Merge pull request #2580 from SpecLad:merge-2.4

This commit is contained in:
Roman Donchenko 2014-04-07 18:29:51 +04:00 committed by OpenCV Buildbot
commit 6f055d7a76
16 changed files with 43 additions and 38 deletions

View File

@ -48,10 +48,10 @@ The structure of package contents looks as follows:
::
OpenCV-2.4.8-android-sdk
OpenCV-2.4.9-android-sdk
|_ apk
| |_ OpenCV_2.4.8_binary_pack_armv7a.apk
| |_ OpenCV_2.4.8_Manager_2.16_XXX.apk
| |_ OpenCV_2.4.9_binary_pack_armv7a.apk
| |_ OpenCV_2.4.9_Manager_2.18_XXX.apk
|
|_ doc
|_ samples
@ -157,10 +157,10 @@ Get the OpenCV4Android SDK
.. code-block:: bash
unzip ~/Downloads/OpenCV-2.4.8-android-sdk.zip
unzip ~/Downloads/OpenCV-2.4.9-android-sdk.zip
.. |opencv_android_bin_pack| replace:: :file:`OpenCV-2.4.8-android-sdk.zip`
.. _opencv_android_bin_pack_url: http://sourceforge.net/projects/opencvlibrary/files/opencv-android/2.4.8/OpenCV-2.4.8-android-sdk.zip/download
.. |opencv_android_bin_pack| replace:: :file:`OpenCV-2.4.9-android-sdk.zip`
.. _opencv_android_bin_pack_url: http://sourceforge.net/projects/opencvlibrary/files/opencv-android/2.4.9/OpenCV-2.4.9-android-sdk.zip/download
.. |opencv_android_bin_pack_url| replace:: |opencv_android_bin_pack|
.. |seven_zip| replace:: 7-Zip
.. _seven_zip: http://www.7-zip.org/
@ -295,7 +295,7 @@ Well, running samples from Eclipse is very simple:
.. code-block:: sh
:linenos:
<Android SDK path>/platform-tools/adb install <OpenCV4Android SDK path>/apk/OpenCV_2.4.8_Manager_2.16_armv7a-neon.apk
<Android SDK path>/platform-tools/adb install <OpenCV4Android SDK path>/apk/OpenCV_2.4.9_Manager_2.18_armv7a-neon.apk
.. note:: ``armeabi``, ``armv7a-neon``, ``arm7a-neon-android8``, ``mips`` and ``x86`` stand for
platform targets:

View File

@ -55,14 +55,14 @@ Manager to access OpenCV libraries externally installed in the target system.
:guilabel:`File -> Import -> Existing project in your workspace`.
Press :guilabel:`Browse` button and locate OpenCV4Android SDK
(:file:`OpenCV-2.4.8-android-sdk/sdk`).
(:file:`OpenCV-2.4.9-android-sdk/sdk`).
.. image:: images/eclipse_opencv_dependency0.png
:alt: Add dependency from OpenCV library
:align: center
#. In application project add a reference to the OpenCV Java SDK in
:guilabel:`Project -> Properties -> Android -> Library -> Add` select ``OpenCV Library - 2.4.8``.
:guilabel:`Project -> Properties -> Android -> Library -> Add` select ``OpenCV Library - 2.4.9``.
.. image:: images/eclipse_opencv_dependency1.png
:alt: Add dependency from OpenCV library
@ -128,27 +128,27 @@ described above.
#. Add the OpenCV library project to your workspace the same way as for the async initialization
above. Use menu :guilabel:`File -> Import -> Existing project in your workspace`,
press :guilabel:`Browse` button and select OpenCV SDK path
(:file:`OpenCV-2.4.8-android-sdk/sdk`).
(:file:`OpenCV-2.4.9-android-sdk/sdk`).
.. image:: images/eclipse_opencv_dependency0.png
:alt: Add dependency from OpenCV library
:align: center
#. In the application project add a reference to the OpenCV4Android SDK in
:guilabel:`Project -> Properties -> Android -> Library -> Add` select ``OpenCV Library - 2.4.8``;
:guilabel:`Project -> Properties -> Android -> Library -> Add` select ``OpenCV Library - 2.4.9``;
.. image:: images/eclipse_opencv_dependency1.png
:alt: Add dependency from OpenCV library
:align: center
#. If your application project **doesn't have a JNI part**, just copy the corresponding OpenCV
native libs from :file:`<OpenCV-2.4.8-android-sdk>/sdk/native/libs/<target_arch>` to your
native libs from :file:`<OpenCV-2.4.9-android-sdk>/sdk/native/libs/<target_arch>` to your
project directory to folder :file:`libs/<target_arch>`.
In case of the application project **with a JNI part**, instead of manual libraries copying you
need to modify your ``Android.mk`` file:
add the following two code lines after the ``"include $(CLEAR_VARS)"`` and before
``"include path_to_OpenCV-2.4.8-android-sdk/sdk/native/jni/OpenCV.mk"``
``"include path_to_OpenCV-2.4.9-android-sdk/sdk/native/jni/OpenCV.mk"``
.. code-block:: make
:linenos:
@ -221,7 +221,7 @@ taken:
.. code-block:: make
include C:\Work\OpenCV4Android\OpenCV-2.4.8-android-sdk\sdk\native\jni\OpenCV.mk
include C:\Work\OpenCV4Android\OpenCV-2.4.9-android-sdk\sdk\native\jni\OpenCV.mk
Should be inserted into the :file:`jni/Android.mk` file **after** this line:

View File

@ -102,7 +102,7 @@ As always, we would be happy to hear your comments and receive your contribution
.. cssclass:: toctableopencv
=========== =======================================================
|Video| Look here in order to find use on your video stream algoritms like: motion extraction, feature tracking and foreground extractions.
|Video| Look here in order to find use on your video stream algorithms like: motion extraction, feature tracking and foreground extractions.
=========== =======================================================

View File

@ -3,7 +3,7 @@
*video* module. Video analysis
-----------------------------------------------------------
Look here in order to find use on your video stream algoritms like: motion extraction, feature tracking and foreground extractions.
Look here in order to find use on your video stream algorithms like: motion extraction, feature tracking and foreground extractions.
.. include:: ../../definitions/tocDefinitions.rst

View File

@ -75,7 +75,7 @@ Moreover every :ocv:class:`FaceRecognizer` supports the:
Setting the Thresholds
+++++++++++++++++++++++
Sometimes you run into the situation, when you want to apply a threshold on the prediction. A common scenario in face recognition is to tell, wether a face belongs to the training dataset or if it is unknown. You might wonder, why there's no public API in :ocv:class:`FaceRecognizer` to set the threshold for the prediction, but rest assured: It's supported. It just means there's no generic way in an abstract class to provide an interface for setting/getting the thresholds of *every possible* :ocv:class:`FaceRecognizer` algorithm. The appropriate place to set the thresholds is in the constructor of the specific :ocv:class:`FaceRecognizer` and since every :ocv:class:`FaceRecognizer` is a :ocv:class:`Algorithm` (see above), you can get/set the thresholds at runtime!
Sometimes you run into the situation, when you want to apply a threshold on the prediction. A common scenario in face recognition is to tell, whether a face belongs to the training dataset or if it is unknown. You might wonder, why there's no public API in :ocv:class:`FaceRecognizer` to set the threshold for the prediction, but rest assured: It's supported. It just means there's no generic way in an abstract class to provide an interface for setting/getting the thresholds of *every possible* :ocv:class:`FaceRecognizer` algorithm. The appropriate place to set the thresholds is in the constructor of the specific :ocv:class:`FaceRecognizer` and since every :ocv:class:`FaceRecognizer` is a :ocv:class:`Algorithm` (see above), you can get/set the thresholds at runtime!
Here is an example of setting a threshold for the Eigenfaces method, when creating the model:

View File

@ -71,7 +71,7 @@ You really don't want to create the CSV file by hand. And you really don't want
Fisherfaces for Gender Classification
--------------------------------------
If you want to decide wether a person is *male* or *female*, you have to learn the discriminative features of both classes. The Eigenfaces method is based on the Principal Component Analysis, which is an unsupervised statistical model and not suitable for this task. Please see the Face Recognition tutorial for insights into the algorithms. The Fisherfaces instead yields a class-specific linear projection, so it is much better suited for the gender classification task. `http://www.bytefish.de/blog/gender_classification <http://www.bytefish.de/blog/gender_classification>`_ shows the recognition rate of the Fisherfaces method for gender classification.
If you want to decide whether a person is *male* or *female*, you have to learn the discriminative features of both classes. The Eigenfaces method is based on the Principal Component Analysis, which is an unsupervised statistical model and not suitable for this task. Please see the Face Recognition tutorial for insights into the algorithms. The Fisherfaces instead yields a class-specific linear projection, so it is much better suited for the gender classification task. `http://www.bytefish.de/blog/gender_classification <http://www.bytefish.de/blog/gender_classification>`_ shows the recognition rate of the Fisherfaces method for gender classification.
The Fisherfaces method achieves a 98% recognition rate in a subject-independent cross-validation. A subject-independent cross-validation means *images of the person under test are never used for learning the model*. And could you believe it: you can simply use the facerec_fisherfaces demo, that's inlcuded in OpenCV.

View File

@ -257,7 +257,7 @@ namespace
{
char braces[5] = {'\0', '\0', ';', '\0', '\0'};
return cv::makePtr<FormattedImpl>("[", "]", mtx, &*braces,
mtx.cols == 1 || !multiline, mtx.depth() == CV_64F ? prec64f : prec32f );
mtx.rows == 1 || !multiline, mtx.depth() == CV_64F ? prec64f : prec32f );
}
};
@ -271,7 +271,7 @@ namespace
if (mtx.cols == 1)
braces[0] = braces[1] = '\0';
return cv::makePtr<FormattedImpl>("[", "]", mtx, &*braces,
mtx.cols*mtx.channels() == 1 || !multiline, mtx.depth() == CV_64F ? prec64f : prec32f );
mtx.rows*mtx.channels() == 1 || !multiline, mtx.depth() == CV_64F ? prec64f : prec32f );
}
};
@ -290,7 +290,7 @@ namespace
braces[0] = braces[1] = '\0';
return cv::makePtr<FormattedImpl>("array([",
cv::format("], type='%s')", numpyTypes[mtx.depth()]), mtx, &*braces,
mtx.cols*mtx.channels() == 1 || !multiline, mtx.depth() == CV_64F ? prec64f : prec32f );
mtx.rows*mtx.channels() == 1 || !multiline, mtx.depth() == CV_64F ? prec64f : prec32f );
}
};
@ -303,7 +303,7 @@ namespace
char braces[5] = {'\0', '\0', '\0', '\0', '\0'};
return cv::makePtr<FormattedImpl>(cv::String(),
mtx.rows > 1 ? cv::String("\n") : cv::String(), mtx, &*braces,
mtx.cols*mtx.channels() == 1 || !multiline, mtx.depth() == CV_64F ? prec64f : prec32f );
mtx.rows*mtx.channels() == 1 || !multiline, mtx.depth() == CV_64F ? prec64f : prec32f );
}
};
@ -315,7 +315,7 @@ namespace
{
char braces[5] = {'\0', '\0', ',', '\0', '\0'};
return cv::makePtr<FormattedImpl>("{", "}", mtx, &*braces,
mtx.cols == 1 || !multiline, mtx.depth() == CV_64F ? prec64f : prec32f );
mtx.rows == 1 || !multiline, mtx.depth() == CV_64F ? prec64f : prec32f );
}
};

View File

@ -45,7 +45,7 @@ Utilizing Multiple GPUs
-----------------------
In the current version, each of the OpenCV CUDA algorithms can use only a single GPU. So, to utilize multiple GPUs, you have to manually distribute the work between GPUs.
Switching active devie can be done using :ocv:func:`cuda::setDevice()` function. For more details please read Cuda C Programing Guide.
Switching active devie can be done using :ocv:func:`cuda::setDevice()` function. For more details please read Cuda C Programming Guide.
While developing algorithms for multiple GPUs, note a data passing overhead. For primitive functions and small images, it can be significant, which may eliminate all the advantages of having multiple GPUs. But for high-level algorithms, consider using multi-GPU acceleration. For example, the Stereo Block Matching algorithm has been successfully parallelized using the following algorithm:

View File

@ -323,7 +323,7 @@ CUDA_TEST_P(MOG2, getBackgroundImage)
cv::Mat background_gold;
mog2_gold->getBackgroundImage(background_gold);
ASSERT_MAT_NEAR(background_gold, background, 0);
ASSERT_MAT_NEAR(background_gold, background, 1);
}
INSTANTIATE_TEST_CASE_P(CUDA_BgSegm, MOG2, testing::Combine(

View File

@ -42,6 +42,11 @@ public class OpenCVLoader
*/
public static final String OPENCV_VERSION_2_4_8 = "2.4.8";
/**
* OpenCV Library version 2.4.9.
*/
public static final String OPENCV_VERSION_2_4_9 = "2.4.9";
/**
* Loads and initializes OpenCV library from current application package. Roughly, it's an analog of system.loadLibrary("opencv_java").
* @return Returns true is initialization of OpenCV was successful.

View File

@ -730,12 +730,12 @@ private:
m_pFViVarRes = (int*)cvAlloc(sizeof(int)*m_Dim);
m_Sizes = (int*)cvAlloc(sizeof(int)*m_Dim);
{ /* Create init sparce matrix: */
{ /* Create init sparse matrix: */
int i;
for(i=0;i<m_Dim;++i)m_Sizes[i] = m_BinNum;
m_HistMat.Realloc(m_Dim,m_Sizes,SPARSE);
m_HistVolumeSaved = 0;
} /* Create init sparce matrix. */
} /* Create init sparse matrix. */
} /* AllocData. */
void FreeData()

View File

@ -58,7 +58,7 @@ void cvLevenbergMarquardtOptimization(pointer_LMJac JacobianFunction,
CvMat *X0,CvMat *observRes,CvMat *resultX,
int maxIter,double epsilon)
{
/* This is not sparce method */
/* This is not sparse method */
/* Make optimization using */
/* func - function to compute */
/* uses function to compute jacobian */

View File

@ -1,8 +1,8 @@
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org.opencv.engine"
android:versionCode="216@ANDROID_PLATFORM_VERSION_CODE@"
android:versionName="2.16" >
android:versionCode="218@ANDROID_PLATFORM_VERSION_CODE@"
android:versionName="2.18" >
<uses-sdk android:minSdkVersion="@ANDROID_NATIVE_API_LEVEL@" />
<uses-feature android:name="android.hardware.touchscreen" android:required="false"/>

View File

@ -15,7 +15,7 @@ using namespace android;
const int OpenCVEngine::Platform = DetectKnownPlatforms();
const int OpenCVEngine::CpuID = GetCpuID();
const int OpenCVEngine::KnownVersions[] = {2040000, 2040100, 2040200, 2040300, 2040301, 2040302, 2040400, 2040500, 2040600, 2040700, 2040701, 2040800};
const int OpenCVEngine::KnownVersions[] = {2040000, 2040100, 2040200, 2040300, 2040301, 2040302, 2040400, 2040500, 2040600, 2040700, 2040701, 2040800, 2040900};
bool OpenCVEngine::ValidateVersion(int version)
{

View File

@ -117,7 +117,7 @@ public class ManagerActivity extends Activity
}
else
{
HardwarePlatformView.setText("Tegra 5");
HardwarePlatformView.setText("Tegra K1");
}
}
else

View File

@ -14,20 +14,20 @@ manually using adb tool:
.. code-block:: sh
adb install OpenCV-2.4.8-android-sdk/apk/OpenCV_2.4.8_Manager_2.16_<platform>.apk
adb install OpenCV-2.4.9-android-sdk/apk/OpenCV_2.4.9_Manager_2.18_<platform>.apk
Use the table below to determine proper OpenCV Manager package for your device:
+------------------------------+--------------+----------------------------------------------------+
| Hardware Platform | Android ver. | Package name |
+==============================+==============+====================================================+
| armeabi-v7a (ARMv7-A + NEON) | >= 2.3 | OpenCV_2.4.8_Manager_2.16_armv7a-neon.apk |
| armeabi-v7a (ARMv7-A + NEON) | >= 2.3 | OpenCV_2.4.9_Manager_2.18_armv7a-neon.apk |
+------------------------------+--------------+----------------------------------------------------+
| armeabi-v7a (ARMv7-A + NEON) | = 2.2 | OpenCV_2.4.8_Manager_2.16_armv7a-neon-android8.apk |
| armeabi-v7a (ARMv7-A + NEON) | = 2.2 | OpenCV_2.4.9_Manager_2.18_armv7a-neon-android8.apk |
+------------------------------+--------------+----------------------------------------------------+
| armeabi (ARMv5, ARMv6) | >= 2.3 | OpenCV_2.4.8_Manager_2.16_armeabi.apk |
| armeabi (ARMv5, ARMv6) | >= 2.3 | OpenCV_2.4.9_Manager_2.18_armeabi.apk |
+------------------------------+--------------+----------------------------------------------------+
| Intel x86 | >= 2.3 | OpenCV_2.4.8_Manager_2.16_x86.apk |
| Intel x86 | >= 2.3 | OpenCV_2.4.9_Manager_2.18_x86.apk |
+------------------------------+--------------+----------------------------------------------------+
| MIPS | >= 2.3 | OpenCV_2.4.8_Manager_2.16_mips.apk |
| MIPS | >= 2.3 | OpenCV_2.4.9_Manager_2.18_mips.apk |
+------------------------------+--------------+----------------------------------------------------+