More fixes for documentation.
This commit is contained in:
@@ -75,8 +75,6 @@ Estimates the Gaussian mixture parameters from a sample set.
|
||||
|
||||
.. ocv:function:: bool CvEM::train( const CvMat* samples, const CvMat* sampleIdx=0, CvEMParams params=CvEMParams(), CvMat* labels=0 )
|
||||
|
||||
.. ocv:pyfunction:: cv2.EM.train(samples[, sampleIdx[, params]]) -> retval, labels
|
||||
|
||||
:param samples: Samples from which the Gaussian mixture model will be estimated.
|
||||
|
||||
:param sample_idx: Mask of samples to use. All samples are used by default.
|
||||
@@ -107,8 +105,6 @@ Returns a mixture component index of a sample.
|
||||
|
||||
.. ocv:function:: float CvEM::predict( const CvMat* sample, CvMat* probs ) const
|
||||
|
||||
.. ocv:pyfunction:: cv2.EM.predict(sample) -> retval, probs
|
||||
|
||||
:param sample: A sample for classification.
|
||||
|
||||
:param probs: If it is not null then the method will write posterior probabilities of each component given the sample data to this parameter.
|
||||
@@ -122,8 +118,6 @@ Returns the number of mixture components :math:`M` in the Gaussian mixture model
|
||||
|
||||
.. ocv:function:: int CvEM::get_nclusters() const
|
||||
|
||||
.. ocv:pyfunction:: cv2.EM.getNClusters() -> retval
|
||||
|
||||
|
||||
CvEM::getMeans
|
||||
------------------
|
||||
@@ -133,8 +127,6 @@ Returns mixture means :math:`a_k`.
|
||||
|
||||
.. ocv:function:: const CvMat* CvEM::get_means() const
|
||||
|
||||
.. ocv:pyfunction:: cv2.EM.getMeans() -> means
|
||||
|
||||
|
||||
CvEM::getCovs
|
||||
-------------
|
||||
@@ -144,8 +136,6 @@ Returns mixture covariance matrices :math:`S_k`.
|
||||
|
||||
.. ocv:function:: const CvMat** CvEM::get_covs() const
|
||||
|
||||
.. ocv:pyfunction:: cv2.EM.getCovs([covs]) -> covs
|
||||
|
||||
|
||||
CvEM::getWeights
|
||||
----------------
|
||||
@@ -155,8 +145,6 @@ Returns mixture weights :math:`\pi_k`.
|
||||
|
||||
.. ocv:function:: const CvMat* CvEM::get_weights() const
|
||||
|
||||
.. ocv:pyfunction:: cv2.EM.getWeights() -> weights
|
||||
|
||||
|
||||
CvEM::getProbs
|
||||
--------------
|
||||
@@ -166,8 +154,6 @@ Returns vectors of probabilities for each training sample.
|
||||
|
||||
.. ocv:function:: const CvMat* CvEM::get_probs() const
|
||||
|
||||
.. ocv:pyfunction:: cv2.EM.getProbs() -> probs
|
||||
|
||||
For each training sample :math:`i` (that have been passed to the constructor or to :ocv:func:`CvEM::train`) returns probabilities :math:`p_{i,k}` to belong to a mixture component :math:`k`.
|
||||
|
||||
|
||||
@@ -179,8 +165,6 @@ Returns logarithm of likelihood.
|
||||
|
||||
.. ocv:function:: double CvEM::get_log_likelihood() const
|
||||
|
||||
.. ocv:pyfunction:: cv2.EM.getLikelihood() -> likelihood
|
||||
|
||||
|
||||
CvEM::write
|
||||
-----------
|
||||
|
@@ -81,22 +81,22 @@ RandomizedTree::train
|
||||
-------------------------
|
||||
Trains a randomized tree using an input set of keypoints.
|
||||
|
||||
.. ocv:function:: void train(std::vector<BaseKeypoint> const& base_set, RNG& rng, PatchGenerator& make_patch, int depth, int views, size_t reduced_num_dim, int num_quant_bits)
|
||||
.. ocv:function:: void RandomizedTree::train( vector<BaseKeypoint> const& base_set, RNG & rng, int depth, int views, size_t reduced_num_dim, int num_quant_bits )
|
||||
|
||||
.. ocv:function:: void train(std::vector<BaseKeypoint> const& base_set, RNG& rng, PatchGenerator& make_patch, int depth, int views, size_t reduced_num_dim, int num_quant_bits)
|
||||
.. ocv:function:: void RandomizedTree::train( vector<BaseKeypoint> const& base_set, RNG & rng, PatchGenerator & make_patch, int depth, int views, size_t reduced_num_dim, int num_quant_bits )
|
||||
|
||||
:param base_set: Vector of the ``BaseKeypoint`` type. It contains image keypoints used for training.
|
||||
|
||||
|
||||
:param rng: Random-number generator used for training.
|
||||
|
||||
|
||||
:param make_patch: Patch generator used for training.
|
||||
|
||||
|
||||
:param depth: Maximum tree depth.
|
||||
|
||||
:param views: Number of random views of each keypoint neighborhood to generate.
|
||||
|
||||
:param reduced_num_dim: Number of dimensions used in the compressed signature.
|
||||
|
||||
|
||||
:param num_quant_bits: Number of bits used for quantization.
|
||||
|
||||
|
||||
@@ -105,9 +105,9 @@ RandomizedTree::read
|
||||
------------------------
|
||||
Reads a pre-saved randomized tree from a file or stream.
|
||||
|
||||
.. ocv:function:: read(const char* file_name, int num_quant_bits)
|
||||
.. ocv:function:: RandomizedTree::read(const char* file_name, int num_quant_bits)
|
||||
|
||||
.. ocv:function:: read(std::istream &is, int num_quant_bits)
|
||||
.. ocv:function:: RandomizedTree::read(std::istream &is, int num_quant_bits)
|
||||
|
||||
:param file_name: Name of the file that contains randomized tree data.
|
||||
|
||||
@@ -121,9 +121,9 @@ RandomizedTree::write
|
||||
-------------------------
|
||||
Writes the current randomized tree to a file or stream.
|
||||
|
||||
.. ocv:function:: void write(const char* file_name) const
|
||||
.. ocv:function:: void RandomizedTree::write(const char* file_name) const
|
||||
|
||||
.. ocv:function:: void write(std::ostream &os) const
|
||||
.. ocv:function:: void RandomizedTree::write(std::ostream &os) const
|
||||
|
||||
:param file_name: Name of the file where randomized tree data is stored.
|
||||
|
||||
@@ -133,7 +133,7 @@ Writes the current randomized tree to a file or stream.
|
||||
|
||||
RandomizedTree::applyQuantization
|
||||
-------------------------------------
|
||||
.. ocv:function:: void applyQuantization(int num_quant_bits)
|
||||
.. ocv:function:: void RandomizedTree::applyQuantization(int num_quant_bits)
|
||||
|
||||
Applies quantization to the current randomized tree.
|
||||
|
||||
@@ -240,26 +240,26 @@ RTreeClassifier::train
|
||||
--------------------------
|
||||
Trains a randomized tree classifier using an input set of keypoints.
|
||||
|
||||
.. ocv:function:: void train(vector<BaseKeypoint> const& base_set, RNG& rng, int num_trees = RTreeClassifier::DEFAULT_TREES, int depth = DEFAULT_DEPTH, int views = DEFAULT_VIEWS, size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM, int num_quant_bits = DEFAULT_NUM_QUANT_BITS, bool print_status = true)
|
||||
.. ocv:function:: void RTreeClassifier::train( vector<BaseKeypoint> const& base_set, RNG & rng, int num_trees=RTreeClassifier::DEFAULT_TREES, int depth=RandomizedTree::DEFAULT_DEPTH, int views=RandomizedTree::DEFAULT_VIEWS, size_t reduced_num_dim=RandomizedTree::DEFAULT_REDUCED_NUM_DIM, int num_quant_bits=DEFAULT_NUM_QUANT_BITS )
|
||||
|
||||
.. ocv:function:: void train(vector<BaseKeypoint> const& base_set, RNG& rng, PatchGenerator& make_patch, int num_trees = RTreeClassifier::DEFAULT_TREES, int depth = DEFAULT_DEPTH, int views = DEFAULT_VIEWS, size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM, int num_quant_bits = DEFAULT_NUM_QUANT_BITS, bool print_status = true)
|
||||
.. ocv:function:: void RTreeClassifier::train( vector<BaseKeypoint> const& base_set, RNG & rng, PatchGenerator & make_patch, int num_trees=RTreeClassifier::DEFAULT_TREES, int depth=RandomizedTree::DEFAULT_DEPTH, int views=RandomizedTree::DEFAULT_VIEWS, size_t reduced_num_dim=RandomizedTree::DEFAULT_REDUCED_NUM_DIM, int num_quant_bits=DEFAULT_NUM_QUANT_BITS )
|
||||
|
||||
:param base_set: Vector of the ``BaseKeypoint`` type. It contains image keypoints used for training.
|
||||
|
||||
|
||||
:param rng: Random-number generator used for training.
|
||||
|
||||
|
||||
:param make_patch: Patch generator used for training.
|
||||
|
||||
|
||||
:param num_trees: Number of randomized trees used in ``RTreeClassificator`` .
|
||||
|
||||
|
||||
:param depth: Maximum tree depth.
|
||||
|
||||
:param views: Number of random views of each keypoint neighborhood to generate.
|
||||
|
||||
:param reduced_num_dim: Number of dimensions used in the compressed signature.
|
||||
|
||||
|
||||
:param num_quant_bits: Number of bits used for quantization.
|
||||
|
||||
|
||||
:param print_status: Current status of training printed on the console.
|
||||
|
||||
|
||||
@@ -268,9 +268,9 @@ RTreeClassifier::getSignature
|
||||
---------------------------------
|
||||
Returns a signature for an image patch.
|
||||
|
||||
.. ocv:function:: void getSignature(IplImage *patch, uchar *sig)
|
||||
.. ocv:function:: void RTreeClassifier::getSignature(IplImage *patch, uchar *sig)
|
||||
|
||||
.. ocv:function:: void getSignature(IplImage *patch, float *sig)
|
||||
.. ocv:function:: void RTreeClassifier::getSignature(IplImage *patch, float *sig)
|
||||
|
||||
:param patch: Image patch to calculate the signature for.
|
||||
:param sig: Output signature (array dimension is ``reduced_num_dim)`` .
|
||||
@@ -278,15 +278,15 @@ Returns a signature for an image patch.
|
||||
|
||||
|
||||
RTreeClassifier::getSparseSignature
|
||||
---------------------------------------
|
||||
---------------------------------------
|
||||
Returns a sparse signature for an image patch
|
||||
|
||||
.. ocv:function:: void getSparseSignature(IplImage *patch, float *sig, float thresh)
|
||||
.. ocv:function:: void RTreeClassifier::getSparseSignature(IplImage *patch, float *sig, float thresh)
|
||||
|
||||
:param patch: Image patch to calculate the signature for.
|
||||
|
||||
|
||||
:param sig: Output signature (array dimension is ``reduced_num_dim)`` .
|
||||
|
||||
|
||||
:param thresh: Threshold used for compressing the signature.
|
||||
|
||||
Returns a signature for an image patch similarly to ``getSignature`` but uses a threshold for removing all signature elements below the threshold so that the signature is compressed.
|
||||
@@ -296,7 +296,7 @@ RTreeClassifier::countNonZeroElements
|
||||
-----------------------------------------
|
||||
Returns the number of non-zero elements in an input array.
|
||||
|
||||
.. ocv:function:: static int countNonZeroElements(float *vec, int n, double tol=1e-10)
|
||||
.. ocv:function:: static int RTreeClassifier::countNonZeroElements(float *vec, int n, double tol=1e-10)
|
||||
|
||||
:param vec: Input vector containing float elements.
|
||||
|
||||
@@ -310,9 +310,9 @@ RTreeClassifier::read
|
||||
-------------------------
|
||||
Reads a pre-saved ``RTreeClassifier`` from a file or stream.
|
||||
|
||||
.. ocv:function:: read(const char* file_name)
|
||||
.. ocv:function:: void RTreeClassifier::read(const char* file_name)
|
||||
|
||||
.. ocv:function:: read(std::istream& is)
|
||||
.. ocv:function:: void RTreeClassifier::read( std::istream & is )
|
||||
|
||||
:param file_name: Name of the file that contains randomized tree data.
|
||||
|
||||
@@ -324,9 +324,9 @@ RTreeClassifier::write
|
||||
--------------------------
|
||||
Writes the current ``RTreeClassifier`` to a file or stream.
|
||||
|
||||
.. ocv:function:: void write(const char* file_name) const
|
||||
.. ocv:function:: void RTreeClassifier::write(const char* file_name) const
|
||||
|
||||
.. ocv:function:: void write(std::ostream &os) const
|
||||
.. ocv:function:: void RTreeClassifier::write(std::ostream &os) const
|
||||
|
||||
:param file_name: Name of the file where randomized tree data is stored.
|
||||
|
||||
@@ -338,7 +338,7 @@ RTreeClassifier::setQuantization
|
||||
------------------------------------
|
||||
Applies quantization to the current randomized tree.
|
||||
|
||||
.. ocv:function:: void setQuantization(int num_quant_bits)
|
||||
.. ocv:function:: void RTreeClassifier::setQuantization(int num_quant_bits)
|
||||
|
||||
:param num_quant_bits: Number of bits used for quantization.
|
||||
|
||||
|
95
modules/legacy/doc/histograms.rst
Normal file
95
modules/legacy/doc/histograms.rst
Normal file
@@ -0,0 +1,95 @@
|
||||
Histograms
|
||||
==========
|
||||
|
||||
.. highlight:: cpp
|
||||
|
||||
|
||||
|
||||
CalcPGH
|
||||
-------
|
||||
Calculates a pair-wise geometrical histogram for a contour.
|
||||
|
||||
.. ocv:cfunction:: void cvCalcPGH( const CvSeq* contour, CvHistogram* hist )
|
||||
|
||||
:param contour: Input contour. Currently, only integer point coordinates are allowed.
|
||||
|
||||
:param hist: Calculated histogram. It must be two-dimensional.
|
||||
|
||||
The function calculates a 2D pair-wise geometrical histogram (PGH), described in [Iivarinen97]_ for the contour. The algorithm considers every pair of contour
|
||||
edges. The angle between the edges and the minimum/maximum distances
|
||||
are determined for every pair. To do this, each of the edges in turn
|
||||
is taken as the base, while the function loops through all the other
|
||||
edges. When the base edge and any other edge are considered, the minimum
|
||||
and maximum distances from the points on the non-base edge and line of
|
||||
the base edge are selected. The angle between the edges defines the row
|
||||
of the histogram in which all the bins that correspond to the distance
|
||||
between the calculated minimum and maximum distances are incremented
|
||||
(that is, the histogram is transposed relatively to the definition in the original paper). The histogram can be used for contour matching.
|
||||
|
||||
|
||||
.. [Iivarinen97] Jukka Iivarinen, Markus Peura, Jaakko Srel, and Ari Visa. *Comparison of Combined Shape Descriptors for Irregular Objects*, 8th British Machine Vision Conference, BMVC'97. http://www.cis.hut.fi/research/IA/paper/publications/bmvc97/bmvc97.html
|
||||
|
||||
|
||||
QueryHistValue*D
|
||||
----------------
|
||||
Queries the value of the histogram bin.
|
||||
|
||||
.. ocv:cfunction:: float cvQueryHistValue_1D(CvHistogram hist, int idx0)
|
||||
.. ocv:cfunction:: float cvQueryHistValue_2D(CvHistogram hist, int idx0, int idx1)
|
||||
.. ocv:cfunction:: float cvQueryHistValue_3D(CvHistogram hist, int idx0, int idx1, int idx2)
|
||||
.. ocv:cfunction:: float cvQueryHistValue_nD(CvHistogram hist, const int* idx)
|
||||
|
||||
.. ocv:pyoldfunction:: cv.QueryHistValue_1D(hist, idx0) -> float
|
||||
.. ocv:pyoldfunction:: cv.QueryHistValue_2D(hist, idx0, idx1) -> float
|
||||
.. ocv:pyoldfunction:: cv.QueryHistValue_3D(hist, idx0, idx1, idx2) -> float
|
||||
.. ocv:pyoldfunction:: cv.QueryHistValue_nD(hist, idx) -> float
|
||||
|
||||
:param hist: Histogram.
|
||||
|
||||
:param idx0: 0-th index.
|
||||
|
||||
:param idx1: 1-st index.
|
||||
|
||||
:param idx2: 2-nd index.
|
||||
|
||||
:param idx: Array of indices.
|
||||
|
||||
The macros return the value of the specified bin of the 1D, 2D, 3D, or N-D histogram. In case of a sparse histogram, the function returns 0. If the bin is not present in the histogram, no new bin is created.
|
||||
|
||||
GetHistValue\_?D
|
||||
----------------
|
||||
Returns a pointer to the histogram bin.
|
||||
|
||||
.. ocv:cfunction:: float cvGetHistValue_1D(CvHistogram hist, int idx0)
|
||||
|
||||
.. ocv:cfunction:: float cvGetHistValue_2D(CvHistogram hist, int idx0, int idx1)
|
||||
|
||||
.. ocv:cfunction:: float cvGetHistValue_3D(CvHistogram hist, int idx0, int idx1, int idx2)
|
||||
|
||||
.. ocv:cfunction:: float cvGetHistValue_nD(CvHistogram hist, int idx)
|
||||
|
||||
:param hist: Histogram.
|
||||
|
||||
:param idx0: 0-th index.
|
||||
|
||||
:param idx1: 1-st index.
|
||||
|
||||
:param idx2: 2-nd index.
|
||||
|
||||
:param idx: Array of indices.
|
||||
|
||||
::
|
||||
|
||||
#define cvGetHistValue_1D( hist, idx0 )
|
||||
((float*)(cvPtr1D( (hist)->bins, (idx0), 0 ))
|
||||
#define cvGetHistValue_2D( hist, idx0, idx1 )
|
||||
((float*)(cvPtr2D( (hist)->bins, (idx0), (idx1), 0 )))
|
||||
#define cvGetHistValue_3D( hist, idx0, idx1, idx2 )
|
||||
((float*)(cvPtr3D( (hist)->bins, (idx0), (idx1), (idx2), 0 )))
|
||||
#define cvGetHistValue_nD( hist, idx )
|
||||
((float*)(cvPtrND( (hist)->bins, (idx), 0 )))
|
||||
|
||||
..
|
||||
|
||||
The macros ``GetHistValue`` return a pointer to the specified bin of the 1D, 2D, 3D, or N-D histogram. In case of a sparse histogram, the function creates a new bin and sets it to 0, unless it exists already.
|
||||
|
@@ -9,6 +9,7 @@ legacy. Deprecated stuff
|
||||
|
||||
motion_analysis
|
||||
expectation_maximization
|
||||
histograms
|
||||
planar_subdivisions
|
||||
feature_detection_and_description
|
||||
common_interfaces_of_descriptor_extractors
|
||||
|
@@ -19,7 +19,7 @@ Planar subdivision.
|
||||
CvSubdiv2DEdge recent_edge; \
|
||||
CvPoint2D32f topleft; \
|
||||
CvPoint2D32f bottomright;
|
||||
|
||||
|
||||
typedef struct CvSubdiv2D
|
||||
{
|
||||
CV_SUBDIV2D_FIELDS()
|
||||
@@ -64,13 +64,13 @@ Quad-edge of a planar subdivision.
|
||||
/* one of edges within quad-edge, lower 2 bits is index (0..3)
|
||||
and upper bits are quad-edge pointer */
|
||||
typedef long CvSubdiv2DEdge;
|
||||
|
||||
|
||||
/* quad-edge structure fields */
|
||||
#define CV_QUADEDGE2D_FIELDS() \
|
||||
int flags; \
|
||||
struct CvSubdiv2DPoint* pt[4]; \
|
||||
CvSubdiv2DEdge next[4];
|
||||
|
||||
|
||||
typedef struct CvQuadEdge2D
|
||||
{
|
||||
CV_QUADEDGE2D_FIELDS()
|
||||
@@ -97,9 +97,9 @@ Point of an original or dual subdivision.
|
||||
CvSubdiv2DEdge first; \
|
||||
CvPoint2D32f pt; \
|
||||
int id;
|
||||
|
||||
|
||||
#define CV_SUBDIV2D_VIRTUAL_POINT_FLAG (1 << 30)
|
||||
|
||||
|
||||
typedef struct CvSubdiv2DPoint
|
||||
{
|
||||
CV_SUBDIV2D_POINT_FIELDS()
|
||||
@@ -135,7 +135,7 @@ Removes all virtual points.
|
||||
:param subdiv: Delaunay subdivision.
|
||||
|
||||
The function removes all of the virtual points. It
|
||||
is called internally in
|
||||
is called internally in
|
||||
:ocv:cfunc:`CalcSubdivVoronoi2D`
|
||||
if the subdivision
|
||||
was modified after the previous call to the function.
|
||||
@@ -145,7 +145,7 @@ CreateSubdivDelaunay2D
|
||||
Creates an empty Delaunay triangulation.
|
||||
|
||||
.. ocv:cfunction:: CvSubdiv2D* cvCreateSubdivDelaunay2D( CvRect rect, CvMemStorage* storage )
|
||||
.. ocv:pyoldfunction:: cv.CreateSubdivDelaunay2D(rect, storage)-> emptyDelaunayTriangulation
|
||||
.. ocv:pyoldfunction:: cv.CreateSubdivDelaunay2D(rect, storage) -> CvSubdiv2D
|
||||
|
||||
:param rect: Rectangle that includes all of the 2D points that are to be added to the subdivision.
|
||||
|
||||
@@ -157,7 +157,7 @@ subdivision where 2D points can be added using the function
|
||||
. All of the points to be added must be within
|
||||
the specified rectangle, otherwise a runtime error is raised.
|
||||
|
||||
Note that the triangulation is a single large triangle that covers the given rectangle. Hence the three vertices of this triangle are outside the rectangle
|
||||
Note that the triangulation is a single large triangle that covers the given rectangle. Hence the three vertices of this triangle are outside the rectangle
|
||||
``rect``
|
||||
.
|
||||
|
||||
@@ -192,7 +192,7 @@ Returns the edge destination.
|
||||
The function returns the edge destination. The
|
||||
returned pointer may be NULL if the edge is from a dual subdivision and
|
||||
the virtual point coordinates are not calculated yet. The virtual points
|
||||
can be calculated using the function
|
||||
can be calculated using the function
|
||||
:ocv:cfunc:`CalcSubdivVoronoi2D`.
|
||||
|
||||
Subdiv2DGetEdge
|
||||
@@ -235,9 +235,9 @@ Returns next edge around the edge origin.
|
||||
|
||||
:param edge: Subdivision edge (not a quad-edge).
|
||||
|
||||
The function returns the next edge around the edge origin:
|
||||
The function returns the next edge around the edge origin:
|
||||
``eOnext``
|
||||
on the picture above if
|
||||
on the picture above if
|
||||
``e``
|
||||
is the input edge).
|
||||
|
||||
@@ -259,33 +259,33 @@ Returns the location of a point within a Delaunay triangulation.
|
||||
The function locates the input point within the subdivision. There are five cases:
|
||||
|
||||
*
|
||||
The point falls into some facet. The function returns
|
||||
The point falls into some facet. The function returns
|
||||
``CV_PTLOC_INSIDE``
|
||||
and
|
||||
and
|
||||
``*edge``
|
||||
will contain one of edges of the facet.
|
||||
|
||||
*
|
||||
The point falls onto the edge. The function returns
|
||||
The point falls onto the edge. The function returns
|
||||
``CV_PTLOC_ON_EDGE``
|
||||
and
|
||||
and
|
||||
``*edge``
|
||||
will contain this edge.
|
||||
|
||||
*
|
||||
The point coincides with one of the subdivision vertices. The function returns
|
||||
The point coincides with one of the subdivision vertices. The function returns
|
||||
``CV_PTLOC_VERTEX``
|
||||
and
|
||||
and
|
||||
``*vertex``
|
||||
will contain a pointer to the vertex.
|
||||
|
||||
*
|
||||
The point is outside the subdivision reference rectangle. The function returns
|
||||
The point is outside the subdivision reference rectangle. The function returns
|
||||
``CV_PTLOC_OUTSIDE_RECT``
|
||||
and no pointers are filled.
|
||||
|
||||
*
|
||||
One of input arguments is invalid. A runtime error is raised or, if silent or "parent" error processing mode is selected,
|
||||
One of input arguments is invalid. A runtime error is raised or, if silent or "parent" error processing mode is selected,
|
||||
``CV_PTLOC_ERROR``
|
||||
is returnd.
|
||||
|
||||
|
Reference in New Issue
Block a user