::Allocate_Memory_Evolution(void) {
|
||||
void AKAZEFeatures::Allocate_Memory_Evolution(void) {
|
||||
|
||||
float rfactor = 0.0;
|
||||
int level_height = 0, level_width = 0;
|
||||
@ -145,7 +145,7 @@ void AKAZE::Allocate_Memory_Evolution(void) {
|
||||
* @param img Input image for which the nonlinear scale space needs to be created
|
||||
* @return 0 if the nonlinear scale space was created successfully, -1 otherwise
|
||||
*/
|
||||
int AKAZE::Create_Nonlinear_Scale_Space(const cv::Mat &img) {
|
||||
int AKAZEFeatures::Create_Nonlinear_Scale_Space(const cv::Mat &img) {
|
||||
|
||||
double t1 = 0.0, t2 = 0.0;
|
||||
|
||||
@ -222,7 +222,7 @@ int AKAZE::Create_Nonlinear_Scale_Space(const cv::Mat &img) {
|
||||
* @brief This method selects interesting keypoints through the nonlinear scale space
|
||||
* @param kpts Vector of detected keypoints
|
||||
*/
|
||||
void AKAZE::Feature_Detection(std::vector<cv::KeyPoint>& kpts) {
|
||||
void AKAZEFeatures::Feature_Detection(std::vector<cv::KeyPoint>& kpts) {
|
||||
|
||||
double t1 = 0.0, t2 = 0.0;
|
||||
|
||||
@ -242,7 +242,7 @@ void AKAZE::Feature_Detection(std::vector<cv::KeyPoint>& kpts) {
|
||||
/**
|
||||
* @brief This method computes the multiscale derivatives for the nonlinear scale space
|
||||
*/
|
||||
void AKAZE::Compute_Multiscale_Derivatives(void) {
|
||||
void AKAZEFeatures::Compute_Multiscale_Derivatives(void) {
|
||||
|
||||
double t1 = 0.0, t2 = 0.0;
|
||||
|
||||
@ -279,7 +279,7 @@ void AKAZE::Compute_Multiscale_Derivatives(void) {
|
||||
* @brief This method computes the feature detector response for the nonlinear scale space
|
||||
* @note We use the Hessian determinant as the feature detector response
|
||||
*/
|
||||
void AKAZE::Compute_Determinant_Hessian_Response(void) {
|
||||
void AKAZEFeatures::Compute_Determinant_Hessian_Response(void) {
|
||||
|
||||
// Firstly compute the multiscale derivatives
|
||||
Compute_Multiscale_Derivatives();
|
||||
@ -307,7 +307,7 @@ void AKAZE::Compute_Determinant_Hessian_Response(void) {
|
||||
* @brief This method finds extrema in the nonlinear scale space
|
||||
* @param kpts Vector of detected keypoints
|
||||
*/
|
||||
void AKAZE::Find_Scale_Space_Extrema(std::vector<cv::KeyPoint>& kpts) {
|
||||
void AKAZEFeatures::Find_Scale_Space_Extrema(std::vector<cv::KeyPoint>& kpts) {
|
||||
|
||||
double t1 = 0.0, t2 = 0.0;
|
||||
float value = 0.0;
|
||||
@ -418,7 +418,7 @@ void AKAZE::Find_Scale_Space_Extrema(std::vector<cv::KeyPoint>& kpts) {
|
||||
* @brief This method performs subpixel refinement of the detected keypoints
|
||||
* @param kpts Vector of detected keypoints
|
||||
*/
|
||||
void AKAZE::Do_Subpixel_Refinement(std::vector<cv::KeyPoint>& kpts) {
|
||||
void AKAZEFeatures::Do_Subpixel_Refinement(std::vector<cv::KeyPoint>& kpts) {
|
||||
|
||||
double t1 = 0.0, t2 = 0.0;
|
||||
float Dx = 0.0, Dy = 0.0, ratio = 0.0;
|
||||
@ -493,7 +493,7 @@ void AKAZE::Do_Subpixel_Refinement(std::vector<cv::KeyPoint>& kpts) {
|
||||
* @param kpts Vector of keypoints
|
||||
* @param mdist Maximum distance in pixels
|
||||
*/
|
||||
void AKAZE::Feature_Suppression_Distance(std::vector<cv::KeyPoint>& kpts, float mdist) {
|
||||
void AKAZEFeatures::Feature_Suppression_Distance(std::vector<cv::KeyPoint>& kpts, float mdist) {
|
||||
|
||||
vector<KeyPoint> aux;
|
||||
vector<int> to_delete;
|
||||
@ -545,7 +545,7 @@ void AKAZE::Feature_Suppression_Distance(std::vector<cv::KeyPoint>& kpts, float
|
||||
* @param kpts Vector of detected keypoints
|
||||
* @param desc Matrix to store the descriptors
|
||||
*/
|
||||
void AKAZE::Compute_Descriptors(std::vector<cv::KeyPoint>& kpts, cv::Mat& desc) {
|
||||
void AKAZEFeatures::Compute_Descriptors(std::vector<cv::KeyPoint>& kpts, cv::Mat& desc) {
|
||||
|
||||
double t1 = 0.0, t2 = 0.0;
|
||||
|
||||
@ -653,7 +653,7 @@ void AKAZE::Compute_Descriptors(std::vector<cv::KeyPoint>& kpts, cv::Mat& desc)
|
||||
* @note The orientation is computed using a similar approach as described in the
|
||||
* original SURF method. See Bay et al., Speeded Up Robust Features, ECCV 2006
|
||||
*/
|
||||
void AKAZE::Compute_Main_Orientation_SURF(cv::KeyPoint& kpt) {
|
||||
void AKAZEFeatures::Compute_Main_Orientation_SURF(cv::KeyPoint& kpt) {
|
||||
|
||||
int ix = 0, iy = 0, idx = 0, s = 0, level = 0;
|
||||
float xf = 0.0, yf = 0.0, gweight = 0.0, ratio = 0.0;
|
||||
@ -728,7 +728,7 @@ void AKAZE::Compute_Main_Orientation_SURF(cv::KeyPoint& kpt) {
|
||||
* Gaussian weighting is performed. The descriptor is inspired from Bay et al.,
|
||||
* Speeded Up Robust Features, ECCV, 2006
|
||||
*/
|
||||
void AKAZE::Get_SURF_Descriptor_Upright_64(const cv::KeyPoint& kpt, float *desc) {
|
||||
void AKAZEFeatures::Get_SURF_Descriptor_Upright_64(const cv::KeyPoint& kpt, float *desc) {
|
||||
|
||||
float dx = 0.0, dy = 0.0, mdx = 0.0, mdy = 0.0;
|
||||
float rx = 0.0, ry = 0.0, len = 0.0, xf = 0.0, yf = 0.0;
|
||||
@ -819,7 +819,7 @@ void AKAZE::Get_SURF_Descriptor_Upright_64(const cv::KeyPoint& kpt, float *desc)
|
||||
* Gaussian weighting is performed. The descriptor is inspired from Bay et al.,
|
||||
* Speeded Up Robust Features, ECCV, 2006
|
||||
*/
|
||||
void AKAZE::Get_SURF_Descriptor_64(const cv::KeyPoint& kpt, float *desc) {
|
||||
void AKAZEFeatures::Get_SURF_Descriptor_64(const cv::KeyPoint& kpt, float *desc) {
|
||||
|
||||
float dx = 0.0, dy = 0.0, mdx = 0.0, mdy = 0.0;
|
||||
float rx = 0.0, ry = 0.0, rrx = 0.0, rry = 0.0, len = 0.0, xf = 0.0, yf = 0.0;
|
||||
@ -918,7 +918,7 @@ void AKAZE::Get_SURF_Descriptor_64(const cv::KeyPoint& kpt, float *desc) {
|
||||
* from Agrawal et al., CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching,
|
||||
* ECCV 2008
|
||||
*/
|
||||
void AKAZE::Get_MSURF_Upright_Descriptor_64(const cv::KeyPoint& kpt, float *desc) {
|
||||
void AKAZEFeatures::Get_MSURF_Upright_Descriptor_64(const cv::KeyPoint& kpt, float *desc) {
|
||||
|
||||
float dx = 0.0, dy = 0.0, mdx = 0.0, mdy = 0.0, gauss_s1 = 0.0, gauss_s2 = 0.0;
|
||||
float rx = 0.0, ry = 0.0, len = 0.0, xf = 0.0, yf = 0.0, ys = 0.0, xs = 0.0;
|
||||
@ -1041,7 +1041,7 @@ void AKAZE::Get_MSURF_Upright_Descriptor_64(const cv::KeyPoint& kpt, float *desc
|
||||
* from Agrawal et al., CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching,
|
||||
* ECCV 2008
|
||||
*/
|
||||
void AKAZE::Get_MSURF_Descriptor_64(const cv::KeyPoint& kpt, float *desc) {
|
||||
void AKAZEFeatures::Get_MSURF_Descriptor_64(const cv::KeyPoint& kpt, float *desc) {
|
||||
|
||||
float dx = 0.0, dy = 0.0, mdx = 0.0, mdy = 0.0, gauss_s1 = 0.0, gauss_s2 = 0.0;
|
||||
float rx = 0.0, ry = 0.0, rrx = 0.0, rry = 0.0, len = 0.0, xf = 0.0, yf = 0.0, ys = 0.0, xs = 0.0;
|
||||
@ -1165,7 +1165,7 @@ void AKAZE::Get_MSURF_Descriptor_64(const cv::KeyPoint& kpt, float *desc) {
|
||||
* @param kpt Input keypoint
|
||||
* @param desc Descriptor vector
|
||||
*/
|
||||
void AKAZE::Get_Upright_MLDB_Full_Descriptor(const cv::KeyPoint& kpt, unsigned char *desc) {
|
||||
void AKAZEFeatures::Get_Upright_MLDB_Full_Descriptor(const cv::KeyPoint& kpt, unsigned char *desc) {
|
||||
|
||||
float di = 0.0, dx = 0.0, dy = 0.0;
|
||||
float ri = 0.0, rx = 0.0, ry = 0.0, xf = 0.0, yf = 0.0;
|
||||
@ -1378,7 +1378,7 @@ void AKAZE::Get_Upright_MLDB_Full_Descriptor(const cv::KeyPoint& kpt, unsigned c
|
||||
* @param kpt Input keypoint
|
||||
* @param desc Descriptor vector
|
||||
*/
|
||||
void AKAZE::Get_MLDB_Full_Descriptor(const cv::KeyPoint& kpt, unsigned char *desc) {
|
||||
void AKAZEFeatures::Get_MLDB_Full_Descriptor(const cv::KeyPoint& kpt, unsigned char *desc) {
|
||||
|
||||
float di = 0.0, dx = 0.0, dy = 0.0, ratio = 0.0;
|
||||
float ri = 0.0, rx = 0.0, ry = 0.0, rrx = 0.0, rry = 0.0, xf = 0.0, yf = 0.0;
|
||||
@ -1680,7 +1680,7 @@ void AKAZE::Get_MLDB_Full_Descriptor(const cv::KeyPoint& kpt, unsigned char *des
|
||||
* @param kpt Input keypoint
|
||||
* @param desc Descriptor vector
|
||||
*/
|
||||
void AKAZE::Get_MLDB_Descriptor_Subset(const cv::KeyPoint& kpt, unsigned char *desc) {
|
||||
void AKAZEFeatures::Get_MLDB_Descriptor_Subset(const cv::KeyPoint& kpt, unsigned char *desc) {
|
||||
|
||||
float di, dx, dy;
|
||||
float rx, ry;
|
||||
@ -1772,7 +1772,7 @@ void AKAZE::Get_MLDB_Descriptor_Subset(const cv::KeyPoint& kpt, unsigned char *d
|
||||
* @param kpt Input keypoint
|
||||
* @param desc Descriptor vector
|
||||
*/
|
||||
void AKAZE::Get_Upright_MLDB_Descriptor_Subset(const cv::KeyPoint& kpt, unsigned char *desc) {
|
||||
void AKAZEFeatures::Get_Upright_MLDB_Descriptor_Subset(const cv::KeyPoint& kpt, unsigned char *desc) {
|
||||
|
||||
float di = 0.0f, dx = 0.0f, dy = 0.0f;
|
||||
float rx = 0.0f, ry = 0.0f;
|
||||
@ -1851,22 +1851,6 @@ void AKAZE::Get_Upright_MLDB_Descriptor_Subset(const cv::KeyPoint& kpt, unsigned
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This method displays the computation times
|
||||
*/
|
||||
void AKAZE::Show_Computation_Times(void) {
|
||||
|
||||
cout << "(*) Time Scale Space: " << tscale_ << endl;
|
||||
cout << "(*) Time Detector: " << tdetector_ << endl;
|
||||
cout << " - Time Derivatives: " << tderivatives_ << endl;
|
||||
cout << " - Time Extrema: " << textrema_ << endl;
|
||||
cout << " - Time Subpixel: " << tsubpixel_ << endl;
|
||||
cout << "(*) Time Descriptor: " << tdescriptor_ << endl;
|
||||
}
|
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function computes a (quasi-random) list of bits to be taken
|
||||
* from the full descriptor. To speed the extraction, the function creates
|
||||
|
@ -22,7 +22,7 @@
|
||||
//*************************************************************************************
|
||||
|
||||
// AKAZE Class Declaration
|
||||
class AKAZE {
|
||||
class AKAZEFeatures {
|
||||
|
||||
private:
|
||||
|
||||
@ -72,10 +72,10 @@ private:
|
||||
public:
|
||||
|
||||
// Constructor
|
||||
AKAZE(const AKAZEOptions &options);
|
||||
AKAZEFeatures(const AKAZEOptions &options);
|
||||
|
||||
// Destructor
|
||||
~AKAZE(void);
|
||||
~AKAZEFeatures(void);
|
||||
|
||||
// Setters
|
||||
void Set_Octave_Max(const int& omax) {
|
||||
@ -144,11 +144,6 @@ public:
|
||||
void Get_MLDB_Full_Descriptor(const cv::KeyPoint& kpt, unsigned char *desc);
|
||||
void Get_Upright_MLDB_Descriptor_Subset(const cv::KeyPoint& kpt, unsigned char *desc);
|
||||
void Get_MLDB_Descriptor_Subset(const cv::KeyPoint& kpt, unsigned char *desc);
|
||||
|
||||
// Methods for saving some results and showing computation times
|
||||
void Save_Scale_Space(void);
|
||||
void Save_Detector_Responses(void);
|
||||
void Show_Computation_Times(void);
|
||||
};
|
||||
|
||||
//*************************************************************************************
|
||||
|
@ -1,5 +1,5 @@
|
||||
#ifndef _CONFIG_H_
|
||||
#define _CONFIG_H_
|
||||
#ifndef __OPENCV_FEATURES_2D_AKAZE_CONFIG_HPP__
|
||||
#define __OPENCV_FEATURES_2D_AKAZE_CONFIG_HPP__
|
||||
|
||||
// STL
|
||||
#include <string>
|
||||
@ -17,7 +17,7 @@
|
||||
#endif
|
||||
|
||||
// Lookup table for 2d gaussian (sigma = 2.5) where (0,0) is top left and (6,6) is bottom right
|
||||
const float gauss25[7][7] = {
|
||||
static const float gauss25[7][7] = {
|
||||
{0.02546481f, 0.02350698f, 0.01849125f, 0.01239505f, 0.00708017f, 0.00344629f, 0.00142946f},
|
||||
{0.02350698f, 0.02169968f, 0.01706957f, 0.01144208f, 0.00653582f, 0.00318132f, 0.00131956f},
|
||||
{0.01849125f, 0.01706957f, 0.01342740f, 0.00900066f, 0.00514126f, 0.00250252f, 0.00103800f},
|
||||
@ -29,24 +29,24 @@ const float gauss25[7][7] = {
|
||||
|
||||
|
||||
// Scale Space parameters
|
||||
const float DEFAULT_SCALE_OFFSET = 1.60f; // Base scale offset (sigma units)
|
||||
const float DEFAULT_FACTOR_SIZE = 1.5f; // Factor for the multiscale derivatives
|
||||
const int DEFAULT_OCTAVE_MIN = 0; // Initial octave level (-1 means that the size of the input image is duplicated)
|
||||
const int DEFAULT_OCTAVE_MAX = 4; // Maximum octave evolution of the image 2^sigma (coarsest scale sigma units)
|
||||
const int DEFAULT_NSUBLEVELS = 4; // Default number of sublevels per scale level
|
||||
const int DEFAULT_DIFFUSIVITY_TYPE = 1;
|
||||
const float KCONTRAST_PERCENTILE = 0.7f;
|
||||
const int KCONTRAST_NBINS = 300;
|
||||
const float DEFAULT_SIGMA_SMOOTHING_DERIVATIVES = 1.0f;
|
||||
const float DEFAULT_KCONTRAST = .01f;
|
||||
static const float DEFAULT_SCALE_OFFSET = 1.60f; // Base scale offset (sigma units)
|
||||
static const float DEFAULT_FACTOR_SIZE = 1.5f; // Factor for the multiscale derivatives
|
||||
static const int DEFAULT_OCTAVE_MIN = 0; // Initial octave level (-1 means that the size of the input image is duplicated)
|
||||
static const int DEFAULT_OCTAVE_MAX = 4; // Maximum octave evolution of the image 2^sigma (coarsest scale sigma units)
|
||||
static const int DEFAULT_NSUBLEVELS = 4; // Default number of sublevels per scale level
|
||||
static const int DEFAULT_DIFFUSIVITY_TYPE = 1;
|
||||
static const float KCONTRAST_PERCENTILE = 0.7f;
|
||||
static const int KCONTRAST_NBINS = 300;
|
||||
static const float DEFAULT_SIGMA_SMOOTHING_DERIVATIVES = 1.0f;
|
||||
static const float DEFAULT_KCONTRAST = .01f;
|
||||
|
||||
|
||||
// Detector Parameters
|
||||
const float DEFAULT_DETECTOR_THRESHOLD = 0.001f; // Detector response threshold to accept point
|
||||
const float DEFAULT_MIN_DETECTOR_THRESHOLD = 0.00001f; // Minimum Detector response threshold to accept point
|
||||
const int DEFAULT_LDB_DESCRIPTOR_SIZE = 0; // Use 0 for the full descriptor, or the number of bits
|
||||
const int DEFAULT_LDB_PATTERN_SIZE = 10; // Actual patch size is 2*pattern_size*point.scale;
|
||||
const int DEFAULT_LDB_CHANNELS = 3;
|
||||
static const float DEFAULT_DETECTOR_THRESHOLD = 0.001f; // Detector response threshold to accept point
|
||||
static const float DEFAULT_MIN_DETECTOR_THRESHOLD = 0.00001f; // Minimum Detector response threshold to accept point
|
||||
static const int DEFAULT_LDB_DESCRIPTOR_SIZE = 0; // Use 0 for the full descriptor, or the number of bits
|
||||
static const int DEFAULT_LDB_PATTERN_SIZE = 10; // Actual patch size is 2*pattern_size*point.scale;
|
||||
static const int DEFAULT_LDB_CHANNELS = 3;
|
||||
|
||||
// Descriptor Parameters
|
||||
enum DESCRIPTOR_TYPE
|
||||
@ -59,13 +59,13 @@ enum DESCRIPTOR_TYPE
|
||||
MLDB = 5
|
||||
};
|
||||
|
||||
const int DEFAULT_DESCRIPTOR = MLDB;
|
||||
static const int DEFAULT_DESCRIPTOR = MLDB;
|
||||
|
||||
// Some debugging options
|
||||
const bool DEFAULT_SAVE_SCALE_SPACE = false; // For saving the scale space images
|
||||
const bool DEFAULT_VERBOSITY = false; // Verbosity level (0->no verbosity)
|
||||
const bool DEFAULT_SHOW_RESULTS = true; // For showing the output image with the detected features plus some ratios
|
||||
const bool DEFAULT_SAVE_KEYPOINTS = false; // For saving the list of keypoints
|
||||
static const bool DEFAULT_SAVE_SCALE_SPACE = false; // For saving the scale space images
|
||||
static const bool DEFAULT_VERBOSITY = false; // Verbosity level (0->no verbosity)
|
||||
static const bool DEFAULT_SHOW_RESULTS = true; // For showing the output image with the detected features plus some ratios
|
||||
static const bool DEFAULT_SAVE_KEYPOINTS = false; // For saving the list of keypoints
|
||||
|
||||
// Options structure
|
||||
struct AKAZEOptions
|
||||
|
@ -35,7 +35,7 @@ using namespace cv;
|
||||
* @param options KAZE configuration options
|
||||
* @note The constructor allocates memory for the nonlinear scale space
|
||||
*/
|
||||
KAZE::KAZE(KAZEOptions& options) {
|
||||
KAZEFeatures::KAZEFeatures(KAZEOptions& options) {
|
||||
|
||||
soffset_ = options.soffset;
|
||||
sderivatives_ = options.sderivatives;
|
||||
@ -71,7 +71,7 @@ KAZE::KAZE(KAZEOptions& options) {
|
||||
/**
|
||||
* @brief KAZE destructor
|
||||
*/
|
||||
KAZE::~KAZE(void) {
|
||||
KAZEFeatures::~KAZEFeatures(void) {
|
||||
|
||||
evolution_.clear();
|
||||
}
|
||||
@ -82,7 +82,7 @@ KAZE::~KAZE(void) {
|
||||
/**
|
||||
* @brief This method allocates the memory for the nonlinear diffusion evolution
|
||||
*/
|
||||
void KAZE::Allocate_Memory_Evolution(void) {
|
||||
void KAZEFeatures::Allocate_Memory_Evolution(void) {
|
||||
|
||||
// Allocate the dimension of the matrices for the evolution
|
||||
for (int i = 0; i <= omax_-1; i++) {
|
||||
@ -145,7 +145,7 @@ void KAZE::Allocate_Memory_Evolution(void) {
|
||||
* @param img Input image for which the nonlinear scale space needs to be created
|
||||
* @return 0 if the nonlinear scale space was created successfully. -1 otherwise
|
||||
*/
|
||||
int KAZE::Create_Nonlinear_Scale_Space(const cv::Mat &img) {
|
||||
int KAZEFeatures::Create_Nonlinear_Scale_Space(const cv::Mat &img) {
|
||||
|
||||
double t2 = 0.0, t1 = 0.0;
|
||||
|
||||
@ -226,7 +226,7 @@ int KAZE::Create_Nonlinear_Scale_Space(const cv::Mat &img) {
|
||||
* @param img Input image
|
||||
* @param kpercentile Percentile of the gradient histogram
|
||||
*/
|
||||
void KAZE::Compute_KContrast(const cv::Mat &img, const float &kpercentile) {
|
||||
void KAZEFeatures::Compute_KContrast(const cv::Mat &img, const float &kpercentile) {
|
||||
|
||||
if (verbosity_ == true) {
|
||||
cout << "Computing Kcontrast factor." << endl;
|
||||
@ -248,7 +248,7 @@ void KAZE::Compute_KContrast(const cv::Mat &img, const float &kpercentile) {
|
||||
/**
|
||||
* @brief This method computes the multiscale derivatives for the nonlinear scale space
|
||||
*/
|
||||
void KAZE::Compute_Multiscale_Derivatives(void)
|
||||
void KAZEFeatures::Compute_Multiscale_Derivatives(void)
|
||||
{
|
||||
double t2 = 0.0, t1 = 0.0;
|
||||
t1 = getTickCount();
|
||||
@ -288,7 +288,7 @@ void KAZE::Compute_Multiscale_Derivatives(void)
|
||||
* @brief This method computes the feature detector response for the nonlinear scale space
|
||||
* @note We use the Hessian determinant as feature detector
|
||||
*/
|
||||
void KAZE::Compute_Detector_Response(void) {
|
||||
void KAZEFeatures::Compute_Detector_Response(void) {
|
||||
|
||||
double t2 = 0.0, t1 = 0.0;
|
||||
float lxx = 0.0, lxy = 0.0, lyy = 0.0;
|
||||
@ -326,7 +326,7 @@ void KAZE::Compute_Detector_Response(void) {
|
||||
* @brief This method selects interesting keypoints through the nonlinear scale space
|
||||
* @param kpts Vector of keypoints
|
||||
*/
|
||||
void KAZE::Feature_Detection(std::vector<cv::KeyPoint>& kpts) {
|
||||
void KAZEFeatures::Feature_Detection(std::vector<cv::KeyPoint>& kpts) {
|
||||
|
||||
double t2 = 0.0, t1 = 0.0;
|
||||
t1 = getTickCount();
|
||||
@ -353,7 +353,7 @@ void KAZE::Feature_Detection(std::vector<cv::KeyPoint>& kpts) {
|
||||
* @param kpts Vector of keypoints
|
||||
* @note We compute features for each of the nonlinear scale space level in a different processing thread
|
||||
*/
|
||||
void KAZE::Determinant_Hessian_Parallel(std::vector<cv::KeyPoint>& kpts) {
|
||||
void KAZEFeatures::Determinant_Hessian_Parallel(std::vector<cv::KeyPoint>& kpts) {
|
||||
|
||||
int level = 0;
|
||||
float dist = 0.0, smax = 3.0;
|
||||
@ -444,7 +444,7 @@ void KAZE::Determinant_Hessian_Parallel(std::vector<cv::KeyPoint>& kpts) {
|
||||
* at a given nonlinear scale level
|
||||
* @param level Index in the nonlinear scale space evolution
|
||||
*/
|
||||
void KAZE::Find_Extremum_Threading(const int& level) {
|
||||
void KAZEFeatures::Find_Extremum_Threading(const int& level) {
|
||||
|
||||
float value = 0.0;
|
||||
bool is_extremum = false;
|
||||
@ -497,7 +497,7 @@ void KAZE::Find_Extremum_Threading(const int& level) {
|
||||
* @brief This method performs subpixel refinement of the detected keypoints
|
||||
* @param kpts Vector of detected keypoints
|
||||
*/
|
||||
void KAZE::Do_Subpixel_Refinement(std::vector<cv::KeyPoint> &kpts) {
|
||||
void KAZEFeatures::Do_Subpixel_Refinement(std::vector<cv::KeyPoint> &kpts) {
|
||||
|
||||
int step = 1;
|
||||
int x = 0, y = 0;
|
||||
@ -603,7 +603,7 @@ void KAZE::Do_Subpixel_Refinement(std::vector<cv::KeyPoint> &kpts) {
|
||||
* @param kpts Vector of keypoints
|
||||
* @param mdist Maximum distance in pixels
|
||||
*/
|
||||
void KAZE::Feature_Suppression_Distance(std::vector<cv::KeyPoint>& kpts, const float& mdist) {
|
||||
void KAZEFeatures::Feature_Suppression_Distance(std::vector<cv::KeyPoint>& kpts, const float& mdist) {
|
||||
|
||||
vector<KeyPoint> aux;
|
||||
vector<int> to_delete;
|
||||
@ -659,7 +659,7 @@ void KAZE::Feature_Suppression_Distance(std::vector<cv::KeyPoint>& kpts, const f
|
||||
* @param kpts Vector of keypoints
|
||||
* @param desc Matrix with the feature descriptors
|
||||
*/
|
||||
void KAZE::Feature_Description(std::vector<cv::KeyPoint> &kpts, cv::Mat &desc) {
|
||||
void KAZEFeatures::Feature_Description(std::vector<cv::KeyPoint> &kpts, cv::Mat &desc) {
|
||||
|
||||
double t2 = 0.0, t1 = 0.0;
|
||||
t1 = getTickCount();
|
||||
@ -807,7 +807,7 @@ void KAZE::Feature_Description(std::vector<cv::KeyPoint> &kpts, cv::Mat &desc) {
|
||||
* @note The orientation is computed using a similar approach as described in the
|
||||
* original SURF method. See Bay et al., Speeded Up Robust Features, ECCV 2006
|
||||
*/
|
||||
void KAZE::Compute_Main_Orientation_SURF(cv::KeyPoint &kpt)
|
||||
void KAZEFeatures::Compute_Main_Orientation_SURF(cv::KeyPoint &kpt)
|
||||
{
|
||||
int ix = 0, iy = 0, idx = 0, s = 0, level = 0;
|
||||
float xf = 0.0, yf = 0.0, gweight = 0.0;
|
||||
@ -888,7 +888,7 @@ void KAZE::Compute_Main_Orientation_SURF(cv::KeyPoint &kpt)
|
||||
* Gaussian weighting is performed. The descriptor is inspired from Bay et al.,
|
||||
* Speeded Up Robust Features, ECCV, 2006
|
||||
*/
|
||||
void KAZE::Get_SURF_Upright_Descriptor_64(const cv::KeyPoint &kpt, float *desc)
|
||||
void KAZEFeatures::Get_SURF_Upright_Descriptor_64(const cv::KeyPoint &kpt, float *desc)
|
||||
{
|
||||
float dx = 0.0, dy = 0.0, mdx = 0.0, mdy = 0.0;
|
||||
float rx = 0.0, ry = 0.0, len = 0.0, xf = 0.0, yf = 0.0, sample_x = 0.0, sample_y = 0.0;
|
||||
@ -987,7 +987,7 @@ void KAZE::Get_SURF_Upright_Descriptor_64(const cv::KeyPoint &kpt, float *desc)
|
||||
* Gaussian weighting is performed. The descriptor is inspired from Bay et al.,
|
||||
* Speeded Up Robust Features, ECCV, 2006
|
||||
*/
|
||||
void KAZE::Get_SURF_Descriptor_64(const cv::KeyPoint &kpt, float *desc) {
|
||||
void KAZEFeatures::Get_SURF_Descriptor_64(const cv::KeyPoint &kpt, float *desc) {
|
||||
|
||||
float dx = 0.0, dy = 0.0, mdx = 0.0, mdy = 0.0;
|
||||
float rx = 0.0, ry = 0.0, rrx = 0.0, rry = 0.0, len = 0.0, xf = 0.0, yf = 0.0;
|
||||
@ -1094,7 +1094,7 @@ void KAZE::Get_SURF_Descriptor_64(const cv::KeyPoint &kpt, float *desc) {
|
||||
* from Agrawal et al., CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching,
|
||||
* ECCV 2008
|
||||
*/
|
||||
void KAZE::Get_MSURF_Upright_Descriptor_64(const cv::KeyPoint &kpt, float *desc)
|
||||
void KAZEFeatures::Get_MSURF_Upright_Descriptor_64(const cv::KeyPoint &kpt, float *desc)
|
||||
{
|
||||
float dx = 0.0, dy = 0.0, mdx = 0.0, mdy = 0.0, gauss_s1 = 0.0, gauss_s2 = 0.0;
|
||||
float rx = 0.0, ry = 0.0, len = 0.0, xf = 0.0, yf = 0.0, ys = 0.0, xs = 0.0;
|
||||
@ -1226,7 +1226,7 @@ void KAZE::Get_MSURF_Upright_Descriptor_64(const cv::KeyPoint &kpt, float *desc)
|
||||
* from Agrawal et al., CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching,
|
||||
* ECCV 2008
|
||||
*/
|
||||
void KAZE::Get_MSURF_Descriptor_64(const cv::KeyPoint &kpt, float *desc)
|
||||
void KAZEFeatures::Get_MSURF_Descriptor_64(const cv::KeyPoint &kpt, float *desc)
|
||||
{
|
||||
float dx = 0.0, dy = 0.0, mdx = 0.0, mdy = 0.0, gauss_s1 = 0.0, gauss_s2 = 0.0;
|
||||
float rx = 0.0, ry = 0.0, rrx = 0.0, rry = 0.0, len = 0.0, xf = 0.0, yf = 0.0, ys = 0.0, xs = 0.0;
|
||||
@ -1359,7 +1359,7 @@ void KAZE::Get_MSURF_Descriptor_64(const cv::KeyPoint &kpt, float *desc)
|
||||
* G-SURF descriptor as described in Pablo F. Alcantarilla, Luis M. Bergasa and
|
||||
* Andrew J. Davison, Gauge-SURF Descriptors, Image and Vision Computing 31(1), 2013
|
||||
*/
|
||||
void KAZE::Get_GSURF_Upright_Descriptor_64(const cv::KeyPoint &kpt, float *desc)
|
||||
void KAZEFeatures::Get_GSURF_Upright_Descriptor_64(const cv::KeyPoint &kpt, float *desc)
|
||||
{
|
||||
float dx = 0.0, dy = 0.0, mdx = 0.0, mdy = 0.0;
|
||||
float rx = 0.0, ry = 0.0, rxx = 0.0, rxy = 0.0, ryy = 0.0, len = 0.0, xf = 0.0, yf = 0.0;
|
||||
@ -1494,7 +1494,7 @@ void KAZE::Get_GSURF_Upright_Descriptor_64(const cv::KeyPoint &kpt, float *desc)
|
||||
* G-SURF descriptor as described in Pablo F. Alcantarilla, Luis M. Bergasa and
|
||||
* Andrew J. Davison, Gauge-SURF Descriptors, Image and Vision Computing 31(1), 2013
|
||||
*/
|
||||
void KAZE::Get_GSURF_Descriptor_64(const cv::KeyPoint &kpt, float *desc)
|
||||
void KAZEFeatures::Get_GSURF_Descriptor_64(const cv::KeyPoint &kpt, float *desc)
|
||||
{
|
||||
float dx = 0.0, dy = 0.0, mdx = 0.0, mdy = 0.0;
|
||||
float rx = 0.0, ry = 0.0, rxx = 0.0, rxy = 0.0, ryy = 0.0, len = 0.0, xf = 0.0, yf = 0.0;
|
||||
@ -1633,7 +1633,7 @@ void KAZE::Get_GSURF_Descriptor_64(const cv::KeyPoint &kpt, float *desc)
|
||||
* Gaussian weighting is performed. The descriptor is inspired from Bay et al.,
|
||||
* Speeded Up Robust Features, ECCV, 2006
|
||||
*/
|
||||
void KAZE::Get_SURF_Upright_Descriptor_128(const cv::KeyPoint &kpt, float *desc)
|
||||
void KAZEFeatures::Get_SURF_Upright_Descriptor_128(const cv::KeyPoint &kpt, float *desc)
|
||||
{
|
||||
float rx = 0.0, ry = 0.0, len = 0.0, xf = 0.0, yf = 0.0, sample_x = 0.0, sample_y = 0.0;
|
||||
float fx = 0.0, fy = 0.0, res1 = 0.0, res2 = 0.0, res3 = 0.0, res4 = 0.0;
|
||||
@ -1752,7 +1752,7 @@ void KAZE::Get_SURF_Upright_Descriptor_128(const cv::KeyPoint &kpt, float *desc)
|
||||
* Gaussian weighting is performed. The descriptor is inspired from Bay et al.,
|
||||
* Speeded Up Robust Features, ECCV, 2006
|
||||
*/
|
||||
void KAZE::Get_SURF_Descriptor_128(const cv::KeyPoint &kpt, float *desc)
|
||||
void KAZEFeatures::Get_SURF_Descriptor_128(const cv::KeyPoint &kpt, float *desc)
|
||||
{
|
||||
float rx = 0.0, ry = 0.0, rrx = 0.0, rry = 0.0, len = 0.0, xf = 0.0, yf = 0.0;
|
||||
float sample_x = 0.0, sample_y = 0.0, co = 0.0, si = 0.0, angle = 0.0;
|
||||
@ -1880,7 +1880,7 @@ void KAZE::Get_SURF_Descriptor_128(const cv::KeyPoint &kpt, float *desc)
|
||||
* from Agrawal et al., CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching,
|
||||
* ECCV 2008
|
||||
*/
|
||||
void KAZE::Get_MSURF_Upright_Descriptor_128(const cv::KeyPoint &kpt, float *desc) {
|
||||
void KAZEFeatures::Get_MSURF_Upright_Descriptor_128(const cv::KeyPoint &kpt, float *desc) {
|
||||
|
||||
float gauss_s1 = 0.0, gauss_s2 = 0.0;
|
||||
float rx = 0.0, ry = 0.0, len = 0.0, xf = 0.0, yf = 0.0, ys = 0.0, xs = 0.0;
|
||||
@ -2036,7 +2036,7 @@ void KAZE::Get_MSURF_Upright_Descriptor_128(const cv::KeyPoint &kpt, float *desc
|
||||
* from Agrawal et al., CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching,
|
||||
* ECCV 2008
|
||||
*/
|
||||
void KAZE::Get_MSURF_Descriptor_128(const cv::KeyPoint &kpt, float *desc) {
|
||||
void KAZEFeatures::Get_MSURF_Descriptor_128(const cv::KeyPoint &kpt, float *desc) {
|
||||
|
||||
float gauss_s1 = 0.0, gauss_s2 = 0.0;
|
||||
float rx = 0.0, ry = 0.0, rrx = 0.0, rry = 0.0, len = 0.0, xf = 0.0, yf = 0.0, ys = 0.0, xs = 0.0;
|
||||
@ -2197,7 +2197,7 @@ void KAZE::Get_MSURF_Descriptor_128(const cv::KeyPoint &kpt, float *desc) {
|
||||
* G-SURF descriptor as described in Pablo F. Alcantarilla, Luis M. Bergasa and
|
||||
* Andrew J. Davison, Gauge-SURF Descriptors, Image and Vision Computing 31(1), 2013
|
||||
*/
|
||||
void KAZE::Get_GSURF_Upright_Descriptor_128(const cv::KeyPoint &kpt, float *desc)
|
||||
void KAZEFeatures::Get_GSURF_Upright_Descriptor_128(const cv::KeyPoint &kpt, float *desc)
|
||||
{
|
||||
float len = 0.0, xf = 0.0, yf = 0.0, sample_x = 0.0, sample_y = 0.0;
|
||||
float rx = 0.0, ry = 0.0, rxx = 0.0, rxy = 0.0, ryy = 0.0, modg = 0.0;
|
||||
@ -2350,7 +2350,7 @@ void KAZE::Get_GSURF_Upright_Descriptor_128(const cv::KeyPoint &kpt, float *desc
|
||||
* G-SURF descriptor as described in Pablo F. Alcantarilla, Luis M. Bergasa and
|
||||
* Andrew J. Davison, Gauge-SURF Descriptors, Image and Vision Computing 31(1), 2013
|
||||
*/
|
||||
void KAZE::Get_GSURF_Descriptor_128(const cv::KeyPoint &kpt, float *desc) {
|
||||
void KAZEFeatures::Get_GSURF_Descriptor_128(const cv::KeyPoint &kpt, float *desc) {
|
||||
|
||||
float len = 0.0, xf = 0.0, yf = 0.0;
|
||||
float rx = 0.0, ry = 0.0, rxx = 0.0, rxy = 0.0, ryy = 0.0;
|
||||
@ -2509,7 +2509,7 @@ void KAZE::Get_GSURF_Descriptor_128(const cv::KeyPoint &kpt, float *desc) {
|
||||
* If c is a matrix of the same size as Ld, the diffusion will be nonlinear
|
||||
* The stepsize can be arbitrarilly large
|
||||
*/
|
||||
void KAZE::AOS_Step_Scalar(cv::Mat &Ld, const cv::Mat &Ldprev, const cv::Mat &c, const float& stepsize) {
|
||||
void KAZEFeatures::AOS_Step_Scalar(cv::Mat &Ld, const cv::Mat &Ldprev, const cv::Mat &c, const float& stepsize) {
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp sections
|
||||
@ -2540,7 +2540,7 @@ void KAZE::AOS_Step_Scalar(cv::Mat &Ld, const cv::Mat &Ldprev, const cv::Mat &c,
|
||||
* @param c Conductivity image
|
||||
* @param stepsize Stepsize for the nonlinear diffusion evolution
|
||||
*/
|
||||
void KAZE::AOS_Rows(const cv::Mat &Ldprev, const cv::Mat &c, const float& stepsize) {
|
||||
void KAZEFeatures::AOS_Rows(const cv::Mat &Ldprev, const cv::Mat &c, const float& stepsize) {
|
||||
|
||||
// Operate on rows
|
||||
for (int i = 0; i < qr_.rows; i++) {
|
||||
@ -2581,7 +2581,7 @@ void KAZE::AOS_Rows(const cv::Mat &Ldprev, const cv::Mat &c, const float& stepsi
|
||||
* @param c Conductivity image
|
||||
* @param stepsize Stepsize for the nonlinear diffusion evolution
|
||||
*/
|
||||
void KAZE::AOS_Columns(const cv::Mat &Ldprev, const cv::Mat &c, const float& stepsize) {
|
||||
void KAZEFeatures::AOS_Columns(const cv::Mat &Ldprev, const cv::Mat &c, const float& stepsize) {
|
||||
|
||||
// Operate on columns
|
||||
for (int j = 0; j < qc_.cols; j++) {
|
||||
@ -2624,7 +2624,7 @@ void KAZE::AOS_Columns(const cv::Mat &Ldprev, const cv::Mat &c, const float& ste
|
||||
* @brief This method does the Thomas algorithm for solving a tridiagonal linear system
|
||||
* @note The matrix A must be strictly diagonally dominant for a stable solution
|
||||
*/
|
||||
void KAZE::Thomas(const cv::Mat &a, const cv::Mat &b, const cv::Mat &Ld, cv::Mat &x) {
|
||||
void KAZEFeatures::Thomas(const cv::Mat &a, const cv::Mat &b, const cv::Mat &Ld, cv::Mat &x) {
|
||||
|
||||
// Auxiliary variables
|
||||
int n = a.rows;
|
||||
|
11
modules/features2d/src/kaze/KAZE.h
Executable file → Normal file
11
modules/features2d/src/kaze/KAZE.h
Executable file → Normal file
@ -23,7 +23,7 @@
|
||||
//*************************************************************************************
|
||||
|
||||
// KAZE Class Declaration
|
||||
class KAZE {
|
||||
class KAZEFeatures {
|
||||
|
||||
private:
|
||||
|
||||
@ -69,10 +69,10 @@ private:
|
||||
public:
|
||||
|
||||
// Constructor
|
||||
KAZE(KAZEOptions& options);
|
||||
KAZEFeatures(KAZEOptions& options);
|
||||
|
||||
// Destructor
|
||||
~KAZE(void);
|
||||
~KAZEFeatures(void);
|
||||
|
||||
// Public methods for KAZE interface
|
||||
void Allocate_Memory_Evolution(void);
|
||||
@ -80,11 +80,6 @@ public:
|
||||
void Feature_Detection(std::vector<cv::KeyPoint>& kpts);
|
||||
void Feature_Description(std::vector<cv::KeyPoint>& kpts, cv::Mat& desc);
|
||||
|
||||
// Methods for saving the scale space set of images and detector responses
|
||||
void Save_Nonlinear_Scale_Space(void);
|
||||
void Save_Detector_Responses(void);
|
||||
void Save_Flow_Responses(void);
|
||||
|
||||
private:
|
||||
|
||||
// Feature Detection Methods
|
||||
|
@ -6,8 +6,8 @@
|
||||
* @author Pablo F. Alcantarilla
|
||||
*/
|
||||
|
||||
#ifndef _CONFIG_H_
|
||||
#define _CONFIG_H_
|
||||
#ifndef __OPENCV_FEATURES_2D_KAZE_CONFIG_HPP__
|
||||
#define __OPENCV_FEATURES_2D_KAZE_CONFIG_HPP__
|
||||
|
||||
//******************************************************************************
|
||||
//******************************************************************************
|
||||
@ -38,30 +38,30 @@
|
||||
#define NMAX_CHAR 400
|
||||
|
||||
// Some default options
|
||||
const float DEFAULT_SCALE_OFFSET = 1.60; // Base scale offset (sigma units)
|
||||
const float DEFAULT_OCTAVE_MAX = 4.0; // Maximum octave evolution of the image 2^sigma (coarsest scale sigma units)
|
||||
const int DEFAULT_NSUBLEVELS = 4; // Default number of sublevels per scale level
|
||||
const float DEFAULT_DETECTOR_THRESHOLD = 0.001; // Detector response threshold to accept point
|
||||
const float DEFAULT_MIN_DETECTOR_THRESHOLD = 0.00001; // Minimum Detector response threshold to accept point
|
||||
const int DEFAULT_DESCRIPTOR_MODE = 1; // Descriptor Mode 0->SURF, 1->M-SURF
|
||||
const bool DEFAULT_USE_FED = true; // 0->AOS, 1->FED
|
||||
const bool DEFAULT_UPRIGHT = false; // Upright descriptors, not invariant to rotation
|
||||
const bool DEFAULT_EXTENDED = false; // Extended descriptor, dimension 128
|
||||
const bool DEFAULT_SAVE_SCALE_SPACE = false; // For saving the scale space images
|
||||
const bool DEFAULT_VERBOSITY = false; // Verbosity level (0->no verbosity)
|
||||
const bool DEFAULT_SHOW_RESULTS = true; // For showing the output image with the detected features plus some ratios
|
||||
const bool DEFAULT_SAVE_KEYPOINTS = false; // For saving the list of keypoints
|
||||
static const float DEFAULT_SCALE_OFFSET = 1.60; // Base scale offset (sigma units)
|
||||
static const float DEFAULT_OCTAVE_MAX = 4.0; // Maximum octave evolution of the image 2^sigma (coarsest scale sigma units)
|
||||
static const int DEFAULT_NSUBLEVELS = 4; // Default number of sublevels per scale level
|
||||
static const float DEFAULT_DETECTOR_THRESHOLD = 0.001; // Detector response threshold to accept point
|
||||
static const float DEFAULT_MIN_DETECTOR_THRESHOLD = 0.00001; // Minimum Detector response threshold to accept point
|
||||
static const int DEFAULT_DESCRIPTOR_MODE = 1; // Descriptor Mode 0->SURF, 1->M-SURF
|
||||
static const bool DEFAULT_USE_FED = true; // 0->AOS, 1->FED
|
||||
static const bool DEFAULT_UPRIGHT = false; // Upright descriptors, not invariant to rotation
|
||||
static const bool DEFAULT_EXTENDED = false; // Extended descriptor, dimension 128
|
||||
static const bool DEFAULT_SAVE_SCALE_SPACE = false; // For saving the scale space images
|
||||
static const bool DEFAULT_VERBOSITY = false; // Verbosity level (0->no verbosity)
|
||||
static const bool DEFAULT_SHOW_RESULTS = true; // For showing the output image with the detected features plus some ratios
|
||||
static const bool DEFAULT_SAVE_KEYPOINTS = false; // For saving the list of keypoints
|
||||
|
||||
// Some important configuration variables
|
||||
const float DEFAULT_SIGMA_SMOOTHING_DERIVATIVES = 1.0;
|
||||
const float DEFAULT_KCONTRAST = .01;
|
||||
const float KCONTRAST_PERCENTILE = 0.7;
|
||||
const int KCONTRAST_NBINS = 300;
|
||||
const bool COMPUTE_KCONTRAST = true;
|
||||
const int DEFAULT_DIFFUSIVITY_TYPE = 1; // 0 -> PM G1, 1 -> PM G2, 2 -> Weickert
|
||||
const bool USE_CLIPPING_NORMALIZATION = false;
|
||||
const float CLIPPING_NORMALIZATION_RATIO = 1.6;
|
||||
const int CLIPPING_NORMALIZATION_NITER = 5;
|
||||
static const float DEFAULT_SIGMA_SMOOTHING_DERIVATIVES = 1.0;
|
||||
static const float DEFAULT_KCONTRAST = .01;
|
||||
static const float KCONTRAST_PERCENTILE = 0.7;
|
||||
static const int KCONTRAST_NBINS = 300;
|
||||
static const bool COMPUTE_KCONTRAST = true;
|
||||
static const int DEFAULT_DIFFUSIVITY_TYPE = 1; // 0 -> PM G1, 1 -> PM G2, 2 -> Weickert
|
||||
static const bool USE_CLIPPING_NORMALIZATION = false;
|
||||
static const float CLIPPING_NORMALIZATION_RATIO = 1.6;
|
||||
static const int CLIPPING_NORMALIZATION_NITER = 5;
|
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
Loading…
x
Reference in New Issue
Block a user