adding new ali's feature
This commit is contained in:
@@ -100,6 +100,7 @@ protected:
|
|||||||
double tau;
|
double tau;
|
||||||
double lambda;
|
double lambda;
|
||||||
double theta;
|
double theta;
|
||||||
|
double gamma;
|
||||||
int nscales;
|
int nscales;
|
||||||
int warps;
|
int warps;
|
||||||
double epsilon;
|
double epsilon;
|
||||||
@@ -121,6 +122,7 @@ private:
|
|||||||
std::vector<Mat_<float> > I1s;
|
std::vector<Mat_<float> > I1s;
|
||||||
std::vector<Mat_<float> > u1s;
|
std::vector<Mat_<float> > u1s;
|
||||||
std::vector<Mat_<float> > u2s;
|
std::vector<Mat_<float> > u2s;
|
||||||
|
std::vector<Mat_<float> > u3s;
|
||||||
|
|
||||||
Mat_<float> I1x_buf;
|
Mat_<float> I1x_buf;
|
||||||
Mat_<float> I1y_buf;
|
Mat_<float> I1y_buf;
|
||||||
@@ -142,14 +144,19 @@ private:
|
|||||||
Mat_<float> p12_buf;
|
Mat_<float> p12_buf;
|
||||||
Mat_<float> p21_buf;
|
Mat_<float> p21_buf;
|
||||||
Mat_<float> p22_buf;
|
Mat_<float> p22_buf;
|
||||||
|
Mat_<float> p31_buf;
|
||||||
|
Mat_<float> p32_buf;
|
||||||
|
|
||||||
Mat_<float> div_p1_buf;
|
Mat_<float> div_p1_buf;
|
||||||
Mat_<float> div_p2_buf;
|
Mat_<float> div_p2_buf;
|
||||||
|
Mat_<float> div_p3_buf;
|
||||||
|
|
||||||
Mat_<float> u1x_buf;
|
Mat_<float> u1x_buf;
|
||||||
Mat_<float> u1y_buf;
|
Mat_<float> u1y_buf;
|
||||||
Mat_<float> u2x_buf;
|
Mat_<float> u2x_buf;
|
||||||
Mat_<float> u2y_buf;
|
Mat_<float> u2y_buf;
|
||||||
|
Mat_<float> u3x_buf;
|
||||||
|
Mat_<float> u3y_buf;
|
||||||
} dm;
|
} dm;
|
||||||
struct dataUMat
|
struct dataUMat
|
||||||
{
|
{
|
||||||
@@ -343,6 +350,7 @@ OpticalFlowDual_TVL1::OpticalFlowDual_TVL1()
|
|||||||
nscales = 5;
|
nscales = 5;
|
||||||
warps = 5;
|
warps = 5;
|
||||||
epsilon = 0.01;
|
epsilon = 0.01;
|
||||||
|
gamma = 1.;
|
||||||
innerIterations = 30;
|
innerIterations = 30;
|
||||||
outerIterations = 10;
|
outerIterations = 10;
|
||||||
useInitialFlow = false;
|
useInitialFlow = false;
|
||||||
@@ -368,12 +376,14 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray
|
|||||||
dm.I1s.resize(nscales);
|
dm.I1s.resize(nscales);
|
||||||
dm.u1s.resize(nscales);
|
dm.u1s.resize(nscales);
|
||||||
dm.u2s.resize(nscales);
|
dm.u2s.resize(nscales);
|
||||||
|
dm.u3s.resize(nscales);
|
||||||
|
|
||||||
I0.convertTo(dm.I0s[0], dm.I0s[0].depth(), I0.depth() == CV_8U ? 1.0 : 255.0);
|
I0.convertTo(dm.I0s[0], dm.I0s[0].depth(), I0.depth() == CV_8U ? 1.0 : 255.0);
|
||||||
I1.convertTo(dm.I1s[0], dm.I1s[0].depth(), I1.depth() == CV_8U ? 1.0 : 255.0);
|
I1.convertTo(dm.I1s[0], dm.I1s[0].depth(), I1.depth() == CV_8U ? 1.0 : 255.0);
|
||||||
|
|
||||||
dm.u1s[0].create(I0.size());
|
dm.u1s[0].create(I0.size());
|
||||||
dm.u2s[0].create(I0.size());
|
dm.u2s[0].create(I0.size());
|
||||||
|
dm.u3s[0].create(I0.size());
|
||||||
|
|
||||||
if (useInitialFlow)
|
if (useInitialFlow)
|
||||||
{
|
{
|
||||||
@@ -401,14 +411,19 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray
|
|||||||
dm.p12_buf.create(I0.size());
|
dm.p12_buf.create(I0.size());
|
||||||
dm.p21_buf.create(I0.size());
|
dm.p21_buf.create(I0.size());
|
||||||
dm.p22_buf.create(I0.size());
|
dm.p22_buf.create(I0.size());
|
||||||
|
dm.p31_buf.create(I0.size());
|
||||||
|
dm.p32_buf.create(I0.size());
|
||||||
|
|
||||||
dm.div_p1_buf.create(I0.size());
|
dm.div_p1_buf.create(I0.size());
|
||||||
dm.div_p2_buf.create(I0.size());
|
dm.div_p2_buf.create(I0.size());
|
||||||
|
dm.div_p3_buf.create(I0.size());
|
||||||
|
|
||||||
dm.u1x_buf.create(I0.size());
|
dm.u1x_buf.create(I0.size());
|
||||||
dm.u1y_buf.create(I0.size());
|
dm.u1y_buf.create(I0.size());
|
||||||
dm.u2x_buf.create(I0.size());
|
dm.u2x_buf.create(I0.size());
|
||||||
dm.u2y_buf.create(I0.size());
|
dm.u2y_buf.create(I0.size());
|
||||||
|
dm.u3x_buf.create(I0.size());
|
||||||
|
dm.u3y_buf.create(I0.size());
|
||||||
|
|
||||||
// create the scales
|
// create the scales
|
||||||
for (int s = 1; s < nscales; ++s)
|
for (int s = 1; s < nscales; ++s)
|
||||||
@@ -435,14 +450,14 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray
|
|||||||
dm.u1s[s].create(dm.I0s[s].size());
|
dm.u1s[s].create(dm.I0s[s].size());
|
||||||
dm.u2s[s].create(dm.I0s[s].size());
|
dm.u2s[s].create(dm.I0s[s].size());
|
||||||
}
|
}
|
||||||
|
dm.u3s[s].create(dm.I0s[s].size());
|
||||||
}
|
}
|
||||||
|
|
||||||
if (!useInitialFlow)
|
if (!useInitialFlow)
|
||||||
{
|
{
|
||||||
dm.u1s[nscales - 1].setTo(Scalar::all(0));
|
dm.u1s[nscales - 1].setTo(Scalar::all(0));
|
||||||
dm.u2s[nscales - 1].setTo(Scalar::all(0));
|
dm.u2s[nscales - 1].setTo(Scalar::all(0));
|
||||||
}
|
}
|
||||||
|
dm.u3s[nscales - 1].setTo(Scalar::all(0));
|
||||||
// pyramidal structure for computing the optical flow
|
// pyramidal structure for computing the optical flow
|
||||||
for (int s = nscales - 1; s >= 0; --s)
|
for (int s = nscales - 1; s >= 0; --s)
|
||||||
{
|
{
|
||||||
@@ -458,8 +473,9 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray
|
|||||||
// zoom the optical flow for the next finer scale
|
// zoom the optical flow for the next finer scale
|
||||||
resize(dm.u1s[s], dm.u1s[s - 1], dm.I0s[s - 1].size());
|
resize(dm.u1s[s], dm.u1s[s - 1], dm.I0s[s - 1].size());
|
||||||
resize(dm.u2s[s], dm.u2s[s - 1], dm.I0s[s - 1].size());
|
resize(dm.u2s[s], dm.u2s[s - 1], dm.I0s[s - 1].size());
|
||||||
|
resize(dm.u3s[s], dm.u3s[s - 1], dm.I0s[s - 1].size());
|
||||||
|
|
||||||
// scale the optical flow with the appropriate zoom factor
|
// scale the optical flow with the appropriate zoom factor (don't scale u3!)
|
||||||
multiply(dm.u1s[s - 1], Scalar::all(1 / scaleStep), dm.u1s[s - 1]);
|
multiply(dm.u1s[s - 1], Scalar::all(1 / scaleStep), dm.u1s[s - 1]);
|
||||||
multiply(dm.u2s[s - 1], Scalar::all(1 / scaleStep), dm.u2s[s - 1]);
|
multiply(dm.u2s[s - 1], Scalar::all(1 / scaleStep), dm.u2s[s - 1]);
|
||||||
}
|
}
|
||||||
@@ -872,6 +888,10 @@ void CalcGradRhoBody::operator() (const Range& range) const
|
|||||||
|
|
||||||
// compute the constant part of the rho function
|
// compute the constant part of the rho function
|
||||||
rhoRow[x] = (I1wRow[x] - I1wxRow[x] * u1Row[x] - I1wyRow[x] * u2Row[x] - I0Row[x]);
|
rhoRow[x] = (I1wRow[x] - I1wxRow[x] * u1Row[x] - I1wyRow[x] * u2Row[x] - I0Row[x]);
|
||||||
|
//It = I1wRow[x] - I0Row[x]
|
||||||
|
//(u - u0)*i_X = I1wxRow[x] * u1Row[x]
|
||||||
|
//(v - v0)*i_Y = I1wyRow[x] * u2Row[x]
|
||||||
|
// gamma * w = gamma * u3
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -912,11 +932,14 @@ struct EstimateVBody : ParallelLoopBody
|
|||||||
Mat_<float> I1wy;
|
Mat_<float> I1wy;
|
||||||
Mat_<float> u1;
|
Mat_<float> u1;
|
||||||
Mat_<float> u2;
|
Mat_<float> u2;
|
||||||
|
Mat_<float> u3;
|
||||||
Mat_<float> grad;
|
Mat_<float> grad;
|
||||||
Mat_<float> rho_c;
|
Mat_<float> rho_c;
|
||||||
mutable Mat_<float> v1;
|
mutable Mat_<float> v1;
|
||||||
mutable Mat_<float> v2;
|
mutable Mat_<float> v2;
|
||||||
|
mutable Mat_<float> v3;
|
||||||
float l_t;
|
float l_t;
|
||||||
|
float gamma;
|
||||||
};
|
};
|
||||||
|
|
||||||
void EstimateVBody::operator() (const Range& range) const
|
void EstimateVBody::operator() (const Range& range) const
|
||||||
@@ -927,52 +950,61 @@ void EstimateVBody::operator() (const Range& range) const
|
|||||||
const float* I1wyRow = I1wy[y];
|
const float* I1wyRow = I1wy[y];
|
||||||
const float* u1Row = u1[y];
|
const float* u1Row = u1[y];
|
||||||
const float* u2Row = u2[y];
|
const float* u2Row = u2[y];
|
||||||
|
const float* u3Row = u3[y];
|
||||||
const float* gradRow = grad[y];
|
const float* gradRow = grad[y];
|
||||||
const float* rhoRow = rho_c[y];
|
const float* rhoRow = rho_c[y];
|
||||||
|
|
||||||
float* v1Row = v1[y];
|
float* v1Row = v1[y];
|
||||||
float* v2Row = v2[y];
|
float* v2Row = v2[y];
|
||||||
|
float* v3Row = v3[y];
|
||||||
|
|
||||||
for (int x = 0; x < I1wx.cols; ++x)
|
for (int x = 0; x < I1wx.cols; ++x)
|
||||||
{
|
{
|
||||||
const float rho = rhoRow[x] + (I1wxRow[x] * u1Row[x] + I1wyRow[x] * u2Row[x]);
|
const float rho = rhoRow[x] + (I1wxRow[x] * u1Row[x] + I1wyRow[x] * u2Row[x]) + gamma * u3Row[x];
|
||||||
|
|
||||||
float d1 = 0.0f;
|
float d1 = 0.0f;
|
||||||
float d2 = 0.0f;
|
float d2 = 0.0f;
|
||||||
|
float d3 = 0.0f;
|
||||||
|
// add d3 for 3 cases
|
||||||
if (rho < -l_t * gradRow[x])
|
if (rho < -l_t * gradRow[x])
|
||||||
{
|
{
|
||||||
d1 = l_t * I1wxRow[x];
|
d1 = l_t * I1wxRow[x];
|
||||||
d2 = l_t * I1wyRow[x];
|
d2 = l_t * I1wyRow[x];
|
||||||
|
d3 = l_t * gamma;
|
||||||
}
|
}
|
||||||
else if (rho > l_t * gradRow[x])
|
else if (rho > l_t * gradRow[x])
|
||||||
{
|
{
|
||||||
d1 = -l_t * I1wxRow[x];
|
d1 = -l_t * I1wxRow[x];
|
||||||
d2 = -l_t * I1wyRow[x];
|
d2 = -l_t * I1wyRow[x];
|
||||||
|
d3 = -l_t * gamma;
|
||||||
}
|
}
|
||||||
else if (gradRow[x] > std::numeric_limits<float>::epsilon())
|
else if (gradRow[x] > std::numeric_limits<float>::epsilon())
|
||||||
{
|
{
|
||||||
float fi = -rho / gradRow[x];
|
float fi = -rho / gradRow[x];
|
||||||
d1 = fi * I1wxRow[x];
|
d1 = fi * I1wxRow[x];
|
||||||
d2 = fi * I1wyRow[x];
|
d2 = fi * I1wyRow[x];
|
||||||
|
d3 = fi * gamma;
|
||||||
}
|
}
|
||||||
|
|
||||||
v1Row[x] = u1Row[x] + d1;
|
v1Row[x] = u1Row[x] + d1;
|
||||||
v2Row[x] = u2Row[x] + d2;
|
v2Row[x] = u2Row[x] + d2;
|
||||||
|
v3Row[x] = u3Row[x] + d3;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void estimateV(const Mat_<float>& I1wx, const Mat_<float>& I1wy, const Mat_<float>& u1, const Mat_<float>& u2, const Mat_<float>& grad, const Mat_<float>& rho_c,
|
void estimateV(const Mat_<float>& I1wx, const Mat_<float>& I1wy, const Mat_<float>& u1, const Mat_<float>& u2, const Mat_<float>& u3, const Mat_<float>& grad, const Mat_<float>& rho_c,
|
||||||
Mat_<float>& v1, Mat_<float>& v2, float l_t)
|
Mat_<float>& v1, Mat_<float>& v2, Mat_<float>& v3, float l_t, float gamma)
|
||||||
{
|
{
|
||||||
CV_DbgAssert( I1wy.size() == I1wx.size() );
|
CV_DbgAssert( I1wy.size() == I1wx.size() );
|
||||||
CV_DbgAssert( u1.size() == I1wx.size() );
|
CV_DbgAssert( u1.size() == I1wx.size() );
|
||||||
CV_DbgAssert( u2.size() == I1wx.size() );
|
CV_DbgAssert( u2.size() == I1wx.size() );
|
||||||
|
CV_DbgAssert( u3.size() == I1wx.size() );
|
||||||
CV_DbgAssert( grad.size() == I1wx.size() );
|
CV_DbgAssert( grad.size() == I1wx.size() );
|
||||||
CV_DbgAssert( rho_c.size() == I1wx.size() );
|
CV_DbgAssert( rho_c.size() == I1wx.size() );
|
||||||
CV_DbgAssert( v1.size() == I1wx.size() );
|
CV_DbgAssert( v1.size() == I1wx.size() );
|
||||||
CV_DbgAssert( v2.size() == I1wx.size() );
|
CV_DbgAssert( v2.size() == I1wx.size() );
|
||||||
|
CV_DbgAssert( v3.size() == I1wx.size() );
|
||||||
|
|
||||||
EstimateVBody body;
|
EstimateVBody body;
|
||||||
|
|
||||||
@@ -980,11 +1012,14 @@ void estimateV(const Mat_<float>& I1wx, const Mat_<float>& I1wy, const Mat_<floa
|
|||||||
body.I1wy = I1wy;
|
body.I1wy = I1wy;
|
||||||
body.u1 = u1;
|
body.u1 = u1;
|
||||||
body.u2 = u2;
|
body.u2 = u2;
|
||||||
|
body.u3 = u3;
|
||||||
body.grad = grad;
|
body.grad = grad;
|
||||||
body.rho_c = rho_c;
|
body.rho_c = rho_c;
|
||||||
body.v1 = v1;
|
body.v1 = v1;
|
||||||
body.v2 = v2;
|
body.v2 = v2;
|
||||||
|
body.v3 = v3;
|
||||||
body.l_t = l_t;
|
body.l_t = l_t;
|
||||||
|
body.gamma = gamma;
|
||||||
|
|
||||||
parallel_for_(Range(0, I1wx.rows), body);
|
parallel_for_(Range(0, I1wx.rows), body);
|
||||||
}
|
}
|
||||||
@@ -1019,6 +1054,8 @@ float estimateU(const Mat_<float>& v1, const Mat_<float>& v2, const Mat_<float>&
|
|||||||
u1Row[x] = v1Row[x] + theta * divP1Row[x];
|
u1Row[x] = v1Row[x] + theta * divP1Row[x];
|
||||||
u2Row[x] = v2Row[x] + theta * divP2Row[x];
|
u2Row[x] = v2Row[x] + theta * divP2Row[x];
|
||||||
|
|
||||||
|
//u3
|
||||||
|
|
||||||
error += (u1Row[x] - u1k) * (u1Row[x] - u1k) + (u2Row[x] - u2k) * (u2Row[x] - u2k);
|
error += (u1Row[x] - u1k) * (u1Row[x] - u1k) + (u2Row[x] - u2k) * (u2Row[x] - u2k);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -1218,18 +1255,25 @@ void OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<float>
|
|||||||
Mat_<float> p12 = dm.p12_buf(Rect(0, 0, I0.cols, I0.rows));
|
Mat_<float> p12 = dm.p12_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||||
Mat_<float> p21 = dm.p21_buf(Rect(0, 0, I0.cols, I0.rows));
|
Mat_<float> p21 = dm.p21_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||||
Mat_<float> p22 = dm.p22_buf(Rect(0, 0, I0.cols, I0.rows));
|
Mat_<float> p22 = dm.p22_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||||
|
Mat_<float> p31 = dm.p31_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||||
|
Mat_<float> p32 = dm.p32_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||||
p11.setTo(Scalar::all(0));
|
p11.setTo(Scalar::all(0));
|
||||||
p12.setTo(Scalar::all(0));
|
p12.setTo(Scalar::all(0));
|
||||||
p21.setTo(Scalar::all(0));
|
p21.setTo(Scalar::all(0));
|
||||||
p22.setTo(Scalar::all(0));
|
p22.setTo(Scalar::all(0));
|
||||||
|
p31.setTo(Scalar::all(0));
|
||||||
|
p32.setTo(Scalar::all(0));
|
||||||
|
|
||||||
Mat_<float> div_p1 = dm.div_p1_buf(Rect(0, 0, I0.cols, I0.rows));
|
Mat_<float> div_p1 = dm.div_p1_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||||
Mat_<float> div_p2 = dm.div_p2_buf(Rect(0, 0, I0.cols, I0.rows));
|
Mat_<float> div_p2 = dm.div_p2_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||||
|
Mat_<float> div_p3 = dm.div_p2_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||||
|
|
||||||
Mat_<float> u1x = dm.u1x_buf(Rect(0, 0, I0.cols, I0.rows));
|
Mat_<float> u1x = dm.u1x_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||||
Mat_<float> u1y = dm.u1y_buf(Rect(0, 0, I0.cols, I0.rows));
|
Mat_<float> u1y = dm.u1y_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||||
Mat_<float> u2x = dm.u2x_buf(Rect(0, 0, I0.cols, I0.rows));
|
Mat_<float> u2x = dm.u2x_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||||
Mat_<float> u2y = dm.u2y_buf(Rect(0, 0, I0.cols, I0.rows));
|
Mat_<float> u2y = dm.u2y_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||||
|
Mat_<float> u3x = dm.u3x_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||||
|
Mat_<float> u3y = dm.u3y_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||||
|
|
||||||
const float l_t = static_cast<float>(lambda * theta);
|
const float l_t = static_cast<float>(lambda * theta);
|
||||||
const float taut = static_cast<float>(tau / theta);
|
const float taut = static_cast<float>(tau / theta);
|
||||||
@@ -1241,7 +1285,7 @@ void OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<float>
|
|||||||
remap(I1, I1w, flowMap1, flowMap2, INTER_CUBIC);
|
remap(I1, I1w, flowMap1, flowMap2, INTER_CUBIC);
|
||||||
remap(I1x, I1wx, flowMap1, flowMap2, INTER_CUBIC);
|
remap(I1x, I1wx, flowMap1, flowMap2, INTER_CUBIC);
|
||||||
remap(I1y, I1wy, flowMap1, flowMap2, INTER_CUBIC);
|
remap(I1y, I1wy, flowMap1, flowMap2, INTER_CUBIC);
|
||||||
|
//calculate I1(x+u0) and its gradient
|
||||||
calcGradRho(I0, I1w, I1wx, I1wy, u1, u2, grad, rho_c);
|
calcGradRho(I0, I1w, I1wx, I1wy, u1, u2, grad, rho_c);
|
||||||
|
|
||||||
float error = std::numeric_limits<float>::max();
|
float error = std::numeric_limits<float>::max();
|
||||||
|
|||||||
Reference in New Issue
Block a user