remove softcascade host dependencies on gpu module

This commit is contained in:
marina.kolpakova
2013-03-03 13:01:17 +04:00
parent 5120322cea
commit 6daf17f974
8 changed files with 274 additions and 18 deletions

View File

@@ -1,350 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::gpu;
#if !defined (HAVE_CUDA)
cv::gpu::Stream::Stream() { throw_nogpu(); }
cv::gpu::Stream::~Stream() {}
cv::gpu::Stream::Stream(const Stream&) { throw_nogpu(); }
Stream& cv::gpu::Stream::operator=(const Stream&) { throw_nogpu(); return *this; }
bool cv::gpu::Stream::queryIfComplete() { throw_nogpu(); return false; }
void cv::gpu::Stream::waitForCompletion() { throw_nogpu(); }
void cv::gpu::Stream::enqueueDownload(const GpuMat&, Mat&) { throw_nogpu(); }
void cv::gpu::Stream::enqueueDownload(const GpuMat&, CudaMem&) { throw_nogpu(); }
void cv::gpu::Stream::enqueueUpload(const CudaMem&, GpuMat&) { throw_nogpu(); }
void cv::gpu::Stream::enqueueUpload(const Mat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::Stream::enqueueCopy(const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::Stream::enqueueMemSet(GpuMat&, Scalar) { throw_nogpu(); }
void cv::gpu::Stream::enqueueMemSet(GpuMat&, Scalar, const GpuMat&) { throw_nogpu(); }
void cv::gpu::Stream::enqueueConvert(const GpuMat&, GpuMat&, int, double, double) { throw_nogpu(); }
void cv::gpu::Stream::enqueueHostCallback(StreamCallback, void*) { throw_nogpu(); }
Stream& cv::gpu::Stream::Null() { throw_nogpu(); static Stream s; return s; }
cv::gpu::Stream::operator bool() const { throw_nogpu(); return false; }
cv::gpu::Stream::Stream(Impl*) { throw_nogpu(); }
void cv::gpu::Stream::create() { throw_nogpu(); }
void cv::gpu::Stream::release() { throw_nogpu(); }
#else /* !defined (HAVE_CUDA) */
#include "opencv2/gpu/stream_accessor.hpp"
namespace cv { namespace gpu
{
void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream);
void convertTo(const GpuMat& src, GpuMat& dst, double alpha, double beta, cudaStream_t stream);
void setTo(GpuMat& src, Scalar s, cudaStream_t stream);
void setTo(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream);
}}
struct Stream::Impl
{
static cudaStream_t getStream(const Impl* impl)
{
return impl ? impl->stream : 0;
}
cudaStream_t stream;
int ref_counter;
};
cudaStream_t cv::gpu::StreamAccessor::getStream(const Stream& stream)
{
return Stream::Impl::getStream(stream.impl);
}
cv::gpu::Stream::Stream() : impl(0)
{
create();
}
cv::gpu::Stream::~Stream()
{
release();
}
cv::gpu::Stream::Stream(const Stream& stream) : impl(stream.impl)
{
if (impl)
CV_XADD(&impl->ref_counter, 1);
}
Stream& cv::gpu::Stream::operator =(const Stream& stream)
{
if (this != &stream)
{
release();
impl = stream.impl;
if (impl)
CV_XADD(&impl->ref_counter, 1);
}
return *this;
}
bool cv::gpu::Stream::queryIfComplete()
{
cudaStream_t stream = Impl::getStream(impl);
cudaError_t err = cudaStreamQuery(stream);
if (err == cudaErrorNotReady || err == cudaSuccess)
return err == cudaSuccess;
cudaSafeCall(err);
return false;
}
void cv::gpu::Stream::waitForCompletion()
{
cudaStream_t stream = Impl::getStream(impl);
cudaSafeCall( cudaStreamSynchronize(stream) );
}
void cv::gpu::Stream::enqueueDownload(const GpuMat& src, Mat& dst)
{
// if not -> allocation will be done, but after that dst will not point to page locked memory
CV_Assert( src.size() == dst.size() && src.type() == dst.type() );
cudaStream_t stream = Impl::getStream(impl);
size_t bwidth = src.cols * src.elemSize();
cudaSafeCall( cudaMemcpy2DAsync(dst.data, dst.step, src.data, src.step, bwidth, src.rows, cudaMemcpyDeviceToHost, stream) );
}
void cv::gpu::Stream::enqueueDownload(const GpuMat& src, CudaMem& dst)
{
dst.create(src.size(), src.type(), CudaMem::ALLOC_PAGE_LOCKED);
cudaStream_t stream = Impl::getStream(impl);
size_t bwidth = src.cols * src.elemSize();
cudaSafeCall( cudaMemcpy2DAsync(dst.data, dst.step, src.data, src.step, bwidth, src.rows, cudaMemcpyDeviceToHost, stream) );
}
void cv::gpu::Stream::enqueueUpload(const CudaMem& src, GpuMat& dst)
{
dst.create(src.size(), src.type());
cudaStream_t stream = Impl::getStream(impl);
size_t bwidth = src.cols * src.elemSize();
cudaSafeCall( cudaMemcpy2DAsync(dst.data, dst.step, src.data, src.step, bwidth, src.rows, cudaMemcpyHostToDevice, stream) );
}
void cv::gpu::Stream::enqueueUpload(const Mat& src, GpuMat& dst)
{
dst.create(src.size(), src.type());
cudaStream_t stream = Impl::getStream(impl);
size_t bwidth = src.cols * src.elemSize();
cudaSafeCall( cudaMemcpy2DAsync(dst.data, dst.step, src.data, src.step, bwidth, src.rows, cudaMemcpyHostToDevice, stream) );
}
void cv::gpu::Stream::enqueueCopy(const GpuMat& src, GpuMat& dst)
{
dst.create(src.size(), src.type());
cudaStream_t stream = Impl::getStream(impl);
size_t bwidth = src.cols * src.elemSize();
cudaSafeCall( cudaMemcpy2DAsync(dst.data, dst.step, src.data, src.step, bwidth, src.rows, cudaMemcpyDeviceToDevice, stream) );
}
void cv::gpu::Stream::enqueueMemSet(GpuMat& src, Scalar val)
{
const int sdepth = src.depth();
if (sdepth == CV_64F)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
cudaStream_t stream = Impl::getStream(impl);
if (val[0] == 0.0 && val[1] == 0.0 && val[2] == 0.0 && val[3] == 0.0)
{
cudaSafeCall( cudaMemset2DAsync(src.data, src.step, 0, src.cols * src.elemSize(), src.rows, stream) );
return;
}
if (sdepth == CV_8U)
{
int cn = src.channels();
if (cn == 1 || (cn == 2 && val[0] == val[1]) || (cn == 3 && val[0] == val[1] && val[0] == val[2]) || (cn == 4 && val[0] == val[1] && val[0] == val[2] && val[0] == val[3]))
{
int ival = saturate_cast<uchar>(val[0]);
cudaSafeCall( cudaMemset2DAsync(src.data, src.step, ival, src.cols * src.elemSize(), src.rows, stream) );
return;
}
}
setTo(src, val, stream);
}
void cv::gpu::Stream::enqueueMemSet(GpuMat& src, Scalar val, const GpuMat& mask)
{
const int sdepth = src.depth();
if (sdepth == CV_64F)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
CV_Assert(mask.type() == CV_8UC1);
cudaStream_t stream = Impl::getStream(impl);
setTo(src, val, mask, stream);
}
void cv::gpu::Stream::enqueueConvert(const GpuMat& src, GpuMat& dst, int dtype, double alpha, double beta)
{
if (dtype < 0)
dtype = src.type();
else
dtype = CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), src.channels());
const int sdepth = src.depth();
const int ddepth = CV_MAT_DEPTH(dtype);
if (sdepth == CV_64F || ddepth == CV_64F)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
bool noScale = fabs(alpha - 1) < std::numeric_limits<double>::epsilon()
&& fabs(beta) < std::numeric_limits<double>::epsilon();
if (sdepth == ddepth && noScale)
{
enqueueCopy(src, dst);
return;
}
dst.create(src.size(), dtype);
cudaStream_t stream = Impl::getStream(impl);
convertTo(src, dst, alpha, beta, stream);
}
#if CUDA_VERSION >= 5000
namespace
{
struct CallbackData
{
cv::gpu::Stream::StreamCallback callback;
void* userData;
Stream stream;
};
void CUDART_CB cudaStreamCallback(cudaStream_t, cudaError_t status, void* userData)
{
CallbackData* data = reinterpret_cast<CallbackData*>(userData);
data->callback(data->stream, static_cast<int>(status), data->userData);
delete data;
}
}
#endif
void cv::gpu::Stream::enqueueHostCallback(StreamCallback callback, void* userData)
{
#if CUDA_VERSION >= 5000
CallbackData* data = new CallbackData;
data->callback = callback;
data->userData = userData;
data->stream = *this;
cudaStream_t stream = Impl::getStream(impl);
cudaSafeCall( cudaStreamAddCallback(stream, cudaStreamCallback, data, 0) );
#else
(void) callback;
(void) userData;
CV_Error(CV_StsNotImplemented, "This function requires CUDA 5.0");
#endif
}
cv::gpu::Stream& cv::gpu::Stream::Null()
{
static Stream s((Impl*) 0);
return s;
}
cv::gpu::Stream::operator bool() const
{
return impl && impl->stream;
}
cv::gpu::Stream::Stream(Impl* impl_) : impl(impl_)
{
}
void cv::gpu::Stream::create()
{
if (impl)
release();
cudaStream_t stream;
cudaSafeCall( cudaStreamCreate( &stream ) );
impl = (Stream::Impl*) fastMalloc(sizeof(Stream::Impl));
impl->stream = stream;
impl->ref_counter = 1;
}
void cv::gpu::Stream::release()
{
if (impl && CV_XADD(&impl->ref_counter, -1) == 1)
{
cudaSafeCall( cudaStreamDestroy(impl->stream) );
cv::fastFree(impl);
}
}
#endif /* !defined (HAVE_CUDA) */

View File

@@ -1,296 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::gpu;
cv::gpu::CudaMem::CudaMem()
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(0)
{
}
cv::gpu::CudaMem::CudaMem(int _rows, int _cols, int _type, int _alloc_type)
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(0)
{
if( _rows > 0 && _cols > 0 )
create( _rows, _cols, _type, _alloc_type);
}
cv::gpu::CudaMem::CudaMem(Size _size, int _type, int _alloc_type)
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(0)
{
if( _size.height > 0 && _size.width > 0 )
create( _size.height, _size.width, _type, _alloc_type);
}
cv::gpu::CudaMem::CudaMem(const CudaMem& m)
: flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend), alloc_type(m.alloc_type)
{
if( refcount )
CV_XADD(refcount, 1);
}
cv::gpu::CudaMem::CudaMem(const Mat& m, int _alloc_type)
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(0)
{
if( m.rows > 0 && m.cols > 0 )
create( m.size(), m.type(), _alloc_type);
Mat tmp = createMatHeader();
m.copyTo(tmp);
}
cv::gpu::CudaMem::~CudaMem()
{
release();
}
CudaMem& cv::gpu::CudaMem::operator = (const CudaMem& m)
{
if( this != &m )
{
if( m.refcount )
CV_XADD(m.refcount, 1);
release();
flags = m.flags;
rows = m.rows; cols = m.cols;
step = m.step; data = m.data;
datastart = m.datastart;
dataend = m.dataend;
refcount = m.refcount;
alloc_type = m.alloc_type;
}
return *this;
}
CudaMem cv::gpu::CudaMem::clone() const
{
CudaMem m(size(), type(), alloc_type);
Mat to = m;
Mat from = *this;
from.copyTo(to);
return m;
}
void cv::gpu::CudaMem::create(Size _size, int _type, int _alloc_type)
{
create(_size.height, _size.width, _type, _alloc_type);
}
Mat cv::gpu::CudaMem::createMatHeader() const
{
return Mat(size(), type(), data, step);
}
cv::gpu::CudaMem::operator Mat() const
{
return createMatHeader();
}
cv::gpu::CudaMem::operator GpuMat() const
{
return createGpuMatHeader();
}
bool cv::gpu::CudaMem::isContinuous() const
{
return (flags & Mat::CONTINUOUS_FLAG) != 0;
}
size_t cv::gpu::CudaMem::elemSize() const
{
return CV_ELEM_SIZE(flags);
}
size_t cv::gpu::CudaMem::elemSize1() const
{
return CV_ELEM_SIZE1(flags);
}
int cv::gpu::CudaMem::type() const
{
return CV_MAT_TYPE(flags);
}
int cv::gpu::CudaMem::depth() const
{
return CV_MAT_DEPTH(flags);
}
int cv::gpu::CudaMem::channels() const
{
return CV_MAT_CN(flags);
}
size_t cv::gpu::CudaMem::step1() const
{
return step/elemSize1();
}
Size cv::gpu::CudaMem::size() const
{
return Size(cols, rows);
}
bool cv::gpu::CudaMem::empty() const
{
return data == 0;
}
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
void cv::gpu::registerPageLocked(Mat&) { throw_nogpu(); }
void cv::gpu::unregisterPageLocked(Mat&) { throw_nogpu(); }
void cv::gpu::CudaMem::create(int /*_rows*/, int /*_cols*/, int /*_type*/, int /*type_alloc*/) { throw_nogpu(); }
bool cv::gpu::CudaMem::canMapHostMemory() { throw_nogpu(); return false; }
void cv::gpu::CudaMem::release() { throw_nogpu(); }
GpuMat cv::gpu::CudaMem::createGpuMatHeader () const { throw_nogpu(); return GpuMat(); }
#else /* !defined (HAVE_CUDA) */
void cv::gpu::registerPageLocked(Mat& m)
{
cudaSafeCall( cudaHostRegister(m.ptr(), m.step * m.rows, cudaHostRegisterPortable) );
}
void cv::gpu::unregisterPageLocked(Mat& m)
{
cudaSafeCall( cudaHostUnregister(m.ptr()) );
}
bool cv::gpu::CudaMem::canMapHostMemory()
{
cudaDeviceProp prop;
cudaSafeCall( cudaGetDeviceProperties(&prop, getDevice()) );
return (prop.canMapHostMemory != 0) ? true : false;
}
namespace
{
size_t alignUpStep(size_t what, size_t alignment)
{
size_t alignMask = alignment-1;
size_t inverseAlignMask = ~alignMask;
size_t res = (what + alignMask) & inverseAlignMask;
return res;
}
}
void cv::gpu::CudaMem::create(int _rows, int _cols, int _type, int _alloc_type)
{
if (_alloc_type == ALLOC_ZEROCOPY && !canMapHostMemory())
cv::gpu::error("ZeroCopy is not supported by current device", __FILE__, __LINE__);
_type &= TYPE_MASK;
if( rows == _rows && cols == _cols && type() == _type && data )
return;
if( data )
release();
CV_DbgAssert( _rows >= 0 && _cols >= 0 );
if( _rows > 0 && _cols > 0 )
{
flags = Mat::MAGIC_VAL + Mat::CONTINUOUS_FLAG + _type;
rows = _rows;
cols = _cols;
step = elemSize()*cols;
if (_alloc_type == ALLOC_ZEROCOPY)
{
cudaDeviceProp prop;
cudaSafeCall( cudaGetDeviceProperties(&prop, getDevice()) );
step = alignUpStep(step, prop.textureAlignment);
}
int64 _nettosize = (int64)step*rows;
size_t nettosize = (size_t)_nettosize;
if( _nettosize != (int64)nettosize )
CV_Error(CV_StsNoMem, "Too big buffer is allocated");
size_t datasize = alignSize(nettosize, (int)sizeof(*refcount));
//datastart = data = (uchar*)fastMalloc(datasize + sizeof(*refcount));
alloc_type = _alloc_type;
void *ptr;
switch (alloc_type)
{
case ALLOC_PAGE_LOCKED: cudaSafeCall( cudaHostAlloc( &ptr, datasize, cudaHostAllocDefault) ); break;
case ALLOC_ZEROCOPY: cudaSafeCall( cudaHostAlloc( &ptr, datasize, cudaHostAllocMapped) ); break;
case ALLOC_WRITE_COMBINED: cudaSafeCall( cudaHostAlloc( &ptr, datasize, cudaHostAllocWriteCombined) ); break;
default: cv::gpu::error("Invalid alloc type", __FILE__, __LINE__);
}
datastart = data = (uchar*)ptr;
dataend = data + nettosize;
refcount = (int*)cv::fastMalloc(sizeof(*refcount));
*refcount = 1;
}
}
GpuMat cv::gpu::CudaMem::createGpuMatHeader () const
{
GpuMat res;
if (alloc_type == ALLOC_ZEROCOPY)
{
void *pdev;
cudaSafeCall( cudaHostGetDevicePointer( &pdev, data, 0 ) );
res = GpuMat(rows, cols, type(), pdev, step);
}
else
cv::gpu::error("Zero-copy is not supported or memory was allocated without zero-copy flag", __FILE__, __LINE__);
return res;
}
void cv::gpu::CudaMem::release()
{
if( refcount && CV_XADD(refcount, -1) == 1 )
{
cudaSafeCall( cudaFreeHost(datastart ) );
fastFree(refcount);
}
data = datastart = dataend = 0;
step = rows = cols = 0;
refcount = 0;
}
#endif /* !defined (HAVE_CUDA) */