Merge pull request #1051 from pengx17:2.4_fback_ocl

This commit is contained in:
Roman Donchenko 2013-07-01 13:45:42 +04:00 committed by OpenCV Buildbot
commit 6bf8f474fa
5 changed files with 1243 additions and 14 deletions

View File

@ -1395,6 +1395,45 @@ namespace cv
oclMat vPyr_[2];
bool isDeviceArch11_;
};
class CV_EXPORTS FarnebackOpticalFlow
{
public:
FarnebackOpticalFlow();
int numLevels;
double pyrScale;
bool fastPyramids;
int winSize;
int numIters;
int polyN;
double polySigma;
int flags;
void operator ()(const oclMat &frame0, const oclMat &frame1, oclMat &flowx, oclMat &flowy);
void releaseMemory();
private:
void prepareGaussian(
int n, double sigma, float *g, float *xg, float *xxg,
double &ig11, double &ig03, double &ig33, double &ig55);
void setPolynomialExpansionConsts(int n, double sigma);
void updateFlow_boxFilter(
const oclMat& R0, const oclMat& R1, oclMat& flowx, oclMat &flowy,
oclMat& M, oclMat &bufM, int blockSize, bool updateMatrices);
void updateFlow_gaussianBlur(
const oclMat& R0, const oclMat& R1, oclMat& flowx, oclMat& flowy,
oclMat& M, oclMat &bufM, int blockSize, bool updateMatrices);
oclMat frames_[2];
oclMat pyrLevel_[2], M_, bufM_, R_[2], blurredFrame_[2];
std::vector<oclMat> pyramid0_, pyramid1_;
};
//////////////// build warping maps ////////////////////
//! builds plane warping maps
CV_EXPORTS void buildWarpPlaneMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat &R, const Mat &T, float scale, oclMat &map_x, oclMat &map_y);

View File

@ -136,11 +136,13 @@ PERFTEST(PyrLKOpticalFlow)
size_t mismatch = 0;
for (int i = 0; i < (int)nextPts.size(); ++i)
{
if(status[i] != ocl_status.at<unsigned char>(0, i)){
if(status[i] != ocl_status.at<unsigned char>(0, i))
{
mismatch++;
continue;
}
if(status[i]){
if(status[i])
{
Point2f gpu_rst = ocl_nextPts.at<Point2f>(0, i);
Point2f cpu_rst = nextPts[i];
if(fabs(gpu_rst.x - cpu_rst.x) >= 1. || fabs(gpu_rst.y - cpu_rst.y) >= 1.)
@ -193,7 +195,7 @@ PERFTEST(tvl1flow)
WARMUP_ON;
d_alg(d0, d1, d_flowx, d_flowy);
WARMUP_OFF;
/*
/*
double diff1 = 0.0, diff2 = 0.0;
if(ExceptedMatSimilar(gold[0], cv::Mat(d_flowx), 3e-3, diff1) == 1
&&ExceptedMatSimilar(gold[1], cv::Mat(d_flowy), 3e-3, diff2) == 1)
@ -203,7 +205,7 @@ PERFTEST(tvl1flow)
TestSystem::instance().setDiff(diff1);
TestSystem::instance().setDiff(diff2);
*/
*/
GPU_ON;
@ -226,3 +228,129 @@ PERFTEST(tvl1flow)
TestSystem::instance().ExceptedMatSimilar(gold[0], flowx, 3e-3);
TestSystem::instance().ExceptedMatSimilar(gold[1], flowy, 3e-3);
}
///////////// FarnebackOpticalFlow ////////////////////////
PERFTEST(FarnebackOpticalFlow)
{
cv::Mat frame0 = imread("rubberwhale1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = imread("rubberwhale2.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty());
cv::ocl::oclMat d_frame0(frame0), d_frame1(frame1);
int polyNs[2] = { 5, 7 };
double polySigmas[2] = { 1.1, 1.5 };
int farneFlags[2] = { 0, cv::OPTFLOW_FARNEBACK_GAUSSIAN };
bool UseInitFlows[2] = { false, true };
double pyrScale = 0.5;
string farneFlagStrs[2] = { "BoxFilter", "GaussianBlur" };
string useInitFlowStrs[2] = { "", "UseInitFlow" };
for ( int i = 0; i < 2; ++i)
{
int polyN = polyNs[i];
double polySigma = polySigmas[i];
for ( int j = 0; j < 2; ++j)
{
int flags = farneFlags[j];
for ( int k = 0; k < 2; ++k)
{
bool useInitFlow = UseInitFlows[k];
SUBTEST << "polyN(" << polyN << "); " << farneFlagStrs[j] << "; " << useInitFlowStrs[k];
cv::ocl::FarnebackOpticalFlow farn;
farn.pyrScale = pyrScale;
farn.polyN = polyN;
farn.polySigma = polySigma;
farn.flags = flags;
cv::ocl::oclMat d_flowx, d_flowy;
cv::Mat flow, flowBuf, flowxBuf, flowyBuf;
WARMUP_ON;
farn(d_frame0, d_frame1, d_flowx, d_flowy);
if (useInitFlow)
{
cv::Mat flowxy[] = {cv::Mat(d_flowx), cv::Mat(d_flowy)};
cv::merge(flowxy, 2, flow);
flow.copyTo(flowBuf);
flowxy[0].copyTo(flowxBuf);
flowxy[1].copyTo(flowyBuf);
farn.flags |= cv::OPTFLOW_USE_INITIAL_FLOW;
farn(d_frame0, d_frame1, d_flowx, d_flowy);
}
WARMUP_OFF;
cv::calcOpticalFlowFarneback(
frame0, frame1, flow, farn.pyrScale, farn.numLevels, farn.winSize,
farn.numIters, farn.polyN, farn.polySigma, farn.flags);
std::vector<cv::Mat> flowxy;
cv::split(flow, flowxy);
Mat md_flowx = cv::Mat(d_flowx);
Mat md_flowy = cv::Mat(d_flowy);
TestSystem::instance().ExceptedMatSimilar(flowxy[0], md_flowx, 0.1);
TestSystem::instance().ExceptedMatSimilar(flowxy[1], md_flowy, 0.1);
if (useInitFlow)
{
cv::Mat flowx, flowy;
farn.flags = (flags | cv::OPTFLOW_USE_INITIAL_FLOW);
CPU_ON;
cv::calcOpticalFlowFarneback(
frame0, frame1, flowBuf, farn.pyrScale, farn.numLevels, farn.winSize,
farn.numIters, farn.polyN, farn.polySigma, farn.flags);
CPU_OFF;
GPU_ON;
farn(d_frame0, d_frame1, d_flowx, d_flowy);
GPU_OFF;
GPU_FULL_ON;
d_frame0.upload(frame0);
d_frame1.upload(frame1);
d_flowx.upload(flowxBuf);
d_flowy.upload(flowyBuf);
farn(d_frame0, d_frame1, d_flowx, d_flowy);
d_flowx.download(flowx);
d_flowy.download(flowy);
GPU_FULL_OFF;
}
else
{
cv::Mat flow, flowx, flowy;
cv::ocl::oclMat d_flowx, d_flowy;
farn.flags = flags;
CPU_ON;
cv::calcOpticalFlowFarneback(
frame0, frame1, flow, farn.pyrScale, farn.numLevels, farn.winSize,
farn.numIters, farn.polyN, farn.polySigma, farn.flags);
CPU_OFF;
GPU_ON;
farn(d_frame0, d_frame1, d_flowx, d_flowy);
GPU_OFF;
GPU_FULL_ON;
d_frame0.upload(frame0);
d_frame1.upload(frame1);
farn(d_frame0, d_frame1, d_flowx, d_flowy);
d_flowx.download(flowx);
d_flowy.download(flowy);
GPU_FULL_OFF;
}
}
}
}
}

View File

@ -0,0 +1,450 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Sen Liu, swjtuls1987@126.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#define tx get_local_id(0)
#define ty get_local_id(1)
#define bx get_group_id(0)
#define bdx get_local_size(0)
#define BORDER_SIZE 5
#define MAX_KSIZE_HALF 100
#ifndef polyN
#define polyN 5
#endif
__kernel void polynomialExpansion(__global float * dst,
__global __const float * src,
__global __const float * c_g,
__global __const float * c_xg,
__global __const float * c_xxg,
__local float * smem,
const float4 ig,
const int height, const int width,
int dstStep, int srcStep)
{
const int y = get_global_id(1);
const int x = bx * (bdx - 2*polyN) + tx - polyN;
dstStep /= sizeof(*dst);
srcStep /= sizeof(*src);
int xWarped;
__local float *row = smem + tx;
if (y < height && y >= 0)
{
xWarped = min(max(x, 0), width - 1);
row[0] = src[mad24(y, srcStep, xWarped)] * c_g[0];
row[bdx] = 0.f;
row[2*bdx] = 0.f;
#pragma unroll
for (int k = 1; k <= polyN; ++k)
{
float t0 = src[mad24(max(y - k, 0), srcStep, xWarped)];
float t1 = src[mad24(min(y + k, height - 1), srcStep, xWarped)];
row[0] += c_g[k] * (t0 + t1);
row[bdx] += c_xg[k] * (t1 - t0);
row[2*bdx] += c_xxg[k] * (t0 + t1);
}
}
barrier(CLK_LOCAL_MEM_FENCE);
if (y < height && y >= 0 && tx >= polyN && tx + polyN < bdx && x < width)
{
float b1 = c_g[0] * row[0];
float b3 = c_g[0] * row[bdx];
float b5 = c_g[0] * row[2*bdx];
float b2 = 0, b4 = 0, b6 = 0;
#pragma unroll
for (int k = 1; k <= polyN; ++k)
{
b1 += (row[k] + row[-k]) * c_g[k];
b4 += (row[k] + row[-k]) * c_xxg[k];
b2 += (row[k] - row[-k]) * c_xg[k];
b3 += (row[k + bdx] + row[-k + bdx]) * c_g[k];
b6 += (row[k + bdx] - row[-k + bdx]) * c_xg[k];
b5 += (row[k + 2*bdx] + row[-k + 2*bdx]) * c_g[k];
}
dst[mad24(y, dstStep, xWarped)] = b3*ig.s0;
dst[mad24(height + y, dstStep, xWarped)] = b2*ig.s0;
dst[mad24(2*height + y, dstStep, xWarped)] = b1*ig.s1 + b5*ig.s2;
dst[mad24(3*height + y, dstStep, xWarped)] = b1*ig.s1 + b4*ig.s2;
dst[mad24(4*height + y, dstStep, xWarped)] = b6*ig.s3;
}
}
inline int idx_row_low(const int y, const int last_row)
{
return abs(y) % (last_row + 1);
}
inline int idx_row_high(const int y, const int last_row)
{
return abs(last_row - abs(last_row - y)) % (last_row + 1);
}
inline int idx_row(const int y, const int last_row)
{
return idx_row_low(idx_row_high(y, last_row), last_row);
}
inline int idx_col_low(const int x, const int last_col)
{
return abs(x) % (last_col + 1);
}
inline int idx_col_high(const int x, const int last_col)
{
return abs(last_col - abs(last_col - x)) % (last_col + 1);
}
inline int idx_col(const int x, const int last_col)
{
return idx_col_low(idx_col_high(x, last_col), last_col);
}
__kernel void gaussianBlur(__global float * dst,
__global const float * src,
__global const float * c_gKer,
__local float * smem,
const int height, const int width,
int dstStep, int srcStep,
const int ksizeHalf)
{
const int y = get_global_id(1);
const int x = get_global_id(0);
dstStep /= sizeof(*dst);
srcStep /= sizeof(*src);
__local float *row = smem + ty * (bdx + 2*ksizeHalf);
if (y < height)
{
// Vertical pass
for (int i = tx; i < bdx + 2*ksizeHalf; i += bdx)
{
int xExt = (int)(bx * bdx) + i - ksizeHalf;
xExt = idx_col(xExt, width - 1);
row[i] = src[mad24(y, srcStep, xExt)] * c_gKer[0];
for (int j = 1; j <= ksizeHalf; ++j)
row[i] += (src[mad24(idx_row_low(y - j, height - 1), srcStep, xExt)]
+ src[mad24(idx_row_high(y + j, height - 1), srcStep, xExt)]) * c_gKer[j];
}
}
barrier(CLK_LOCAL_MEM_FENCE);
if (y < height && y >= 0 && x < width && x >= 0)
{
// Horizontal pass
row += tx + ksizeHalf;
float res = row[0] * c_gKer[0];
for (int i = 1; i <= ksizeHalf; ++i)
res += (row[-i] + row[i]) * c_gKer[i];
dst[mad24(y, dstStep, x)] = res;
}
}
__constant float c_border[BORDER_SIZE + 1] = { 0.14f, 0.14f, 0.4472f, 0.4472f, 0.4472f, 1.f };
__kernel void updateMatrices(__global float * M,
__global const float * flowx, __global const float * flowy,
__global const float * R0, __global const float * R1,
const int height, const int width,
int mStep, int xStep, int yStep, int R0Step, int R1Step)
{
const int y = get_global_id(1);
const int x = get_global_id(0);
mStep /= sizeof(*M);
xStep /= sizeof(*flowx);
yStep /= sizeof(*flowy);
R0Step /= sizeof(*R0);
R1Step /= sizeof(*R1);
if (y < height && y >= 0 && x < width && x >= 0)
{
float dx = flowx[mad24(y, xStep, x)];
float dy = flowy[mad24(y, yStep, x)];
float fx = x + dx;
float fy = y + dy;
int x1 = convert_int(floor(fx));
int y1 = convert_int(floor(fy));
fx -= x1;
fy -= y1;
float r2, r3, r4, r5, r6;
if (x1 >= 0 && y1 >= 0 && x1 < width - 1 && y1 < height - 1)
{
float a00 = (1.f - fx) * (1.f - fy);
float a01 = fx * (1.f - fy);
float a10 = (1.f - fx) * fy;
float a11 = fx * fy;
r2 = a00 * R1[mad24(y1, R1Step, x1)] +
a01 * R1[mad24(y1, R1Step, x1 + 1)] +
a10 * R1[mad24(y1 + 1, R1Step, x1)] +
a11 * R1[mad24(y1 + 1, R1Step, x1 + 1)];
r3 = a00 * R1[mad24(height + y1, R1Step, x1)] +
a01 * R1[mad24(height + y1, R1Step, x1 + 1)] +
a10 * R1[mad24(height + y1 + 1, R1Step, x1)] +
a11 * R1[mad24(height + y1 + 1, R1Step, x1 + 1)];
r4 = a00 * R1[mad24(2*height + y1, R1Step, x1)] +
a01 * R1[mad24(2*height + y1, R1Step, x1 + 1)] +
a10 * R1[mad24(2*height + y1 + 1, R1Step, x1)] +
a11 * R1[mad24(2*height + y1 + 1, R1Step, x1 + 1)];
r5 = a00 * R1[mad24(3*height + y1, R1Step, x1)] +
a01 * R1[mad24(3*height + y1, R1Step, x1 + 1)] +
a10 * R1[mad24(3*height + y1 + 1, R1Step, x1)] +
a11 * R1[mad24(3*height + y1 + 1, R1Step, x1 + 1)];
r6 = a00 * R1[mad24(4*height + y1, R1Step, x1)] +
a01 * R1[mad24(4*height + y1, R1Step, x1 + 1)] +
a10 * R1[mad24(4*height + y1 + 1, R1Step, x1)] +
a11 * R1[mad24(4*height + y1 + 1, R1Step, x1 + 1)];
r4 = (R0[mad24(2*height + y, R0Step, x)] + r4) * 0.5f;
r5 = (R0[mad24(3*height + y, R0Step, x)] + r5) * 0.5f;
r6 = (R0[mad24(4*height + y, R0Step, x)] + r6) * 0.25f;
}
else
{
r2 = r3 = 0.f;
r4 = R0[mad24(2*height + y, R0Step, x)];
r5 = R0[mad24(3*height + y, R0Step, x)];
r6 = R0[mad24(4*height + y, R0Step, x)] * 0.5f;
}
r2 = (R0[mad24(y, R0Step, x)] - r2) * 0.5f;
r3 = (R0[mad24(height + y, R0Step, x)] - r3) * 0.5f;
r2 += r4*dy + r6*dx;
r3 += r6*dy + r5*dx;
float scale =
c_border[min(x, BORDER_SIZE)] *
c_border[min(y, BORDER_SIZE)] *
c_border[min(width - x - 1, BORDER_SIZE)] *
c_border[min(height - y - 1, BORDER_SIZE)];
r2 *= scale;
r3 *= scale;
r4 *= scale;
r5 *= scale;
r6 *= scale;
M[mad24(y, mStep, x)] = r4*r4 + r6*r6;
M[mad24(height + y, mStep, x)] = (r4 + r5)*r6;
M[mad24(2*height + y, mStep, x)] = r5*r5 + r6*r6;
M[mad24(3*height + y, mStep, x)] = r4*r2 + r6*r3;
M[mad24(4*height + y, mStep, x)] = r6*r2 + r5*r3;
}
}
__kernel void boxFilter5(__global float * dst,
__global const float * src,
__local float * smem,
const int height, const int width,
int dstStep, int srcStep,
const int ksizeHalf)
{
const int y = get_global_id(1);
const int x = get_global_id(0);
const float boxAreaInv = 1.f / ((1 + 2*ksizeHalf) * (1 + 2*ksizeHalf));
const int smw = bdx + 2*ksizeHalf; // shared memory "width"
__local float *row = smem + 5 * ty * smw;
dstStep /= sizeof(*dst);
srcStep /= sizeof(*src);
if (y < height)
{
// Vertical pass
for (int i = tx; i < bdx + 2*ksizeHalf; i += bdx)
{
int xExt = (int)(bx * bdx) + i - ksizeHalf;
xExt = min(max(xExt, 0), width - 1);
#pragma unroll
for (int k = 0; k < 5; ++k)
row[k*smw + i] = src[mad24(k*height + y, srcStep, xExt)];
for (int j = 1; j <= ksizeHalf; ++j)
#pragma unroll
for (int k = 0; k < 5; ++k)
row[k*smw + i] +=
src[mad24(k*height + max(y - j, 0), srcStep, xExt)] +
src[mad24(k*height + min(y + j, height - 1), srcStep, xExt)];
}
}
barrier(CLK_LOCAL_MEM_FENCE);
if (y < height && y >= 0 && x < width && x >= 0)
{
// Horizontal pass
row += tx + ksizeHalf;
float res[5];
#pragma unroll
for (int k = 0; k < 5; ++k)
res[k] = row[k*smw];
for (int i = 1; i <= ksizeHalf; ++i)
#pragma unroll
for (int k = 0; k < 5; ++k)
res[k] += row[k*smw - i] + row[k*smw + i];
#pragma unroll
for (int k = 0; k < 5; ++k)
dst[mad24(k*height + y, dstStep, x)] = res[k] * boxAreaInv;
}
}
__kernel void updateFlow(__global float4 * flowx, __global float4 * flowy,
__global const float4 * M,
const int height, const int width,
int xStep, int yStep, int mStep)
{
const int y = get_global_id(1);
const int x = get_global_id(0);
xStep /= sizeof(*flowx);
yStep /= sizeof(*flowy);
mStep /= sizeof(*M);
if (y < height && y >= 0 && x < width && x >= 0)
{
float4 g11 = M[mad24(y, mStep, x)];
float4 g12 = M[mad24(height + y, mStep, x)];
float4 g22 = M[mad24(2*height + y, mStep, x)];
float4 h1 = M[mad24(3*height + y, mStep, x)];
float4 h2 = M[mad24(4*height + y, mStep, x)];
float4 detInv = (float4)(1.f) / (g11*g22 - g12*g12 + (float4)(1e-3f));
flowx[mad24(y, xStep, x)] = (g11*h2 - g12*h1) * detInv;
flowy[mad24(y, yStep, x)] = (g22*h1 - g12*h2) * detInv;
}
}
__kernel void gaussianBlur5(__global float * dst,
__global const float * src,
__global const float * c_gKer,
__local float * smem,
const int height, const int width,
int dstStep, int srcStep,
const int ksizeHalf)
{
const int y = get_global_id(1);
const int x = get_global_id(0);
const int smw = bdx + 2*ksizeHalf; // shared memory "width"
__local volatile float *row = smem + 5 * ty * smw;
dstStep /= sizeof(*dst);
srcStep /= sizeof(*src);
if (y < height)
{
// Vertical pass
for (int i = tx; i < bdx + 2*ksizeHalf; i += bdx)
{
int xExt = (int)(bx * bdx) + i - ksizeHalf;
xExt = idx_col(xExt, width - 1);
#pragma unroll
for (int k = 0; k < 5; ++k)
row[k*smw + i] = src[mad24(k*height + y, srcStep, xExt)] * c_gKer[0];
for (int j = 1; j <= ksizeHalf; ++j)
#pragma unroll
for (int k = 0; k < 5; ++k)
row[k*smw + i] +=
(src[mad24(k*height + idx_row_low(y - j, height - 1), srcStep, xExt)] +
src[mad24(k*height + idx_row_high(y + j, height - 1), srcStep, xExt)]) * c_gKer[j];
}
}
barrier(CLK_LOCAL_MEM_FENCE);
if (y < height && y >= 0 && x < width && x >= 0)
{
// Horizontal pass
row += tx + ksizeHalf;
float res[5];
#pragma unroll
for (int k = 0; k < 5; ++k)
res[k] = row[k*smw] * c_gKer[0];
for (int i = 1; i <= ksizeHalf; ++i)
#pragma unroll
for (int k = 0; k < 5; ++k)
res[k] += (row[k*smw - i] + row[k*smw + i]) * c_gKer[i];
#pragma unroll
for (int k = 0; k < 5; ++k)
dst[mad24(k*height + y, dstStep, x)] = res[k];
}
}

View File

@ -0,0 +1,540 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Sen Liu, swjtuls1987@126.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencv2/video/tracking.hpp"
using namespace std;
using namespace cv;
using namespace cv::ocl;
#define MIN_SIZE 32
namespace cv
{
namespace ocl
{
///////////////////////////OpenCL kernel strings///////////////////////////
extern const char *optical_flow_farneback;
}
}
namespace cv {
namespace ocl {
namespace optflow_farneback
{
oclMat g;
oclMat xg;
oclMat xxg;
oclMat gKer;
float ig[4];
inline int divUp(int total, int grain)
{
return (total + grain - 1) / grain;
}
inline void setGaussianBlurKernel(const float *c_gKer, int ksizeHalf)
{
cv::Mat t_gKer(1, ksizeHalf + 1, CV_32FC1, const_cast<float *>(c_gKer));
gKer.upload(t_gKer);
}
static void gaussianBlurOcl(const oclMat &src, int ksizeHalf, oclMat &dst)
{
string kernelName("gaussianBlur");
size_t localThreads[3] = { 256, 1, 1 };
size_t globalThreads[3] = { divUp(src.cols, localThreads[0]) * localThreads[0], src.rows, 1 };
int smem_size = (localThreads[0] + 2*ksizeHalf) * sizeof(float);
CV_Assert(dst.size() == src.size());
std::vector< std::pair<size_t, const void *> > args;
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&dst.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&src.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&gKer.data));
args.push_back(std::make_pair(smem_size, (void *)NULL));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.rows));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.cols));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.step));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.step));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&ksizeHalf));
openCLExecuteKernel(Context::getContext(), &optical_flow_farneback, kernelName,
globalThreads, localThreads, args, -1, -1);
}
static void polynomialExpansionOcl(const oclMat &src, int polyN, oclMat &dst)
{
string kernelName("polynomialExpansion");
size_t localThreads[3] = { 256, 1, 1 };
size_t globalThreads[3] = { divUp(src.cols, localThreads[0] - 2*polyN) * localThreads[0], src.rows, 1 };
int smem_size = 3 * localThreads[0] * sizeof(float);
std::vector< std::pair<size_t, const void *> > args;
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&dst.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&src.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&g.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&xg.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&xxg.data));
args.push_back(std::make_pair(smem_size, (void *)NULL));
args.push_back(std::make_pair(sizeof(cl_float4), (void *)&ig));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.rows));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.cols));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.step));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.step));
char opt [128];
sprintf(opt, "-D polyN=%d", polyN);
openCLExecuteKernel(Context::getContext(), &optical_flow_farneback, kernelName,
globalThreads, localThreads, args, -1, -1, opt);
}
static void updateMatricesOcl(const oclMat &flowx, const oclMat &flowy, const oclMat &R0, const oclMat &R1, oclMat &M)
{
string kernelName("updateMatrices");
size_t localThreads[3] = { 32, 8, 1 };
size_t globalThreads[3] = { divUp(flowx.cols, localThreads[0]) * localThreads[0],
divUp(flowx.rows, localThreads[1]) * localThreads[1],
1
};
std::vector< std::pair<size_t, const void *> > args;
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&M.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&flowx.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&flowy.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&R0.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&R1.data));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&flowx.rows));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&flowx.cols));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&M.step));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&flowx.step));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&flowy.step));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&R0.step));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&R1.step));
openCLExecuteKernel(Context::getContext(), &optical_flow_farneback, kernelName,
globalThreads, localThreads, args, -1, -1);
}
static void boxFilter5Ocl(const oclMat &src, int ksizeHalf, oclMat &dst)
{
string kernelName("boxFilter5");
int height = src.rows / 5;
size_t localThreads[3] = { 256, 1, 1 };
size_t globalThreads[3] = { divUp(src.cols, localThreads[0]) * localThreads[0], height, 1 };
int smem_size = (localThreads[0] + 2*ksizeHalf) * 5 * sizeof(float);
std::vector< std::pair<size_t, const void *> > args;
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&dst.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&src.data));
args.push_back(std::make_pair(smem_size, (void *)NULL));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&height));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.cols));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.step));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.step));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&ksizeHalf));
openCLExecuteKernel(Context::getContext(), &optical_flow_farneback, kernelName,
globalThreads, localThreads, args, -1, -1);
}
static void updateFlowOcl(const oclMat &M, oclMat &flowx, oclMat &flowy)
{
string kernelName("updateFlow");
int cols = divUp(flowx.cols, 4);
size_t localThreads[3] = { 32, 8, 1 };
size_t globalThreads[3] = { divUp(cols, localThreads[0]) * localThreads[0],
divUp(flowx.rows, localThreads[1]) * localThreads[0],
1
};
std::vector< std::pair<size_t, const void *> > args;
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&flowx.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&flowy.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&M.data));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&flowx.rows));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&cols));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&flowx.step));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&flowy.step));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&M.step));
openCLExecuteKernel(Context::getContext(), &optical_flow_farneback, kernelName,
globalThreads, localThreads, args, -1, -1);
}
static void gaussianBlur5Ocl(const oclMat &src, int ksizeHalf, oclMat &dst)
{
string kernelName("gaussianBlur5");
int height = src.rows / 5;
int width = src.cols;
size_t localThreads[3] = { 256, 1, 1 };
size_t globalThreads[3] = { divUp(width, localThreads[0]) * localThreads[0], height, 1 };
int smem_size = (localThreads[0] + 2*ksizeHalf) * 5 * sizeof(float);
std::vector< std::pair<size_t, const void *> > args;
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&dst.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&src.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&gKer.data));
args.push_back(std::make_pair(smem_size, (void *)NULL));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&height));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&width));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.step));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.step));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&ksizeHalf));
openCLExecuteKernel(Context::getContext(), &optical_flow_farneback, kernelName,
globalThreads, localThreads, args, -1, -1);
}
}
}
} // namespace cv { namespace ocl { namespace optflow_farneback
static oclMat allocMatFromBuf(int rows, int cols, int type, oclMat &mat)
{
if (!mat.empty() && mat.type() == type && mat.rows >= rows && mat.cols >= cols)
return mat(Rect(0, 0, cols, rows));
return mat = oclMat(rows, cols, type);
}
cv::ocl::FarnebackOpticalFlow::FarnebackOpticalFlow()
{
numLevels = 5;
pyrScale = 0.5;
fastPyramids = false;
winSize = 13;
numIters = 10;
polyN = 5;
polySigma = 1.1;
flags = 0;
}
void cv::ocl::FarnebackOpticalFlow::releaseMemory()
{
frames_[0].release();
frames_[1].release();
pyrLevel_[0].release();
pyrLevel_[1].release();
M_.release();
bufM_.release();
R_[0].release();
R_[1].release();
blurredFrame_[0].release();
blurredFrame_[1].release();
pyramid0_.clear();
pyramid1_.clear();
}
void cv::ocl::FarnebackOpticalFlow::prepareGaussian(
int n, double sigma, float *g, float *xg, float *xxg,
double &ig11, double &ig03, double &ig33, double &ig55)
{
double s = 0.;
for (int x = -n; x <= n; x++)
{
g[x] = (float)std::exp(-x*x/(2*sigma*sigma));
s += g[x];
}
s = 1./s;
for (int x = -n; x <= n; x++)
{
g[x] = (float)(g[x]*s);
xg[x] = (float)(x*g[x]);
xxg[x] = (float)(x*x*g[x]);
}
Mat_<double> G(6, 6);
G.setTo(0);
for (int y = -n; y <= n; y++)
{
for (int x = -n; x <= n; x++)
{
G(0,0) += g[y]*g[x];
G(1,1) += g[y]*g[x]*x*x;
G(3,3) += g[y]*g[x]*x*x*x*x;
G(5,5) += g[y]*g[x]*x*x*y*y;
}
}
//G[0][0] = 1.;
G(2,2) = G(0,3) = G(0,4) = G(3,0) = G(4,0) = G(1,1);
G(4,4) = G(3,3);
G(3,4) = G(4,3) = G(5,5);
// invG:
// [ x e e ]
// [ y ]
// [ y ]
// [ e z ]
// [ e z ]
// [ u ]
Mat_<double> invG = G.inv(DECOMP_CHOLESKY);
ig11 = invG(1,1);
ig03 = invG(0,3);
ig33 = invG(3,3);
ig55 = invG(5,5);
}
void cv::ocl::FarnebackOpticalFlow::setPolynomialExpansionConsts(int n, double sigma)
{
vector<float> buf(n*6 + 3);
float* g = &buf[0] + n;
float* xg = g + n*2 + 1;
float* xxg = xg + n*2 + 1;
if (sigma < FLT_EPSILON)
sigma = n*0.3;
double ig11, ig03, ig33, ig55;
prepareGaussian(n, sigma, g, xg, xxg, ig11, ig03, ig33, ig55);
cv::Mat t_g(1, n + 1, CV_32FC1, g);
cv::Mat t_xg(1, n + 1, CV_32FC1, xg);
cv::Mat t_xxg(1, n + 1, CV_32FC1, xxg);
optflow_farneback::g.upload(t_g);
optflow_farneback::xg.upload(t_xg);
optflow_farneback::xxg.upload(t_xxg);
optflow_farneback::ig[0] = static_cast<float>(ig11);
optflow_farneback::ig[1] = static_cast<float>(ig03);
optflow_farneback::ig[2] = static_cast<float>(ig33);
optflow_farneback::ig[3] = static_cast<float>(ig55);
}
void cv::ocl::FarnebackOpticalFlow::updateFlow_boxFilter(
const oclMat& R0, const oclMat& R1, oclMat& flowx, oclMat &flowy,
oclMat& M, oclMat &bufM, int blockSize, bool updateMatrices)
{
optflow_farneback::boxFilter5Ocl(M, blockSize/2, bufM);
swap(M, bufM);
finish();
optflow_farneback::updateFlowOcl(M, flowx, flowy);
if (updateMatrices)
optflow_farneback::updateMatricesOcl(flowx, flowy, R0, R1, M);
}
void cv::ocl::FarnebackOpticalFlow::updateFlow_gaussianBlur(
const oclMat& R0, const oclMat& R1, oclMat& flowx, oclMat& flowy,
oclMat& M, oclMat &bufM, int blockSize, bool updateMatrices)
{
optflow_farneback::gaussianBlur5Ocl(M, blockSize/2, bufM);
swap(M, bufM);
optflow_farneback::updateFlowOcl(M, flowx, flowy);
if (updateMatrices)
optflow_farneback::updateMatricesOcl(flowx, flowy, R0, R1, M);
}
void cv::ocl::FarnebackOpticalFlow::operator ()(
const oclMat &frame0, const oclMat &frame1, oclMat &flowx, oclMat &flowy)
{
CV_Assert(frame0.channels() == 1 && frame1.channels() == 1);
CV_Assert(frame0.size() == frame1.size());
CV_Assert(polyN == 5 || polyN == 7);
CV_Assert(!fastPyramids || std::abs(pyrScale - 0.5) < 1e-6);
Size size = frame0.size();
oclMat prevFlowX, prevFlowY, curFlowX, curFlowY;
flowx.create(size, CV_32F);
flowy.create(size, CV_32F);
oclMat flowx0 = flowx;
oclMat flowy0 = flowy;
// Crop unnecessary levels
double scale = 1;
int numLevelsCropped = 0;
for (; numLevelsCropped < numLevels; numLevelsCropped++)
{
scale *= pyrScale;
if (size.width*scale < MIN_SIZE || size.height*scale < MIN_SIZE)
break;
}
frame0.convertTo(frames_[0], CV_32F);
frame1.convertTo(frames_[1], CV_32F);
if (fastPyramids)
{
// Build Gaussian pyramids using pyrDown()
pyramid0_.resize(numLevelsCropped + 1);
pyramid1_.resize(numLevelsCropped + 1);
pyramid0_[0] = frames_[0];
pyramid1_[0] = frames_[1];
for (int i = 1; i <= numLevelsCropped; ++i)
{
pyrDown(pyramid0_[i - 1], pyramid0_[i]);
pyrDown(pyramid1_[i - 1], pyramid1_[i]);
}
}
setPolynomialExpansionConsts(polyN, polySigma);
for (int k = numLevelsCropped; k >= 0; k--)
{
scale = 1;
for (int i = 0; i < k; i++)
scale *= pyrScale;
double sigma = (1./scale - 1) * 0.5;
int smoothSize = cvRound(sigma*5) | 1;
smoothSize = std::max(smoothSize, 3);
int width = cvRound(size.width*scale);
int height = cvRound(size.height*scale);
if (fastPyramids)
{
width = pyramid0_[k].cols;
height = pyramid0_[k].rows;
}
if (k > 0)
{
curFlowX.create(height, width, CV_32F);
curFlowY.create(height, width, CV_32F);
}
else
{
curFlowX = flowx0;
curFlowY = flowy0;
}
if (!prevFlowX.data)
{
if (flags & cv::OPTFLOW_USE_INITIAL_FLOW)
{
resize(flowx0, curFlowX, Size(width, height), 0, 0, INTER_LINEAR);
resize(flowy0, curFlowY, Size(width, height), 0, 0, INTER_LINEAR);
multiply(scale, curFlowX, curFlowX);
multiply(scale, curFlowY, curFlowY);
}
else
{
curFlowX.setTo(0);
curFlowY.setTo(0);
}
}
else
{
resize(prevFlowX, curFlowX, Size(width, height), 0, 0, INTER_LINEAR);
resize(prevFlowY, curFlowY, Size(width, height), 0, 0, INTER_LINEAR);
multiply(1./pyrScale, curFlowX, curFlowX);
multiply(1./pyrScale, curFlowY, curFlowY);
}
oclMat M = allocMatFromBuf(5*height, width, CV_32F, M_);
oclMat bufM = allocMatFromBuf(5*height, width, CV_32F, bufM_);
oclMat R[2] =
{
allocMatFromBuf(5*height, width, CV_32F, R_[0]),
allocMatFromBuf(5*height, width, CV_32F, R_[1])
};
if (fastPyramids)
{
optflow_farneback::polynomialExpansionOcl(pyramid0_[k], polyN, R[0]);
optflow_farneback::polynomialExpansionOcl(pyramid1_[k], polyN, R[1]);
}
else
{
oclMat blurredFrame[2] =
{
allocMatFromBuf(size.height, size.width, CV_32F, blurredFrame_[0]),
allocMatFromBuf(size.height, size.width, CV_32F, blurredFrame_[1])
};
oclMat pyrLevel[2] =
{
allocMatFromBuf(height, width, CV_32F, pyrLevel_[0]),
allocMatFromBuf(height, width, CV_32F, pyrLevel_[1])
};
Mat g = getGaussianKernel(smoothSize, sigma, CV_32F);
optflow_farneback::setGaussianBlurKernel(g.ptr<float>(smoothSize/2), smoothSize/2);
for (int i = 0; i < 2; i++)
{
optflow_farneback::gaussianBlurOcl(frames_[i], smoothSize/2, blurredFrame[i]);
resize(blurredFrame[i], pyrLevel[i], Size(width, height), INTER_LINEAR);
optflow_farneback::polynomialExpansionOcl(pyrLevel[i], polyN, R[i]);
}
}
optflow_farneback::updateMatricesOcl(curFlowX, curFlowY, R[0], R[1], M);
if (flags & OPTFLOW_FARNEBACK_GAUSSIAN)
{
Mat g = getGaussianKernel(winSize, winSize/2*0.3f, CV_32F);
optflow_farneback::setGaussianBlurKernel(g.ptr<float>(winSize/2), winSize/2);
}
for (int i = 0; i < numIters; i++)
{
if (flags & OPTFLOW_FARNEBACK_GAUSSIAN)
updateFlow_gaussianBlur(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize, i < numIters-1);
else
updateFlow_boxFilter(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize, i < numIters-1);
}
prevFlowX = curFlowX;
prevFlowY = curFlowY;
}
flowx = curFlowX;
flowy = curFlowY;
}

View File

@ -272,6 +272,78 @@ TEST_P(Sparse, Mat)
INSTANTIATE_TEST_CASE_P(OCL_Video, Sparse, Combine(
Values(false, true),
Values(false, true)));
//////////////////////////////////////////////////////
// FarnebackOpticalFlow
namespace
{
IMPLEMENT_PARAM_CLASS(PyrScale, double)
IMPLEMENT_PARAM_CLASS(PolyN, int)
CV_FLAGS(FarnebackOptFlowFlags, 0, OPTFLOW_FARNEBACK_GAUSSIAN)
IMPLEMENT_PARAM_CLASS(UseInitFlow, bool)
}
PARAM_TEST_CASE(Farneback, PyrScale, PolyN, FarnebackOptFlowFlags, UseInitFlow)
{
double pyrScale;
int polyN;
int flags;
bool useInitFlow;
virtual void SetUp()
{
pyrScale = GET_PARAM(0);
polyN = GET_PARAM(1);
flags = GET_PARAM(2);
useInitFlow = GET_PARAM(3);
}
};
TEST_P(Farneback, Accuracy)
{
cv::Mat frame0 = imread(workdir + "/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = imread(workdir + "/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty());
double polySigma = polyN <= 5 ? 1.1 : 1.5;
cv::ocl::FarnebackOpticalFlow farn;
farn.pyrScale = pyrScale;
farn.polyN = polyN;
farn.polySigma = polySigma;
farn.flags = flags;
cv::ocl::oclMat d_flowx, d_flowy;
farn(oclMat(frame0), oclMat(frame1), d_flowx, d_flowy);
cv::Mat flow;
if (useInitFlow)
{
cv::Mat flowxy[] = {cv::Mat(d_flowx), cv::Mat(d_flowy)};
cv::merge(flowxy, 2, flow);
farn.flags |= cv::OPTFLOW_USE_INITIAL_FLOW;
farn(oclMat(frame0), oclMat(frame1), d_flowx, d_flowy);
}
cv::calcOpticalFlowFarneback(
frame0, frame1, flow, farn.pyrScale, farn.numLevels, farn.winSize,
farn.numIters, farn.polyN, farn.polySigma, farn.flags);
std::vector<cv::Mat> flowxy;
cv::split(flow, flowxy);
EXPECT_MAT_SIMILAR(flowxy[0], d_flowx, 0.1);
EXPECT_MAT_SIMILAR(flowxy[1], d_flowy, 0.1);
}
INSTANTIATE_TEST_CASE_P(OCL_Video, Farneback, testing::Combine(
testing::Values(PyrScale(0.3), PyrScale(0.5), PyrScale(0.8)),
testing::Values(PolyN(5), PolyN(7)),
testing::Values(FarnebackOptFlowFlags(0), FarnebackOptFlowFlags(cv::OPTFLOW_FARNEBACK_GAUSSIAN)),
testing::Values(UseInitFlow(false), UseInitFlow(true))));
#endif // HAVE_OPENCL