Merge branch 'master' of https://github.com/Itseez/opencv into brief_cl
This commit is contained in:
commit
67e2d7ec43
1
.gitignore
vendored
1
.gitignore
vendored
@ -1,6 +1,7 @@
|
||||
*.autosave
|
||||
*.pyc
|
||||
*.user
|
||||
*~
|
||||
.*.swp
|
||||
.DS_Store
|
||||
.sw[a-z]
|
||||
|
14
3rdparty/include/opencl/1.2/CL/cl_platform.h
vendored
14
3rdparty/include/opencl/1.2/CL/cl_platform.h
vendored
@ -332,13 +332,13 @@ typedef unsigned int cl_GLenum;
|
||||
/* Define basic vector types */
|
||||
#if defined( __VEC__ )
|
||||
#include <altivec.h> /* may be omitted depending on compiler. AltiVec spec provides no way to detect whether the header is required. */
|
||||
typedef vector unsigned char __cl_uchar16;
|
||||
typedef vector signed char __cl_char16;
|
||||
typedef vector unsigned short __cl_ushort8;
|
||||
typedef vector signed short __cl_short8;
|
||||
typedef vector unsigned int __cl_uint4;
|
||||
typedef vector signed int __cl_int4;
|
||||
typedef vector float __cl_float4;
|
||||
typedef __vector unsigned char __cl_uchar16;
|
||||
typedef __vector signed char __cl_char16;
|
||||
typedef __vector unsigned short __cl_ushort8;
|
||||
typedef __vector signed short __cl_short8;
|
||||
typedef __vector unsigned int __cl_uint4;
|
||||
typedef __vector signed int __cl_int4;
|
||||
typedef __vector float __cl_float4;
|
||||
#define __CL_UCHAR16__ 1
|
||||
#define __CL_CHAR16__ 1
|
||||
#define __CL_USHORT8__ 1
|
||||
|
@ -340,7 +340,7 @@ typedef enum CvBoostType
|
||||
CV_LKCLASS = 5, /* classification (K class problem) */
|
||||
CV_LSREG = 6, /* least squares regression */
|
||||
CV_LADREG = 7, /* least absolute deviation regression */
|
||||
CV_MREG = 8, /* M-regression (Huber loss) */
|
||||
CV_MREG = 8 /* M-regression (Huber loss) */
|
||||
} CvBoostType;
|
||||
|
||||
/****************************************************************************************\
|
||||
|
@ -16,7 +16,7 @@ Required Packages
|
||||
* CMake 2.6 or higher;
|
||||
* Git;
|
||||
* GTK+2.x or higher, including headers (libgtk2.0-dev);
|
||||
* pkgconfig;
|
||||
* pkg-config;
|
||||
* Python 2.6 or later and Numpy 1.5 or later with developer packages (python-dev, python-numpy);
|
||||
* ffmpeg or libav development packages: libavcodec-dev, libavformat-dev, libswscale-dev;
|
||||
* [optional] libdc1394 2.x;
|
||||
|
@ -312,7 +312,7 @@ RetinaImpl::RetinaImpl(const cv::Size inputSz, const bool colorMode, int colorSa
|
||||
{
|
||||
_retinaFilter = 0;
|
||||
_init(inputSz, colorMode, colorSamplingMethod, useRetinaLogSampling, reductionFactor, samplingStrenght);
|
||||
};
|
||||
}
|
||||
|
||||
RetinaImpl::~RetinaImpl()
|
||||
{
|
||||
|
@ -337,7 +337,7 @@ void CV_CameraCalibrationTest::run( int start_from )
|
||||
int progress = 0;
|
||||
int values_read = -1;
|
||||
|
||||
sprintf( filepath, "%scameracalibration/", ts->get_data_path().c_str() );
|
||||
sprintf( filepath, "%scv/cameracalibration/", ts->get_data_path().c_str() );
|
||||
sprintf( filename, "%sdatafiles.txt", filepath );
|
||||
datafile = fopen( filename, "r" );
|
||||
if( datafile == 0 )
|
||||
@ -1384,7 +1384,7 @@ void CV_StereoCalibrationTest::run( int )
|
||||
{
|
||||
char filepath[1000];
|
||||
char buf[1000];
|
||||
sprintf( filepath, "%sstereo/case%d/stereo_calib.txt", ts->get_data_path().c_str(), testcase );
|
||||
sprintf( filepath, "%scv/stereo/case%d/stereo_calib.txt", ts->get_data_path().c_str(), testcase );
|
||||
f = fopen(filepath, "rt");
|
||||
Size patternSize;
|
||||
vector<string> imglist;
|
||||
@ -1405,7 +1405,7 @@ void CV_StereoCalibrationTest::run( int )
|
||||
buf[--len] = '\0';
|
||||
if( buf[0] == '#')
|
||||
continue;
|
||||
sprintf(filepath, "%sstereo/case%d/%s", ts->get_data_path().c_str(), testcase, buf );
|
||||
sprintf(filepath, "%scv/stereo/case%d/%s", ts->get_data_path().c_str(), testcase, buf );
|
||||
imglist.push_back(string(filepath));
|
||||
}
|
||||
fclose(f);
|
||||
|
@ -34,7 +34,7 @@ private:
|
||||
Mat rvec, tvec;
|
||||
};
|
||||
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
#endif
|
||||
|
@ -185,13 +185,13 @@ void CV_ChessboardDetectorTest::run_batch( const string& filename )
|
||||
switch( pattern )
|
||||
{
|
||||
case CHESSBOARD:
|
||||
folder = string(ts->get_data_path()) + "cameracalibration/";
|
||||
folder = string(ts->get_data_path()) + "cv/cameracalibration/";
|
||||
break;
|
||||
case CIRCLES_GRID:
|
||||
folder = string(ts->get_data_path()) + "cameracalibration/circles/";
|
||||
folder = string(ts->get_data_path()) + "cv/cameracalibration/circles/";
|
||||
break;
|
||||
case ASYMMETRIC_CIRCLES_GRID:
|
||||
folder = string(ts->get_data_path()) + "cameracalibration/asymmetric_circles/";
|
||||
folder = string(ts->get_data_path()) + "cv/cameracalibration/asymmetric_circles/";
|
||||
break;
|
||||
}
|
||||
|
||||
|
@ -75,7 +75,7 @@ void CV_ChessboardDetectorTimingTest::run( int start_from )
|
||||
int idx, max_idx;
|
||||
int progress = 0;
|
||||
|
||||
sprintf( filepath, "%scameracalibration/", ts->get_data_path().c_str() );
|
||||
sprintf( filepath, "%scv/cameracalibration/", ts->get_data_path().c_str() );
|
||||
sprintf( filename, "%schessboard_timing_list.dat", filepath );
|
||||
CvFileStorage* fs = cvOpenFileStorage( filename, 0, CV_STORAGE_READ );
|
||||
CvFileNode* board_list = fs ? cvGetFileNodeByName( fs, 0, "boards" ) : 0;
|
||||
|
@ -1,3 +1,3 @@
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
CV_TEST_MAIN("cv")
|
||||
CV_TEST_MAIN("")
|
||||
|
@ -398,7 +398,7 @@ protected:
|
||||
|
||||
void CV_StereoMatchingTest::run(int)
|
||||
{
|
||||
string dataPath = ts->get_data_path();
|
||||
string dataPath = ts->get_data_path() + "cv/";
|
||||
string algorithmName = name;
|
||||
assert( !algorithmName.empty() );
|
||||
if( dataPath.empty() )
|
||||
|
@ -55,7 +55,7 @@ void CvAdaptiveSkinDetector::initData(IplImage *src, int widthDivider, int heigh
|
||||
imgGrayFrame = cvCreateImage(imageSize, IPL_DEPTH_8U, 1);
|
||||
imgLastGrayFrame = cvCreateImage(imageSize, IPL_DEPTH_8U, 1);
|
||||
imgHSVFrame = cvCreateImage(imageSize, IPL_DEPTH_8U, 3);
|
||||
};
|
||||
}
|
||||
|
||||
CvAdaptiveSkinDetector::CvAdaptiveSkinDetector(int samplingDivider, int morphingMethod)
|
||||
{
|
||||
@ -80,7 +80,7 @@ CvAdaptiveSkinDetector::CvAdaptiveSkinDetector(int samplingDivider, int morphing
|
||||
imgLastGrayFrame = NULL;
|
||||
imgSaturationFrame = NULL;
|
||||
imgHSVFrame = NULL;
|
||||
};
|
||||
}
|
||||
|
||||
CvAdaptiveSkinDetector::~CvAdaptiveSkinDetector()
|
||||
{
|
||||
@ -93,7 +93,7 @@ CvAdaptiveSkinDetector::~CvAdaptiveSkinDetector()
|
||||
cvReleaseImage(&imgGrayFrame);
|
||||
cvReleaseImage(&imgLastGrayFrame);
|
||||
cvReleaseImage(&imgHSVFrame);
|
||||
};
|
||||
}
|
||||
|
||||
void CvAdaptiveSkinDetector::process(IplImage *inputBGRImage, IplImage *outputHueMask)
|
||||
{
|
||||
@ -190,7 +190,7 @@ void CvAdaptiveSkinDetector::process(IplImage *inputBGRImage, IplImage *outputHu
|
||||
|
||||
if (outputHueMask != NULL)
|
||||
cvCopy(imgFilteredFrame, outputHueMask);
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
//------------------------- Histogram for Adaptive Skin Detector -------------------------//
|
||||
@ -202,12 +202,12 @@ CvAdaptiveSkinDetector::Histogram::Histogram()
|
||||
float *ranges[] = { range };
|
||||
fHistogram = cvCreateHist(1, histogramSize, CV_HIST_ARRAY, ranges, 1);
|
||||
cvClearHist(fHistogram);
|
||||
};
|
||||
}
|
||||
|
||||
CvAdaptiveSkinDetector::Histogram::~Histogram()
|
||||
{
|
||||
cvReleaseHist(&fHistogram);
|
||||
};
|
||||
}
|
||||
|
||||
int CvAdaptiveSkinDetector::Histogram::findCoverageIndex(double surfaceToCover, int defaultValue)
|
||||
{
|
||||
@ -221,7 +221,7 @@ int CvAdaptiveSkinDetector::Histogram::findCoverageIndex(double surfaceToCover,
|
||||
}
|
||||
}
|
||||
return defaultValue;
|
||||
};
|
||||
}
|
||||
|
||||
void CvAdaptiveSkinDetector::Histogram::findCurveThresholds(int &x1, int &x2, double percent)
|
||||
{
|
||||
@ -244,7 +244,7 @@ void CvAdaptiveSkinDetector::Histogram::findCurveThresholds(int &x1, int &x2, do
|
||||
x2 = GSD_HUE_UT;
|
||||
else
|
||||
x2 += GSD_HUE_LT;
|
||||
};
|
||||
}
|
||||
|
||||
void CvAdaptiveSkinDetector::Histogram::mergeWith(CvAdaptiveSkinDetector::Histogram *source, double weight)
|
||||
{
|
||||
@ -285,4 +285,4 @@ void CvAdaptiveSkinDetector::Histogram::mergeWith(CvAdaptiveSkinDetector::Histog
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
@ -940,7 +940,7 @@ static void fjac(int /*i*/, int /*j*/, CvMat *point_params, CvMat* cam_params, C
|
||||
|
||||
#endif
|
||||
|
||||
};
|
||||
}
|
||||
static void func(int /*i*/, int /*j*/, CvMat *point_params, CvMat* cam_params, CvMat* estim, void* /*data*/) {
|
||||
//just do projections
|
||||
CvMat _Mi;
|
||||
@ -979,17 +979,17 @@ static void func(int /*i*/, int /*j*/, CvMat *point_params, CvMat* cam_params, C
|
||||
cvTranspose( _mp2, estim );
|
||||
cvReleaseMat( &_mp );
|
||||
cvReleaseMat( &_mp2 );
|
||||
};
|
||||
}
|
||||
|
||||
static void fjac_new(int i, int j, Mat& point_params, Mat& cam_params, Mat& A, Mat& B, void* data) {
|
||||
CvMat _point_params = point_params, _cam_params = cam_params, _Al = A, _Bl = B;
|
||||
fjac(i,j, &_point_params, &_cam_params, &_Al, &_Bl, data);
|
||||
};
|
||||
}
|
||||
|
||||
static void func_new(int i, int j, Mat& point_params, Mat& cam_params, Mat& estim, void* data) {
|
||||
CvMat _point_params = point_params, _cam_params = cam_params, _estim = estim;
|
||||
func(i,j,&_point_params,&_cam_params,&_estim,data);
|
||||
};
|
||||
}
|
||||
|
||||
void LevMarqSparse::bundleAdjust( std::vector<Point3d>& points, //positions of points in global coordinate system (input and output)
|
||||
const std::vector<std::vector<Point2d> >& imagePoints, //projections of 3d points for every camera
|
||||
|
@ -872,7 +872,7 @@ CV_INIT_ALGORITHM(Eigenfaces, "FaceRecognizer.Eigenfaces",
|
||||
obj.info()->addParam(obj, "labels", obj._labels, true);
|
||||
obj.info()->addParam(obj, "eigenvectors", obj._eigenvectors, true);
|
||||
obj.info()->addParam(obj, "eigenvalues", obj._eigenvalues, true);
|
||||
obj.info()->addParam(obj, "mean", obj._mean, true));
|
||||
obj.info()->addParam(obj, "mean", obj._mean, true))
|
||||
|
||||
CV_INIT_ALGORITHM(Fisherfaces, "FaceRecognizer.Fisherfaces",
|
||||
obj.info()->addParam(obj, "ncomponents", obj._num_components);
|
||||
@ -881,7 +881,7 @@ CV_INIT_ALGORITHM(Fisherfaces, "FaceRecognizer.Fisherfaces",
|
||||
obj.info()->addParam(obj, "labels", obj._labels, true);
|
||||
obj.info()->addParam(obj, "eigenvectors", obj._eigenvectors, true);
|
||||
obj.info()->addParam(obj, "eigenvalues", obj._eigenvalues, true);
|
||||
obj.info()->addParam(obj, "mean", obj._mean, true));
|
||||
obj.info()->addParam(obj, "mean", obj._mean, true))
|
||||
|
||||
CV_INIT_ALGORITHM(LBPH, "FaceRecognizer.LBPH",
|
||||
obj.info()->addParam(obj, "radius", obj._radius);
|
||||
@ -890,7 +890,7 @@ CV_INIT_ALGORITHM(LBPH, "FaceRecognizer.LBPH",
|
||||
obj.info()->addParam(obj, "grid_y", obj._grid_y);
|
||||
obj.info()->addParam(obj, "threshold", obj._threshold);
|
||||
obj.info()->addParam(obj, "histograms", obj._histograms, true);
|
||||
obj.info()->addParam(obj, "labels", obj._labels, true));
|
||||
obj.info()->addParam(obj, "labels", obj._labels, true))
|
||||
|
||||
bool initModule_contrib()
|
||||
{
|
||||
|
@ -41,7 +41,7 @@ CvFuzzyPoint::CvFuzzyPoint(double _x, double _y)
|
||||
{
|
||||
x = _x;
|
||||
y = _y;
|
||||
};
|
||||
}
|
||||
|
||||
bool CvFuzzyCurve::between(double x, double x1, double x2)
|
||||
{
|
||||
@ -51,37 +51,37 @@ bool CvFuzzyCurve::between(double x, double x1, double x2)
|
||||
return true;
|
||||
|
||||
return false;
|
||||
};
|
||||
}
|
||||
|
||||
CvFuzzyCurve::CvFuzzyCurve()
|
||||
{
|
||||
value = 0;
|
||||
};
|
||||
}
|
||||
|
||||
CvFuzzyCurve::~CvFuzzyCurve()
|
||||
{
|
||||
// nothing to do
|
||||
};
|
||||
}
|
||||
|
||||
void CvFuzzyCurve::setCentre(double _centre)
|
||||
{
|
||||
centre = _centre;
|
||||
};
|
||||
}
|
||||
|
||||
double CvFuzzyCurve::getCentre()
|
||||
{
|
||||
return centre;
|
||||
};
|
||||
}
|
||||
|
||||
void CvFuzzyCurve::clear()
|
||||
{
|
||||
points.clear();
|
||||
};
|
||||
}
|
||||
|
||||
void CvFuzzyCurve::addPoint(double x, double y)
|
||||
{
|
||||
points.push_back(CvFuzzyPoint(x, y));
|
||||
};
|
||||
}
|
||||
|
||||
double CvFuzzyCurve::calcValue(double param)
|
||||
{
|
||||
@ -102,41 +102,41 @@ double CvFuzzyCurve::calcValue(double param)
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
};
|
||||
}
|
||||
|
||||
double CvFuzzyCurve::getValue()
|
||||
{
|
||||
return value;
|
||||
};
|
||||
}
|
||||
|
||||
void CvFuzzyCurve::setValue(double _value)
|
||||
{
|
||||
value = _value;
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
CvFuzzyFunction::CvFuzzyFunction()
|
||||
{
|
||||
// nothing to do
|
||||
};
|
||||
}
|
||||
|
||||
CvFuzzyFunction::~CvFuzzyFunction()
|
||||
{
|
||||
curves.clear();
|
||||
};
|
||||
}
|
||||
|
||||
void CvFuzzyFunction::addCurve(CvFuzzyCurve *curve, double value)
|
||||
{
|
||||
curves.push_back(*curve);
|
||||
curve->setValue(value);
|
||||
};
|
||||
}
|
||||
|
||||
void CvFuzzyFunction::resetValues()
|
||||
{
|
||||
int numCurves = (int)curves.size();
|
||||
for (int i = 0; i < numCurves; i++)
|
||||
curves[i].setValue(0);
|
||||
};
|
||||
}
|
||||
|
||||
double CvFuzzyFunction::calcValue()
|
||||
{
|
||||
@ -153,7 +153,7 @@ double CvFuzzyFunction::calcValue()
|
||||
return s1/s2;
|
||||
else
|
||||
return 0;
|
||||
};
|
||||
}
|
||||
|
||||
CvFuzzyCurve *CvFuzzyFunction::newCurve()
|
||||
{
|
||||
@ -161,14 +161,14 @@ CvFuzzyCurve *CvFuzzyFunction::newCurve()
|
||||
c = new CvFuzzyCurve();
|
||||
addCurve(c);
|
||||
return c;
|
||||
};
|
||||
}
|
||||
|
||||
CvFuzzyRule::CvFuzzyRule()
|
||||
{
|
||||
fuzzyInput1 = NULL;
|
||||
fuzzyInput2 = NULL;
|
||||
fuzzyOutput = NULL;
|
||||
};
|
||||
}
|
||||
|
||||
CvFuzzyRule::~CvFuzzyRule()
|
||||
{
|
||||
@ -180,14 +180,14 @@ CvFuzzyRule::~CvFuzzyRule()
|
||||
|
||||
if (fuzzyOutput != NULL)
|
||||
delete fuzzyOutput;
|
||||
};
|
||||
}
|
||||
|
||||
void CvFuzzyRule::setRule(CvFuzzyCurve *c1, CvFuzzyCurve *c2, CvFuzzyCurve *o1)
|
||||
{
|
||||
fuzzyInput1 = c1;
|
||||
fuzzyInput2 = c2;
|
||||
fuzzyOutput = o1;
|
||||
};
|
||||
}
|
||||
|
||||
double CvFuzzyRule::calcValue(double param1, double param2)
|
||||
{
|
||||
@ -203,31 +203,31 @@ double CvFuzzyRule::calcValue(double param1, double param2)
|
||||
}
|
||||
else
|
||||
return v1;
|
||||
};
|
||||
}
|
||||
|
||||
CvFuzzyCurve *CvFuzzyRule::getOutputCurve()
|
||||
{
|
||||
return fuzzyOutput;
|
||||
};
|
||||
}
|
||||
|
||||
CvFuzzyController::CvFuzzyController()
|
||||
{
|
||||
// nothing to do
|
||||
};
|
||||
}
|
||||
|
||||
CvFuzzyController::~CvFuzzyController()
|
||||
{
|
||||
int size = (int)rules.size();
|
||||
for(int i = 0; i < size; i++)
|
||||
delete rules[i];
|
||||
};
|
||||
}
|
||||
|
||||
void CvFuzzyController::addRule(CvFuzzyCurve *c1, CvFuzzyCurve *c2, CvFuzzyCurve *o1)
|
||||
{
|
||||
CvFuzzyRule *f = new CvFuzzyRule();
|
||||
rules.push_back(f);
|
||||
f->setRule(c1, c2, o1);
|
||||
};
|
||||
}
|
||||
|
||||
double CvFuzzyController::calcOutput(double param1, double param2)
|
||||
{
|
||||
@ -243,7 +243,7 @@ double CvFuzzyController::calcOutput(double param1, double param2)
|
||||
}
|
||||
v = list.calcValue();
|
||||
return v;
|
||||
};
|
||||
}
|
||||
|
||||
CvFuzzyMeanShiftTracker::FuzzyResizer::FuzzyResizer()
|
||||
{
|
||||
@ -299,12 +299,12 @@ CvFuzzyMeanShiftTracker::FuzzyResizer::FuzzyResizer()
|
||||
fuzzyController.addRule(i1L, NULL, oS);
|
||||
fuzzyController.addRule(i1M, NULL, oZE);
|
||||
fuzzyController.addRule(i1H, NULL, oE);
|
||||
};
|
||||
}
|
||||
|
||||
int CvFuzzyMeanShiftTracker::FuzzyResizer::calcOutput(double edgeDensity, double density)
|
||||
{
|
||||
return (int)fuzzyController.calcOutput(edgeDensity, density);
|
||||
};
|
||||
}
|
||||
|
||||
CvFuzzyMeanShiftTracker::SearchWindow::SearchWindow()
|
||||
{
|
||||
@ -329,7 +329,7 @@ CvFuzzyMeanShiftTracker::SearchWindow::SearchWindow()
|
||||
depthLow = 0;
|
||||
depthHigh = 0;
|
||||
fuzzyResizer = NULL;
|
||||
};
|
||||
}
|
||||
|
||||
CvFuzzyMeanShiftTracker::SearchWindow::~SearchWindow()
|
||||
{
|
||||
@ -355,7 +355,7 @@ void CvFuzzyMeanShiftTracker::SearchWindow::setSize(int _x, int _y, int _width,
|
||||
|
||||
if (y + height > maxHeight)
|
||||
height = maxHeight - y;
|
||||
};
|
||||
}
|
||||
|
||||
void CvFuzzyMeanShiftTracker::SearchWindow::initDepthValues(IplImage *maskImage, IplImage *depthMap)
|
||||
{
|
||||
@ -409,7 +409,7 @@ void CvFuzzyMeanShiftTracker::SearchWindow::initDepthValues(IplImage *maskImage,
|
||||
depthHigh = 32000;
|
||||
depthLow = 0;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
bool CvFuzzyMeanShiftTracker::SearchWindow::shift()
|
||||
{
|
||||
@ -422,7 +422,7 @@ bool CvFuzzyMeanShiftTracker::SearchWindow::shift()
|
||||
{
|
||||
return false;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
void CvFuzzyMeanShiftTracker::SearchWindow::extractInfo(IplImage *maskImage, IplImage *depthMap, bool initDepth)
|
||||
{
|
||||
@ -528,7 +528,7 @@ void CvFuzzyMeanShiftTracker::SearchWindow::extractInfo(IplImage *maskImage, Ipl
|
||||
ellipseAngle = 0;
|
||||
density = 0;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
void CvFuzzyMeanShiftTracker::SearchWindow::getResizeAttribsEdgeDensityLinear(int &resizeDx, int &resizeDy, int &resizeDw, int &resizeDh) {
|
||||
int x1 = horizontalEdgeTop;
|
||||
@ -572,7 +572,7 @@ void CvFuzzyMeanShiftTracker::SearchWindow::getResizeAttribsEdgeDensityLinear(in
|
||||
} else {
|
||||
resizeDw = - resizeDx;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
void CvFuzzyMeanShiftTracker::SearchWindow::getResizeAttribsInnerDensity(int &resizeDx, int &resizeDy, int &resizeDw, int &resizeDh)
|
||||
{
|
||||
@ -588,7 +588,7 @@ void CvFuzzyMeanShiftTracker::SearchWindow::getResizeAttribsInnerDensity(int &re
|
||||
resizeDy = (int)(py*dy);
|
||||
resizeDw = (int)((1-px)*dx);
|
||||
resizeDh = (int)((1-py)*dy);
|
||||
};
|
||||
}
|
||||
|
||||
void CvFuzzyMeanShiftTracker::SearchWindow::getResizeAttribsEdgeDensityFuzzy(int &resizeDx, int &resizeDy, int &resizeDw, int &resizeDh)
|
||||
{
|
||||
@ -627,7 +627,7 @@ void CvFuzzyMeanShiftTracker::SearchWindow::getResizeAttribsEdgeDensityFuzzy(int
|
||||
resizeDy = int(-dy1);
|
||||
resizeDh = int(dy1+dy2);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
bool CvFuzzyMeanShiftTracker::SearchWindow::meanShift(IplImage *maskImage, IplImage *depthMap, int maxIteration, bool initDepth)
|
||||
{
|
||||
@ -640,7 +640,7 @@ bool CvFuzzyMeanShiftTracker::SearchWindow::meanShift(IplImage *maskImage, IplIm
|
||||
} while (++numShifts < maxIteration);
|
||||
|
||||
return false;
|
||||
};
|
||||
}
|
||||
|
||||
void CvFuzzyMeanShiftTracker::findOptimumSearchWindow(SearchWindow &searchWindow, IplImage *maskImage, IplImage *depthMap, int maxIteration, int resizeMethod, bool initDepth)
|
||||
{
|
||||
@ -680,17 +680,17 @@ void CvFuzzyMeanShiftTracker::findOptimumSearchWindow(SearchWindow &searchWindow
|
||||
|
||||
searchWindow.setSize(searchWindow.x + resizeDx, searchWindow.y + resizeDy, searchWindow.width + resizeDw, searchWindow.height + resizeDh);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
CvFuzzyMeanShiftTracker::CvFuzzyMeanShiftTracker()
|
||||
{
|
||||
searchMode = tsSetWindow;
|
||||
};
|
||||
}
|
||||
|
||||
CvFuzzyMeanShiftTracker::~CvFuzzyMeanShiftTracker()
|
||||
{
|
||||
// nothing to do
|
||||
};
|
||||
}
|
||||
|
||||
void CvFuzzyMeanShiftTracker::track(IplImage *maskImage, IplImage *depthMap, int resizeMethod, bool resetSearch, int minKernelMass)
|
||||
{
|
||||
@ -718,4 +718,4 @@ void CvFuzzyMeanShiftTracker::track(IplImage *maskImage, IplImage *depthMap, int
|
||||
else
|
||||
searchMode = tsTracking;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
@ -709,7 +709,7 @@ void cv::SpinImageModel::defaultParams()
|
||||
|
||||
T_GeometriccConsistency = 0.25f;
|
||||
T_GroupingCorespondances = 0.25f;
|
||||
};
|
||||
}
|
||||
|
||||
Mat cv::SpinImageModel::packRandomScaledSpins(bool separateScale, size_t xCount, size_t yCount) const
|
||||
{
|
||||
|
@ -127,6 +127,7 @@ public:
|
||||
virtual int depth(int i=-1) const;
|
||||
virtual int channels(int i=-1) const;
|
||||
virtual bool isContinuous(int i=-1) const;
|
||||
virtual bool isSubmatrix(int i=-1) const;
|
||||
virtual bool empty() const;
|
||||
virtual void copyTo(const _OutputArray& arr) const;
|
||||
virtual size_t offset(int i=-1) const;
|
||||
|
@ -186,6 +186,12 @@ inline _OutputArray::_OutputArray(const Mat& m)
|
||||
inline _OutputArray::_OutputArray(const std::vector<Mat>& vec)
|
||||
{ init(FIXED_SIZE + STD_VECTOR_MAT + ACCESS_WRITE, &vec); }
|
||||
|
||||
inline _OutputArray::_OutputArray(const UMat& m)
|
||||
{ init(FIXED_TYPE + FIXED_SIZE + UMAT + ACCESS_WRITE, &m); }
|
||||
|
||||
inline _OutputArray::_OutputArray(const std::vector<UMat>& vec)
|
||||
{ init(FIXED_SIZE + STD_VECTOR_UMAT + ACCESS_WRITE, &vec); }
|
||||
|
||||
inline _OutputArray::_OutputArray(const cuda::GpuMat& d_mat)
|
||||
{ init(FIXED_TYPE + FIXED_SIZE + GPU_MAT + ACCESS_WRITE, &d_mat); }
|
||||
|
||||
@ -1912,7 +1918,7 @@ SparseMat_<_Tp>::SparseMat_(const SparseMat& m)
|
||||
if( m.type() == DataType<_Tp>::type )
|
||||
*this = (const SparseMat_<_Tp>&)m;
|
||||
else
|
||||
m.convertTo(this, DataType<_Tp>::type);
|
||||
m.convertTo(*this, DataType<_Tp>::type);
|
||||
}
|
||||
|
||||
template<typename _Tp> inline
|
||||
|
@ -423,6 +423,12 @@ int print(const Mat& mtx, FILE* stream = stdout)
|
||||
return print(Formatter::get()->format(mtx), stream);
|
||||
}
|
||||
|
||||
static inline
|
||||
int print(const UMat& mtx, FILE* stream = stdout)
|
||||
{
|
||||
return print(Formatter::get()->format(mtx.getMat(ACCESS_READ)), stream);
|
||||
}
|
||||
|
||||
template<typename _Tp> static inline
|
||||
int print(const std::vector<Point_<_Tp> >& vec, FILE* stream = stdout)
|
||||
{
|
||||
|
@ -628,7 +628,7 @@ void AlgorithmInfo::set(Algorithm* algo, const char* parameter, int argType, con
|
||||
|| argType == Param::FLOAT || argType == Param::UNSIGNED_INT || argType == Param::UINT64 || argType == Param::UCHAR)
|
||||
{
|
||||
if ( !( p->type == Param::INT || p->type == Param::REAL || p->type == Param::BOOLEAN
|
||||
|| p->type == Param::UNSIGNED_INT || p->type == Param::UINT64 || p->type == Param::FLOAT || argType == Param::UCHAR) )
|
||||
|| p->type == Param::UNSIGNED_INT || p->type == Param::UINT64 || p->type == Param::FLOAT || p->type == Param::UCHAR) )
|
||||
{
|
||||
String message = getErrorMessageForWrongArgumentInSetter(algo->name(), parameter, p->type, argType);
|
||||
CV_Error(CV_StsBadArg, message);
|
||||
|
@ -1434,8 +1434,8 @@ static void arithm_op(InputArray _src1, InputArray _src2, OutputArray _dst,
|
||||
bool haveScalar = false, swapped12 = false;
|
||||
|
||||
if( dims1 != dims2 || sz1 != sz2 || cn != cn2 ||
|
||||
((kind1 == _InputArray::MATX || kind2 == _InputArray::MATX) &&
|
||||
(sz1 == Size(1,4) || sz2 == Size(1,4))) )
|
||||
(kind1 == _InputArray::MATX && (sz1 == Size(1,4) || sz1 == Size(1,1))) ||
|
||||
(kind2 == _InputArray::MATX && (sz2 == Size(1,4) || sz2 == Size(1,1))) )
|
||||
{
|
||||
if( checkScalar(*psrc1, type2, kind1, kind2) )
|
||||
{
|
||||
|
@ -1040,122 +1040,122 @@ stype* dst, size_t dstep, Size size, double*) \
|
||||
}
|
||||
|
||||
|
||||
DEF_CVT_SCALE_ABS_FUNC(8u, cvtScaleAbs_, uchar, uchar, float);
|
||||
DEF_CVT_SCALE_ABS_FUNC(8s8u, cvtScaleAbs_, schar, uchar, float);
|
||||
DEF_CVT_SCALE_ABS_FUNC(16u8u, cvtScaleAbs_, ushort, uchar, float);
|
||||
DEF_CVT_SCALE_ABS_FUNC(16s8u, cvtScaleAbs_, short, uchar, float);
|
||||
DEF_CVT_SCALE_ABS_FUNC(32s8u, cvtScaleAbs_, int, uchar, float);
|
||||
DEF_CVT_SCALE_ABS_FUNC(32f8u, cvtScaleAbs_, float, uchar, float);
|
||||
DEF_CVT_SCALE_ABS_FUNC(64f8u, cvtScaleAbs_, double, uchar, float);
|
||||
DEF_CVT_SCALE_ABS_FUNC(8u, cvtScaleAbs_, uchar, uchar, float)
|
||||
DEF_CVT_SCALE_ABS_FUNC(8s8u, cvtScaleAbs_, schar, uchar, float)
|
||||
DEF_CVT_SCALE_ABS_FUNC(16u8u, cvtScaleAbs_, ushort, uchar, float)
|
||||
DEF_CVT_SCALE_ABS_FUNC(16s8u, cvtScaleAbs_, short, uchar, float)
|
||||
DEF_CVT_SCALE_ABS_FUNC(32s8u, cvtScaleAbs_, int, uchar, float)
|
||||
DEF_CVT_SCALE_ABS_FUNC(32f8u, cvtScaleAbs_, float, uchar, float)
|
||||
DEF_CVT_SCALE_ABS_FUNC(64f8u, cvtScaleAbs_, double, uchar, float)
|
||||
|
||||
DEF_CVT_SCALE_FUNC(8u, uchar, uchar, float);
|
||||
DEF_CVT_SCALE_FUNC(8s8u, schar, uchar, float);
|
||||
DEF_CVT_SCALE_FUNC(16u8u, ushort, uchar, float);
|
||||
DEF_CVT_SCALE_FUNC(16s8u, short, uchar, float);
|
||||
DEF_CVT_SCALE_FUNC(32s8u, int, uchar, float);
|
||||
DEF_CVT_SCALE_FUNC(32f8u, float, uchar, float);
|
||||
DEF_CVT_SCALE_FUNC(64f8u, double, uchar, float);
|
||||
DEF_CVT_SCALE_FUNC(8u, uchar, uchar, float)
|
||||
DEF_CVT_SCALE_FUNC(8s8u, schar, uchar, float)
|
||||
DEF_CVT_SCALE_FUNC(16u8u, ushort, uchar, float)
|
||||
DEF_CVT_SCALE_FUNC(16s8u, short, uchar, float)
|
||||
DEF_CVT_SCALE_FUNC(32s8u, int, uchar, float)
|
||||
DEF_CVT_SCALE_FUNC(32f8u, float, uchar, float)
|
||||
DEF_CVT_SCALE_FUNC(64f8u, double, uchar, float)
|
||||
|
||||
DEF_CVT_SCALE_FUNC(8u8s, uchar, schar, float);
|
||||
DEF_CVT_SCALE_FUNC(8s, schar, schar, float);
|
||||
DEF_CVT_SCALE_FUNC(16u8s, ushort, schar, float);
|
||||
DEF_CVT_SCALE_FUNC(16s8s, short, schar, float);
|
||||
DEF_CVT_SCALE_FUNC(32s8s, int, schar, float);
|
||||
DEF_CVT_SCALE_FUNC(32f8s, float, schar, float);
|
||||
DEF_CVT_SCALE_FUNC(64f8s, double, schar, float);
|
||||
DEF_CVT_SCALE_FUNC(8u8s, uchar, schar, float)
|
||||
DEF_CVT_SCALE_FUNC(8s, schar, schar, float)
|
||||
DEF_CVT_SCALE_FUNC(16u8s, ushort, schar, float)
|
||||
DEF_CVT_SCALE_FUNC(16s8s, short, schar, float)
|
||||
DEF_CVT_SCALE_FUNC(32s8s, int, schar, float)
|
||||
DEF_CVT_SCALE_FUNC(32f8s, float, schar, float)
|
||||
DEF_CVT_SCALE_FUNC(64f8s, double, schar, float)
|
||||
|
||||
DEF_CVT_SCALE_FUNC(8u16u, uchar, ushort, float);
|
||||
DEF_CVT_SCALE_FUNC(8s16u, schar, ushort, float);
|
||||
DEF_CVT_SCALE_FUNC(16u, ushort, ushort, float);
|
||||
DEF_CVT_SCALE_FUNC(16s16u, short, ushort, float);
|
||||
DEF_CVT_SCALE_FUNC(32s16u, int, ushort, float);
|
||||
DEF_CVT_SCALE_FUNC(32f16u, float, ushort, float);
|
||||
DEF_CVT_SCALE_FUNC(64f16u, double, ushort, float);
|
||||
DEF_CVT_SCALE_FUNC(8u16u, uchar, ushort, float)
|
||||
DEF_CVT_SCALE_FUNC(8s16u, schar, ushort, float)
|
||||
DEF_CVT_SCALE_FUNC(16u, ushort, ushort, float)
|
||||
DEF_CVT_SCALE_FUNC(16s16u, short, ushort, float)
|
||||
DEF_CVT_SCALE_FUNC(32s16u, int, ushort, float)
|
||||
DEF_CVT_SCALE_FUNC(32f16u, float, ushort, float)
|
||||
DEF_CVT_SCALE_FUNC(64f16u, double, ushort, float)
|
||||
|
||||
DEF_CVT_SCALE_FUNC(8u16s, uchar, short, float);
|
||||
DEF_CVT_SCALE_FUNC(8s16s, schar, short, float);
|
||||
DEF_CVT_SCALE_FUNC(16u16s, ushort, short, float);
|
||||
DEF_CVT_SCALE_FUNC(16s, short, short, float);
|
||||
DEF_CVT_SCALE_FUNC(32s16s, int, short, float);
|
||||
DEF_CVT_SCALE_FUNC(32f16s, float, short, float);
|
||||
DEF_CVT_SCALE_FUNC(64f16s, double, short, float);
|
||||
DEF_CVT_SCALE_FUNC(8u16s, uchar, short, float)
|
||||
DEF_CVT_SCALE_FUNC(8s16s, schar, short, float)
|
||||
DEF_CVT_SCALE_FUNC(16u16s, ushort, short, float)
|
||||
DEF_CVT_SCALE_FUNC(16s, short, short, float)
|
||||
DEF_CVT_SCALE_FUNC(32s16s, int, short, float)
|
||||
DEF_CVT_SCALE_FUNC(32f16s, float, short, float)
|
||||
DEF_CVT_SCALE_FUNC(64f16s, double, short, float)
|
||||
|
||||
DEF_CVT_SCALE_FUNC(8u32s, uchar, int, float);
|
||||
DEF_CVT_SCALE_FUNC(8s32s, schar, int, float);
|
||||
DEF_CVT_SCALE_FUNC(16u32s, ushort, int, float);
|
||||
DEF_CVT_SCALE_FUNC(16s32s, short, int, float);
|
||||
DEF_CVT_SCALE_FUNC(32s, int, int, double);
|
||||
DEF_CVT_SCALE_FUNC(32f32s, float, int, float);
|
||||
DEF_CVT_SCALE_FUNC(64f32s, double, int, double);
|
||||
DEF_CVT_SCALE_FUNC(8u32s, uchar, int, float)
|
||||
DEF_CVT_SCALE_FUNC(8s32s, schar, int, float)
|
||||
DEF_CVT_SCALE_FUNC(16u32s, ushort, int, float)
|
||||
DEF_CVT_SCALE_FUNC(16s32s, short, int, float)
|
||||
DEF_CVT_SCALE_FUNC(32s, int, int, double)
|
||||
DEF_CVT_SCALE_FUNC(32f32s, float, int, float)
|
||||
DEF_CVT_SCALE_FUNC(64f32s, double, int, double)
|
||||
|
||||
DEF_CVT_SCALE_FUNC(8u32f, uchar, float, float);
|
||||
DEF_CVT_SCALE_FUNC(8s32f, schar, float, float);
|
||||
DEF_CVT_SCALE_FUNC(16u32f, ushort, float, float);
|
||||
DEF_CVT_SCALE_FUNC(16s32f, short, float, float);
|
||||
DEF_CVT_SCALE_FUNC(32s32f, int, float, double);
|
||||
DEF_CVT_SCALE_FUNC(32f, float, float, float);
|
||||
DEF_CVT_SCALE_FUNC(64f32f, double, float, double);
|
||||
DEF_CVT_SCALE_FUNC(8u32f, uchar, float, float)
|
||||
DEF_CVT_SCALE_FUNC(8s32f, schar, float, float)
|
||||
DEF_CVT_SCALE_FUNC(16u32f, ushort, float, float)
|
||||
DEF_CVT_SCALE_FUNC(16s32f, short, float, float)
|
||||
DEF_CVT_SCALE_FUNC(32s32f, int, float, double)
|
||||
DEF_CVT_SCALE_FUNC(32f, float, float, float)
|
||||
DEF_CVT_SCALE_FUNC(64f32f, double, float, double)
|
||||
|
||||
DEF_CVT_SCALE_FUNC(8u64f, uchar, double, double);
|
||||
DEF_CVT_SCALE_FUNC(8s64f, schar, double, double);
|
||||
DEF_CVT_SCALE_FUNC(16u64f, ushort, double, double);
|
||||
DEF_CVT_SCALE_FUNC(16s64f, short, double, double);
|
||||
DEF_CVT_SCALE_FUNC(32s64f, int, double, double);
|
||||
DEF_CVT_SCALE_FUNC(32f64f, float, double, double);
|
||||
DEF_CVT_SCALE_FUNC(64f, double, double, double);
|
||||
DEF_CVT_SCALE_FUNC(8u64f, uchar, double, double)
|
||||
DEF_CVT_SCALE_FUNC(8s64f, schar, double, double)
|
||||
DEF_CVT_SCALE_FUNC(16u64f, ushort, double, double)
|
||||
DEF_CVT_SCALE_FUNC(16s64f, short, double, double)
|
||||
DEF_CVT_SCALE_FUNC(32s64f, int, double, double)
|
||||
DEF_CVT_SCALE_FUNC(32f64f, float, double, double)
|
||||
DEF_CVT_SCALE_FUNC(64f, double, double, double)
|
||||
|
||||
DEF_CPY_FUNC(8u, uchar);
|
||||
DEF_CVT_FUNC(8s8u, schar, uchar);
|
||||
DEF_CVT_FUNC(16u8u, ushort, uchar);
|
||||
DEF_CVT_FUNC(16s8u, short, uchar);
|
||||
DEF_CVT_FUNC(32s8u, int, uchar);
|
||||
DEF_CVT_FUNC(32f8u, float, uchar);
|
||||
DEF_CVT_FUNC(64f8u, double, uchar);
|
||||
DEF_CPY_FUNC(8u, uchar)
|
||||
DEF_CVT_FUNC(8s8u, schar, uchar)
|
||||
DEF_CVT_FUNC(16u8u, ushort, uchar)
|
||||
DEF_CVT_FUNC(16s8u, short, uchar)
|
||||
DEF_CVT_FUNC(32s8u, int, uchar)
|
||||
DEF_CVT_FUNC(32f8u, float, uchar)
|
||||
DEF_CVT_FUNC(64f8u, double, uchar)
|
||||
|
||||
DEF_CVT_FUNC(8u8s, uchar, schar);
|
||||
DEF_CVT_FUNC(16u8s, ushort, schar);
|
||||
DEF_CVT_FUNC(16s8s, short, schar);
|
||||
DEF_CVT_FUNC(32s8s, int, schar);
|
||||
DEF_CVT_FUNC(32f8s, float, schar);
|
||||
DEF_CVT_FUNC(64f8s, double, schar);
|
||||
DEF_CVT_FUNC(8u8s, uchar, schar)
|
||||
DEF_CVT_FUNC(16u8s, ushort, schar)
|
||||
DEF_CVT_FUNC(16s8s, short, schar)
|
||||
DEF_CVT_FUNC(32s8s, int, schar)
|
||||
DEF_CVT_FUNC(32f8s, float, schar)
|
||||
DEF_CVT_FUNC(64f8s, double, schar)
|
||||
|
||||
DEF_CVT_FUNC(8u16u, uchar, ushort);
|
||||
DEF_CVT_FUNC(8s16u, schar, ushort);
|
||||
DEF_CPY_FUNC(16u, ushort);
|
||||
DEF_CVT_FUNC(16s16u, short, ushort);
|
||||
DEF_CVT_FUNC(32s16u, int, ushort);
|
||||
DEF_CVT_FUNC(32f16u, float, ushort);
|
||||
DEF_CVT_FUNC(64f16u, double, ushort);
|
||||
DEF_CVT_FUNC(8u16u, uchar, ushort)
|
||||
DEF_CVT_FUNC(8s16u, schar, ushort)
|
||||
DEF_CPY_FUNC(16u, ushort)
|
||||
DEF_CVT_FUNC(16s16u, short, ushort)
|
||||
DEF_CVT_FUNC(32s16u, int, ushort)
|
||||
DEF_CVT_FUNC(32f16u, float, ushort)
|
||||
DEF_CVT_FUNC(64f16u, double, ushort)
|
||||
|
||||
DEF_CVT_FUNC(8u16s, uchar, short);
|
||||
DEF_CVT_FUNC(8s16s, schar, short);
|
||||
DEF_CVT_FUNC(16u16s, ushort, short);
|
||||
DEF_CVT_FUNC(32s16s, int, short);
|
||||
DEF_CVT_FUNC(32f16s, float, short);
|
||||
DEF_CVT_FUNC(64f16s, double, short);
|
||||
DEF_CVT_FUNC(8u16s, uchar, short)
|
||||
DEF_CVT_FUNC(8s16s, schar, short)
|
||||
DEF_CVT_FUNC(16u16s, ushort, short)
|
||||
DEF_CVT_FUNC(32s16s, int, short)
|
||||
DEF_CVT_FUNC(32f16s, float, short)
|
||||
DEF_CVT_FUNC(64f16s, double, short)
|
||||
|
||||
DEF_CVT_FUNC(8u32s, uchar, int);
|
||||
DEF_CVT_FUNC(8s32s, schar, int);
|
||||
DEF_CVT_FUNC(16u32s, ushort, int);
|
||||
DEF_CVT_FUNC(16s32s, short, int);
|
||||
DEF_CPY_FUNC(32s, int);
|
||||
DEF_CVT_FUNC(32f32s, float, int);
|
||||
DEF_CVT_FUNC(64f32s, double, int);
|
||||
DEF_CVT_FUNC(8u32s, uchar, int)
|
||||
DEF_CVT_FUNC(8s32s, schar, int)
|
||||
DEF_CVT_FUNC(16u32s, ushort, int)
|
||||
DEF_CVT_FUNC(16s32s, short, int)
|
||||
DEF_CPY_FUNC(32s, int)
|
||||
DEF_CVT_FUNC(32f32s, float, int)
|
||||
DEF_CVT_FUNC(64f32s, double, int)
|
||||
|
||||
DEF_CVT_FUNC(8u32f, uchar, float);
|
||||
DEF_CVT_FUNC(8s32f, schar, float);
|
||||
DEF_CVT_FUNC(16u32f, ushort, float);
|
||||
DEF_CVT_FUNC(16s32f, short, float);
|
||||
DEF_CVT_FUNC(32s32f, int, float);
|
||||
DEF_CVT_FUNC(64f32f, double, float);
|
||||
DEF_CVT_FUNC(8u32f, uchar, float)
|
||||
DEF_CVT_FUNC(8s32f, schar, float)
|
||||
DEF_CVT_FUNC(16u32f, ushort, float)
|
||||
DEF_CVT_FUNC(16s32f, short, float)
|
||||
DEF_CVT_FUNC(32s32f, int, float)
|
||||
DEF_CVT_FUNC(64f32f, double, float)
|
||||
|
||||
DEF_CVT_FUNC(8u64f, uchar, double);
|
||||
DEF_CVT_FUNC(8s64f, schar, double);
|
||||
DEF_CVT_FUNC(16u64f, ushort, double);
|
||||
DEF_CVT_FUNC(16s64f, short, double);
|
||||
DEF_CVT_FUNC(32s64f, int, double);
|
||||
DEF_CVT_FUNC(32f64f, float, double);
|
||||
DEF_CPY_FUNC(64s, int64);
|
||||
DEF_CVT_FUNC(8u64f, uchar, double)
|
||||
DEF_CVT_FUNC(8s64f, schar, double)
|
||||
DEF_CVT_FUNC(16u64f, ushort, double)
|
||||
DEF_CVT_FUNC(16s64f, short, double)
|
||||
DEF_CVT_FUNC(32s64f, int, double)
|
||||
DEF_CVT_FUNC(32f64f, float, double)
|
||||
DEF_CPY_FUNC(64s, int64)
|
||||
|
||||
static BinaryFunc getCvtScaleAbsFunc(int depth)
|
||||
{
|
||||
|
@ -166,16 +166,16 @@ static void copyMask##suffix(const uchar* src, size_t sstep, const uchar* mask,
|
||||
}
|
||||
|
||||
|
||||
DEF_COPY_MASK(8u, uchar);
|
||||
DEF_COPY_MASK(16u, ushort);
|
||||
DEF_COPY_MASK(8uC3, Vec3b);
|
||||
DEF_COPY_MASK(32s, int);
|
||||
DEF_COPY_MASK(16uC3, Vec3s);
|
||||
DEF_COPY_MASK(32sC2, Vec2i);
|
||||
DEF_COPY_MASK(32sC3, Vec3i);
|
||||
DEF_COPY_MASK(32sC4, Vec4i);
|
||||
DEF_COPY_MASK(32sC6, Vec6i);
|
||||
DEF_COPY_MASK(32sC8, Vec8i);
|
||||
DEF_COPY_MASK(8u, uchar)
|
||||
DEF_COPY_MASK(16u, ushort)
|
||||
DEF_COPY_MASK(8uC3, Vec3b)
|
||||
DEF_COPY_MASK(32s, int)
|
||||
DEF_COPY_MASK(16uC3, Vec3s)
|
||||
DEF_COPY_MASK(32sC2, Vec2i)
|
||||
DEF_COPY_MASK(32sC3, Vec3i)
|
||||
DEF_COPY_MASK(32sC4, Vec4i)
|
||||
DEF_COPY_MASK(32sC6, Vec6i)
|
||||
DEF_COPY_MASK(32sC8, Vec8i)
|
||||
|
||||
BinaryFunc copyMaskTab[] =
|
||||
{
|
||||
|
@ -2057,10 +2057,15 @@ static bool ocl_pow(InputArray _src, double power, OutputArray _dst)
|
||||
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src),
|
||||
dstarg = ocl::KernelArg::WriteOnly(dst, cn);
|
||||
|
||||
if (depth == CV_32F)
|
||||
k.args(srcarg, dstarg, (float)power);
|
||||
if (issqrt)
|
||||
k.args(srcarg, dstarg);
|
||||
else
|
||||
k.args(srcarg, dstarg, power);
|
||||
{
|
||||
if (depth == CV_32F)
|
||||
k.args(srcarg, dstarg, (float)power);
|
||||
else
|
||||
k.args(srcarg, dstarg, power);
|
||||
}
|
||||
|
||||
size_t globalsize[2] = { dst.cols * cn, dst.rows };
|
||||
return k.run(2, globalsize, NULL, false);
|
||||
|
@ -1808,6 +1808,37 @@ bool _InputArray::isContinuous(int i) const
|
||||
return false;
|
||||
}
|
||||
|
||||
bool _InputArray::isSubmatrix(int i) const
|
||||
{
|
||||
int k = kind();
|
||||
|
||||
if( k == MAT )
|
||||
return i < 0 ? ((const Mat*)obj)->isSubmatrix() : false;
|
||||
|
||||
if( k == UMAT )
|
||||
return i < 0 ? ((const UMat*)obj)->isSubmatrix() : false;
|
||||
|
||||
if( k == EXPR || k == MATX || k == STD_VECTOR || k == NONE || k == STD_VECTOR_VECTOR)
|
||||
return false;
|
||||
|
||||
if( k == STD_VECTOR_MAT )
|
||||
{
|
||||
const std::vector<Mat>& vv = *(const std::vector<Mat>*)obj;
|
||||
CV_Assert((size_t)i < vv.size());
|
||||
return vv[i].isSubmatrix();
|
||||
}
|
||||
|
||||
if( k == STD_VECTOR_UMAT )
|
||||
{
|
||||
const std::vector<UMat>& vv = *(const std::vector<UMat>*)obj;
|
||||
CV_Assert((size_t)i < vv.size());
|
||||
return vv[i].isSubmatrix();
|
||||
}
|
||||
|
||||
CV_Error(CV_StsNotImplemented, "");
|
||||
return false;
|
||||
}
|
||||
|
||||
size_t _InputArray::offset(int i) const
|
||||
{
|
||||
int k = kind();
|
||||
|
@ -849,7 +849,9 @@ public:
|
||||
};
|
||||
|
||||
#ifdef WIN32
|
||||
#ifdef _MSC_VER
|
||||
#pragma warning(disable:4505) // unreferenced local function has been removed
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_WINRT
|
||||
// using C++11 thread attribute for local thread data
|
||||
|
@ -729,11 +729,12 @@ void UMat::convertTo(OutputArray _dst, int _type, double alpha, double beta) con
|
||||
doubleSupport ? " -D DOUBLE_SUPPORT" : ""));
|
||||
if (!k.empty())
|
||||
{
|
||||
UMat src = *this;
|
||||
_dst.create( size(), _type );
|
||||
UMat dst = _dst.getUMat();
|
||||
|
||||
float alphaf = (float)alpha, betaf = (float)beta;
|
||||
k.args(ocl::KernelArg::ReadOnlyNoSize(*this), ocl::KernelArg::WriteOnly(dst, cn), alphaf, betaf);
|
||||
k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnly(dst, cn), alphaf, betaf);
|
||||
|
||||
size_t globalsize[2] = { dst.cols * cn, dst.rows };
|
||||
if (k.run(2, globalsize, NULL, false))
|
||||
|
@ -115,7 +115,7 @@ struct BaseAddOp : public BaseElemWiseOp
|
||||
|
||||
struct AddOp : public BaseAddOp
|
||||
{
|
||||
AddOp() : BaseAddOp(2, FIX_ALPHA+FIX_BETA+FIX_GAMMA+SUPPORT_MASK, 1, 1, Scalar::all(0)) {};
|
||||
AddOp() : BaseAddOp(2, FIX_ALPHA+FIX_BETA+FIX_GAMMA+SUPPORT_MASK, 1, 1, Scalar::all(0)) {}
|
||||
void op(const vector<Mat>& src, Mat& dst, const Mat& mask)
|
||||
{
|
||||
if( mask.empty() )
|
||||
@ -128,7 +128,7 @@ struct AddOp : public BaseAddOp
|
||||
|
||||
struct SubOp : public BaseAddOp
|
||||
{
|
||||
SubOp() : BaseAddOp(2, FIX_ALPHA+FIX_BETA+FIX_GAMMA+SUPPORT_MASK, 1, -1, Scalar::all(0)) {};
|
||||
SubOp() : BaseAddOp(2, FIX_ALPHA+FIX_BETA+FIX_GAMMA+SUPPORT_MASK, 1, -1, Scalar::all(0)) {}
|
||||
void op(const vector<Mat>& src, Mat& dst, const Mat& mask)
|
||||
{
|
||||
if( mask.empty() )
|
||||
@ -141,7 +141,7 @@ struct SubOp : public BaseAddOp
|
||||
|
||||
struct AddSOp : public BaseAddOp
|
||||
{
|
||||
AddSOp() : BaseAddOp(1, FIX_ALPHA+FIX_BETA+SUPPORT_MASK, 1, 0, Scalar::all(0)) {};
|
||||
AddSOp() : BaseAddOp(1, FIX_ALPHA+FIX_BETA+SUPPORT_MASK, 1, 0, Scalar::all(0)) {}
|
||||
void op(const vector<Mat>& src, Mat& dst, const Mat& mask)
|
||||
{
|
||||
if( mask.empty() )
|
||||
@ -154,7 +154,7 @@ struct AddSOp : public BaseAddOp
|
||||
|
||||
struct SubRSOp : public BaseAddOp
|
||||
{
|
||||
SubRSOp() : BaseAddOp(1, FIX_ALPHA+FIX_BETA+SUPPORT_MASK, -1, 0, Scalar::all(0)) {};
|
||||
SubRSOp() : BaseAddOp(1, FIX_ALPHA+FIX_BETA+SUPPORT_MASK, -1, 0, Scalar::all(0)) {}
|
||||
void op(const vector<Mat>& src, Mat& dst, const Mat& mask)
|
||||
{
|
||||
if( mask.empty() )
|
||||
@ -167,7 +167,7 @@ struct SubRSOp : public BaseAddOp
|
||||
|
||||
struct ScaleAddOp : public BaseAddOp
|
||||
{
|
||||
ScaleAddOp() : BaseAddOp(2, FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {};
|
||||
ScaleAddOp() : BaseAddOp(2, FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {}
|
||||
void op(const vector<Mat>& src, Mat& dst, const Mat&)
|
||||
{
|
||||
scaleAdd(src[0], alpha, src[1], dst);
|
||||
@ -181,7 +181,7 @@ struct ScaleAddOp : public BaseAddOp
|
||||
|
||||
struct AddWeightedOp : public BaseAddOp
|
||||
{
|
||||
AddWeightedOp() : BaseAddOp(2, REAL_GAMMA, 1, 1, Scalar::all(0)) {};
|
||||
AddWeightedOp() : BaseAddOp(2, REAL_GAMMA, 1, 1, Scalar::all(0)) {}
|
||||
void op(const vector<Mat>& src, Mat& dst, const Mat&)
|
||||
{
|
||||
addWeighted(src[0], alpha, src[1], beta, gamma[0], dst);
|
||||
@ -194,7 +194,7 @@ struct AddWeightedOp : public BaseAddOp
|
||||
|
||||
struct MulOp : public BaseElemWiseOp
|
||||
{
|
||||
MulOp() : BaseElemWiseOp(2, FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {};
|
||||
MulOp() : BaseElemWiseOp(2, FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {}
|
||||
void getValueRange(int depth, double& minval, double& maxval)
|
||||
{
|
||||
minval = depth < CV_32S ? cvtest::getMinVal(depth) : depth == CV_32S ? -1000000 : -1000.;
|
||||
@ -218,7 +218,7 @@ struct MulOp : public BaseElemWiseOp
|
||||
|
||||
struct DivOp : public BaseElemWiseOp
|
||||
{
|
||||
DivOp() : BaseElemWiseOp(2, FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {};
|
||||
DivOp() : BaseElemWiseOp(2, FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {}
|
||||
void op(const vector<Mat>& src, Mat& dst, const Mat&)
|
||||
{
|
||||
cv::divide(src[0], src[1], dst, alpha);
|
||||
@ -235,7 +235,7 @@ struct DivOp : public BaseElemWiseOp
|
||||
|
||||
struct RecipOp : public BaseElemWiseOp
|
||||
{
|
||||
RecipOp() : BaseElemWiseOp(1, FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {};
|
||||
RecipOp() : BaseElemWiseOp(1, FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {}
|
||||
void op(const vector<Mat>& src, Mat& dst, const Mat&)
|
||||
{
|
||||
cv::divide(alpha, src[0], dst);
|
||||
@ -252,7 +252,7 @@ struct RecipOp : public BaseElemWiseOp
|
||||
|
||||
struct AbsDiffOp : public BaseAddOp
|
||||
{
|
||||
AbsDiffOp() : BaseAddOp(2, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, -1, Scalar::all(0)) {};
|
||||
AbsDiffOp() : BaseAddOp(2, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, -1, Scalar::all(0)) {}
|
||||
void op(const vector<Mat>& src, Mat& dst, const Mat&)
|
||||
{
|
||||
absdiff(src[0], src[1], dst);
|
||||
@ -265,7 +265,7 @@ struct AbsDiffOp : public BaseAddOp
|
||||
|
||||
struct AbsDiffSOp : public BaseAddOp
|
||||
{
|
||||
AbsDiffSOp() : BaseAddOp(1, FIX_ALPHA+FIX_BETA, 1, 0, Scalar::all(0)) {};
|
||||
AbsDiffSOp() : BaseAddOp(1, FIX_ALPHA+FIX_BETA, 1, 0, Scalar::all(0)) {}
|
||||
void op(const vector<Mat>& src, Mat& dst, const Mat&)
|
||||
{
|
||||
absdiff(src[0], gamma, dst);
|
||||
@ -278,7 +278,7 @@ struct AbsDiffSOp : public BaseAddOp
|
||||
|
||||
struct LogicOp : public BaseElemWiseOp
|
||||
{
|
||||
LogicOp(char _opcode) : BaseElemWiseOp(2, FIX_ALPHA+FIX_BETA+FIX_GAMMA+SUPPORT_MASK, 1, 1, Scalar::all(0)), opcode(_opcode) {};
|
||||
LogicOp(char _opcode) : BaseElemWiseOp(2, FIX_ALPHA+FIX_BETA+FIX_GAMMA+SUPPORT_MASK, 1, 1, Scalar::all(0)), opcode(_opcode) {}
|
||||
void op(const vector<Mat>& src, Mat& dst, const Mat& mask)
|
||||
{
|
||||
if( opcode == '&' )
|
||||
@ -309,7 +309,7 @@ struct LogicOp : public BaseElemWiseOp
|
||||
struct LogicSOp : public BaseElemWiseOp
|
||||
{
|
||||
LogicSOp(char _opcode)
|
||||
: BaseElemWiseOp(1, FIX_ALPHA+FIX_BETA+(_opcode != '~' ? SUPPORT_MASK : 0), 1, 1, Scalar::all(0)), opcode(_opcode) {};
|
||||
: BaseElemWiseOp(1, FIX_ALPHA+FIX_BETA+(_opcode != '~' ? SUPPORT_MASK : 0), 1, 1, Scalar::all(0)), opcode(_opcode) {}
|
||||
void op(const vector<Mat>& src, Mat& dst, const Mat& mask)
|
||||
{
|
||||
if( opcode == '&' )
|
||||
@ -341,7 +341,7 @@ struct LogicSOp : public BaseElemWiseOp
|
||||
|
||||
struct MinOp : public BaseElemWiseOp
|
||||
{
|
||||
MinOp() : BaseElemWiseOp(2, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {};
|
||||
MinOp() : BaseElemWiseOp(2, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {}
|
||||
void op(const vector<Mat>& src, Mat& dst, const Mat&)
|
||||
{
|
||||
cv::min(src[0], src[1], dst);
|
||||
@ -358,7 +358,7 @@ struct MinOp : public BaseElemWiseOp
|
||||
|
||||
struct MaxOp : public BaseElemWiseOp
|
||||
{
|
||||
MaxOp() : BaseElemWiseOp(2, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {};
|
||||
MaxOp() : BaseElemWiseOp(2, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {}
|
||||
void op(const vector<Mat>& src, Mat& dst, const Mat&)
|
||||
{
|
||||
cv::max(src[0], src[1], dst);
|
||||
@ -375,7 +375,7 @@ struct MaxOp : public BaseElemWiseOp
|
||||
|
||||
struct MinSOp : public BaseElemWiseOp
|
||||
{
|
||||
MinSOp() : BaseElemWiseOp(1, FIX_ALPHA+FIX_BETA+REAL_GAMMA, 1, 1, Scalar::all(0)) {};
|
||||
MinSOp() : BaseElemWiseOp(1, FIX_ALPHA+FIX_BETA+REAL_GAMMA, 1, 1, Scalar::all(0)) {}
|
||||
void op(const vector<Mat>& src, Mat& dst, const Mat&)
|
||||
{
|
||||
cv::min(src[0], gamma[0], dst);
|
||||
@ -392,7 +392,7 @@ struct MinSOp : public BaseElemWiseOp
|
||||
|
||||
struct MaxSOp : public BaseElemWiseOp
|
||||
{
|
||||
MaxSOp() : BaseElemWiseOp(1, FIX_ALPHA+FIX_BETA+REAL_GAMMA, 1, 1, Scalar::all(0)) {};
|
||||
MaxSOp() : BaseElemWiseOp(1, FIX_ALPHA+FIX_BETA+REAL_GAMMA, 1, 1, Scalar::all(0)) {}
|
||||
void op(const vector<Mat>& src, Mat& dst, const Mat&)
|
||||
{
|
||||
cv::max(src[0], gamma[0], dst);
|
||||
@ -409,7 +409,7 @@ struct MaxSOp : public BaseElemWiseOp
|
||||
|
||||
struct CmpOp : public BaseElemWiseOp
|
||||
{
|
||||
CmpOp() : BaseElemWiseOp(2, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {};
|
||||
CmpOp() : BaseElemWiseOp(2, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {}
|
||||
void generateScalars(int depth, RNG& rng)
|
||||
{
|
||||
BaseElemWiseOp::generateScalars(depth, rng);
|
||||
@ -437,7 +437,7 @@ struct CmpOp : public BaseElemWiseOp
|
||||
|
||||
struct CmpSOp : public BaseElemWiseOp
|
||||
{
|
||||
CmpSOp() : BaseElemWiseOp(1, FIX_ALPHA+FIX_BETA+REAL_GAMMA, 1, 1, Scalar::all(0)) {};
|
||||
CmpSOp() : BaseElemWiseOp(1, FIX_ALPHA+FIX_BETA+REAL_GAMMA, 1, 1, Scalar::all(0)) {}
|
||||
void generateScalars(int depth, RNG& rng)
|
||||
{
|
||||
BaseElemWiseOp::generateScalars(depth, rng);
|
||||
@ -467,7 +467,7 @@ struct CmpSOp : public BaseElemWiseOp
|
||||
|
||||
struct CopyOp : public BaseElemWiseOp
|
||||
{
|
||||
CopyOp() : BaseElemWiseOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA+SUPPORT_MASK, 1, 1, Scalar::all(0)) {};
|
||||
CopyOp() : BaseElemWiseOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA+SUPPORT_MASK, 1, 1, Scalar::all(0)) {}
|
||||
void op(const vector<Mat>& src, Mat& dst, const Mat& mask)
|
||||
{
|
||||
src[0].copyTo(dst, mask);
|
||||
@ -490,7 +490,7 @@ struct CopyOp : public BaseElemWiseOp
|
||||
|
||||
struct SetOp : public BaseElemWiseOp
|
||||
{
|
||||
SetOp() : BaseElemWiseOp(0, FIX_ALPHA+FIX_BETA+SUPPORT_MASK, 1, 1, Scalar::all(0)) {};
|
||||
SetOp() : BaseElemWiseOp(0, FIX_ALPHA+FIX_BETA+SUPPORT_MASK, 1, 1, Scalar::all(0)) {}
|
||||
void op(const vector<Mat>&, Mat& dst, const Mat& mask)
|
||||
{
|
||||
dst.setTo(gamma, mask);
|
||||
@ -651,7 +651,7 @@ static void inRangeS(const Mat& src, const Scalar& lb, const Scalar& rb, Mat& ds
|
||||
|
||||
struct InRangeSOp : public BaseElemWiseOp
|
||||
{
|
||||
InRangeSOp() : BaseElemWiseOp(1, FIX_ALPHA+FIX_BETA, 1, 1, Scalar::all(0)) {};
|
||||
InRangeSOp() : BaseElemWiseOp(1, FIX_ALPHA+FIX_BETA, 1, 1, Scalar::all(0)) {}
|
||||
void op(const vector<Mat>& src, Mat& dst, const Mat&)
|
||||
{
|
||||
cv::inRange(src[0], gamma, gamma1, dst);
|
||||
@ -681,7 +681,7 @@ struct InRangeSOp : public BaseElemWiseOp
|
||||
|
||||
struct InRangeOp : public BaseElemWiseOp
|
||||
{
|
||||
InRangeOp() : BaseElemWiseOp(3, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {};
|
||||
InRangeOp() : BaseElemWiseOp(3, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {}
|
||||
void op(const vector<Mat>& src, Mat& dst, const Mat&)
|
||||
{
|
||||
Mat lb, rb;
|
||||
@ -707,7 +707,7 @@ struct InRangeOp : public BaseElemWiseOp
|
||||
|
||||
struct ConvertScaleOp : public BaseElemWiseOp
|
||||
{
|
||||
ConvertScaleOp() : BaseElemWiseOp(1, FIX_BETA+REAL_GAMMA, 1, 1, Scalar::all(0)), ddepth(0) { };
|
||||
ConvertScaleOp() : BaseElemWiseOp(1, FIX_BETA+REAL_GAMMA, 1, 1, Scalar::all(0)), ddepth(0) { }
|
||||
void op(const vector<Mat>& src, Mat& dst, const Mat&)
|
||||
{
|
||||
src[0].convertTo(dst, ddepth, alpha, gamma[0]);
|
||||
@ -742,7 +742,7 @@ struct ConvertScaleOp : public BaseElemWiseOp
|
||||
|
||||
struct ConvertScaleAbsOp : public BaseElemWiseOp
|
||||
{
|
||||
ConvertScaleAbsOp() : BaseElemWiseOp(1, FIX_BETA+REAL_GAMMA, 1, 1, Scalar::all(0)) {};
|
||||
ConvertScaleAbsOp() : BaseElemWiseOp(1, FIX_BETA+REAL_GAMMA, 1, 1, Scalar::all(0)) {}
|
||||
void op(const vector<Mat>& src, Mat& dst, const Mat&)
|
||||
{
|
||||
cv::convertScaleAbs(src[0], dst, alpha, gamma[0]);
|
||||
@ -810,7 +810,7 @@ static void setIdentity(Mat& dst, const Scalar& s)
|
||||
|
||||
struct FlipOp : public BaseElemWiseOp
|
||||
{
|
||||
FlipOp() : BaseElemWiseOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {};
|
||||
FlipOp() : BaseElemWiseOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {}
|
||||
void getRandomSize(RNG& rng, vector<int>& size)
|
||||
{
|
||||
cvtest::randomSize(rng, 2, 2, cvtest::ARITHM_MAX_SIZE_LOG, size);
|
||||
@ -836,7 +836,7 @@ struct FlipOp : public BaseElemWiseOp
|
||||
|
||||
struct TransposeOp : public BaseElemWiseOp
|
||||
{
|
||||
TransposeOp() : BaseElemWiseOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {};
|
||||
TransposeOp() : BaseElemWiseOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {}
|
||||
void getRandomSize(RNG& rng, vector<int>& size)
|
||||
{
|
||||
cvtest::randomSize(rng, 2, 2, cvtest::ARITHM_MAX_SIZE_LOG, size);
|
||||
@ -857,7 +857,7 @@ struct TransposeOp : public BaseElemWiseOp
|
||||
|
||||
struct SetIdentityOp : public BaseElemWiseOp
|
||||
{
|
||||
SetIdentityOp() : BaseElemWiseOp(0, FIX_ALPHA+FIX_BETA, 1, 1, Scalar::all(0)) {};
|
||||
SetIdentityOp() : BaseElemWiseOp(0, FIX_ALPHA+FIX_BETA, 1, 1, Scalar::all(0)) {}
|
||||
void getRandomSize(RNG& rng, vector<int>& size)
|
||||
{
|
||||
cvtest::randomSize(rng, 2, 2, cvtest::ARITHM_MAX_SIZE_LOG, size);
|
||||
@ -878,7 +878,7 @@ struct SetIdentityOp : public BaseElemWiseOp
|
||||
|
||||
struct SetZeroOp : public BaseElemWiseOp
|
||||
{
|
||||
SetZeroOp() : BaseElemWiseOp(0, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {};
|
||||
SetZeroOp() : BaseElemWiseOp(0, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {}
|
||||
void op(const vector<Mat>&, Mat& dst, const Mat&)
|
||||
{
|
||||
dst = Scalar::all(0);
|
||||
@ -954,7 +954,7 @@ static void log(const Mat& src, Mat& dst)
|
||||
|
||||
struct ExpOp : public BaseElemWiseOp
|
||||
{
|
||||
ExpOp() : BaseElemWiseOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {};
|
||||
ExpOp() : BaseElemWiseOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {}
|
||||
int getRandomType(RNG& rng)
|
||||
{
|
||||
return cvtest::randomType(rng, _OutputArray::DEPTH_MASK_FLT, 1, ARITHM_MAX_CHANNELS);
|
||||
@ -981,7 +981,7 @@ struct ExpOp : public BaseElemWiseOp
|
||||
|
||||
struct LogOp : public BaseElemWiseOp
|
||||
{
|
||||
LogOp() : BaseElemWiseOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {};
|
||||
LogOp() : BaseElemWiseOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {}
|
||||
int getRandomType(RNG& rng)
|
||||
{
|
||||
return cvtest::randomType(rng, _OutputArray::DEPTH_MASK_FLT, 1, ARITHM_MAX_CHANNELS);
|
||||
@ -1564,3 +1564,19 @@ TEST(Core_round, CvRound)
|
||||
ASSERT_EQ(-2, cvRound(-2.5));
|
||||
ASSERT_EQ(-4, cvRound(-3.5));
|
||||
}
|
||||
|
||||
|
||||
typedef testing::TestWithParam<Size> Mul1;
|
||||
|
||||
TEST_P(Mul1, One)
|
||||
{
|
||||
Size size = GetParam();
|
||||
cv::Mat src(size, CV_32FC1, cv::Scalar::all(2)), dst,
|
||||
ref_dst(size, CV_32FC1, cv::Scalar::all(6));
|
||||
|
||||
cv::multiply(3, src, dst);
|
||||
|
||||
ASSERT_EQ(0, cv::norm(dst, ref_dst, cv::NORM_INF));
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(Arithm, Mul1, testing::Values(Size(2, 2), Size(1, 1)));
|
||||
|
@ -90,7 +90,7 @@ PERF_TEST_P(Sz_TemplateSz_Cn_Method, MatchTemplate8U,
|
||||
|
||||
CPU_SANITY_CHECK(dst);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// MatchTemplate32F
|
||||
|
@ -58,19 +58,19 @@ Ptr<Feature2D> Feature2D::create( const String& feature2DType )
|
||||
|
||||
CV_INIT_ALGORITHM(BRISK, "Feature2D.BRISK",
|
||||
obj.info()->addParam(obj, "thres", obj.threshold);
|
||||
obj.info()->addParam(obj, "octaves", obj.octaves));
|
||||
obj.info()->addParam(obj, "octaves", obj.octaves))
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
CV_INIT_ALGORITHM(BriefDescriptorExtractor, "Feature2D.BRIEF",
|
||||
obj.info()->addParam(obj, "bytes", obj.bytes_));
|
||||
obj.info()->addParam(obj, "bytes", obj.bytes_))
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
CV_INIT_ALGORITHM(FastFeatureDetector, "Feature2D.FAST",
|
||||
obj.info()->addParam(obj, "threshold", obj.threshold);
|
||||
obj.info()->addParam(obj, "nonmaxSuppression", obj.nonmaxSuppression);
|
||||
obj.info()->addParam(obj, "type", obj.type));
|
||||
obj.info()->addParam(obj, "type", obj.type))
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@ -79,7 +79,7 @@ CV_INIT_ALGORITHM(StarDetector, "Feature2D.STAR",
|
||||
obj.info()->addParam(obj, "responseThreshold", obj.responseThreshold);
|
||||
obj.info()->addParam(obj, "lineThresholdProjected", obj.lineThresholdProjected);
|
||||
obj.info()->addParam(obj, "lineThresholdBinarized", obj.lineThresholdBinarized);
|
||||
obj.info()->addParam(obj, "suppressNonmaxSize", obj.suppressNonmaxSize));
|
||||
obj.info()->addParam(obj, "suppressNonmaxSize", obj.suppressNonmaxSize))
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@ -92,7 +92,7 @@ CV_INIT_ALGORITHM(MSER, "Feature2D.MSER",
|
||||
obj.info()->addParam(obj, "maxEvolution", obj.maxEvolution);
|
||||
obj.info()->addParam(obj, "areaThreshold", obj.areaThreshold);
|
||||
obj.info()->addParam(obj, "minMargin", obj.minMargin);
|
||||
obj.info()->addParam(obj, "edgeBlurSize", obj.edgeBlurSize));
|
||||
obj.info()->addParam(obj, "edgeBlurSize", obj.edgeBlurSize))
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@ -104,7 +104,7 @@ CV_INIT_ALGORITHM(ORB, "Feature2D.ORB",
|
||||
obj.info()->addParam(obj, "edgeThreshold", obj.edgeThreshold);
|
||||
obj.info()->addParam(obj, "patchSize", obj.patchSize);
|
||||
obj.info()->addParam(obj, "WTA_K", obj.WTA_K);
|
||||
obj.info()->addParam(obj, "scoreType", obj.scoreType));
|
||||
obj.info()->addParam(obj, "scoreType", obj.scoreType))
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@ -112,7 +112,7 @@ CV_INIT_ALGORITHM(FREAK, "Feature2D.FREAK",
|
||||
obj.info()->addParam(obj, "orientationNormalized", obj.orientationNormalized);
|
||||
obj.info()->addParam(obj, "scaleNormalized", obj.scaleNormalized);
|
||||
obj.info()->addParam(obj, "patternScale", obj.patternScale);
|
||||
obj.info()->addParam(obj, "nbOctave", obj.nOctaves));
|
||||
obj.info()->addParam(obj, "nbOctave", obj.nOctaves))
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@ -121,7 +121,7 @@ CV_INIT_ALGORITHM(GFTTDetector, "Feature2D.GFTT",
|
||||
obj.info()->addParam(obj, "qualityLevel", obj.qualityLevel);
|
||||
obj.info()->addParam(obj, "minDistance", obj.minDistance);
|
||||
obj.info()->addParam(obj, "useHarrisDetector", obj.useHarrisDetector);
|
||||
obj.info()->addParam(obj, "k", obj.k));
|
||||
obj.info()->addParam(obj, "k", obj.k))
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@ -141,7 +141,7 @@ CV_INIT_ALGORITHM(SimpleBlobDetector, "Feature2D.SimpleBlob",
|
||||
obj.info()->addParam(obj, "maxInertiaRatio", obj.params.maxInertiaRatio);
|
||||
obj.info()->addParam(obj, "filterByConvexity", obj.params.filterByConvexity);
|
||||
obj.info()->addParam(obj, "maxConvexity", obj.params.maxConvexity);
|
||||
);
|
||||
)
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@ -162,7 +162,7 @@ CV_INIT_ALGORITHM(HarrisDetector, "Feature2D.HARRIS",
|
||||
obj.info()->addParam(obj, "qualityLevel", obj.qualityLevel);
|
||||
obj.info()->addParam(obj, "minDistance", obj.minDistance);
|
||||
obj.info()->addParam(obj, "useHarrisDetector", obj.useHarrisDetector);
|
||||
obj.info()->addParam(obj, "k", obj.k));
|
||||
obj.info()->addParam(obj, "k", obj.k))
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@ -173,21 +173,21 @@ CV_INIT_ALGORITHM(DenseFeatureDetector, "Feature2D.Dense",
|
||||
obj.info()->addParam(obj, "initXyStep", obj.initXyStep);
|
||||
obj.info()->addParam(obj, "initImgBound", obj.initImgBound);
|
||||
obj.info()->addParam(obj, "varyXyStepWithScale", obj.varyXyStepWithScale);
|
||||
obj.info()->addParam(obj, "varyImgBoundWithScale", obj.varyImgBoundWithScale));
|
||||
obj.info()->addParam(obj, "varyImgBoundWithScale", obj.varyImgBoundWithScale))
|
||||
|
||||
CV_INIT_ALGORITHM(GridAdaptedFeatureDetector, "Feature2D.Grid",
|
||||
obj.info()->addParam<FeatureDetector>(obj, "detector", obj.detector, false, 0, 0); // Extra params added to avoid VS2013 fatal error in opencv2/core.hpp (decl. of addParam)
|
||||
obj.info()->addParam(obj, "maxTotalKeypoints", obj.maxTotalKeypoints);
|
||||
obj.info()->addParam(obj, "gridRows", obj.gridRows);
|
||||
obj.info()->addParam(obj, "gridCols", obj.gridCols));
|
||||
obj.info()->addParam(obj, "gridCols", obj.gridCols))
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
CV_INIT_ALGORITHM(BFMatcher, "DescriptorMatcher.BFMatcher",
|
||||
obj.info()->addParam(obj, "normType", obj.normType);
|
||||
obj.info()->addParam(obj, "crossCheck", obj.crossCheck));
|
||||
obj.info()->addParam(obj, "crossCheck", obj.crossCheck))
|
||||
|
||||
CV_INIT_ALGORITHM(FlannBasedMatcher, "DescriptorMatcher.FlannBasedMatcher",);
|
||||
CV_INIT_ALGORITHM(FlannBasedMatcher, "DescriptorMatcher.FlannBasedMatcher",)
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
@ -413,12 +413,6 @@ public:
|
||||
|
||||
void loadIndex(FILE* stream)
|
||||
{
|
||||
load_value(stream, branching_);
|
||||
load_value(stream, trees_);
|
||||
load_value(stream, centers_init_);
|
||||
load_value(stream, leaf_size_);
|
||||
load_value(stream, memoryCounter);
|
||||
|
||||
free_elements();
|
||||
|
||||
if (root!=NULL) {
|
||||
@ -429,6 +423,12 @@ public:
|
||||
delete[] indices;
|
||||
}
|
||||
|
||||
load_value(stream, branching_);
|
||||
load_value(stream, trees_);
|
||||
load_value(stream, centers_init_);
|
||||
load_value(stream, leaf_size_);
|
||||
load_value(stream, memoryCounter);
|
||||
|
||||
indices = new int*[trees_];
|
||||
root = new NodePtr[trees_];
|
||||
for (int i=0; i<trees_; ++i) {
|
||||
|
@ -208,6 +208,26 @@ Sets mouse handler for the specified window
|
||||
:param userdata: The optional parameter passed to the callback.
|
||||
|
||||
|
||||
getMouseWheelDelta
|
||||
------------------
|
||||
Gets the mouse-wheel motion delta, when handling mouse-wheel events EVENT_MOUSEWHEEL and EVENT_MOUSEHWHEEL.
|
||||
|
||||
.. ocv:function:: int getMouseWheelDelta(int flags)
|
||||
|
||||
:param flags: The mouse callback flags parameter.
|
||||
|
||||
For regular mice with a scroll-wheel, delta will be a multiple of 120. The value 120 corresponds to a one notch rotation of the wheel or the threshold for action to be taken and one such action should occur for each delta.
|
||||
Some high-precision mice with higher-resolution freely-rotating wheels may generate smaller values.
|
||||
|
||||
For EVENT_MOUSEWHEEL positive and negative values mean forward and backward scrolling, respectively.
|
||||
For EVENT_MOUSEHWHEEL, where available, positive and negative values mean right and left scrolling, respectively.
|
||||
|
||||
With the C API, the macro CV_GET_WHEEL_DELTA(flags) can be used alternatively.
|
||||
|
||||
.. note::
|
||||
|
||||
Mouse-wheel events are currently supported only on Windows.
|
||||
|
||||
setTrackbarPos
|
||||
------------------
|
||||
Sets the trackbar position.
|
||||
|
@ -76,7 +76,9 @@ enum { EVENT_MOUSEMOVE = 0,
|
||||
EVENT_MBUTTONUP = 6,
|
||||
EVENT_LBUTTONDBLCLK = 7,
|
||||
EVENT_RBUTTONDBLCLK = 8,
|
||||
EVENT_MBUTTONDBLCLK = 9
|
||||
EVENT_MBUTTONDBLCLK = 9,
|
||||
EVENT_MOUSEWHEEL = 10,
|
||||
EVENT_MOUSEHWHEEL = 11
|
||||
};
|
||||
|
||||
enum { EVENT_FLAG_LBUTTON = 1,
|
||||
@ -137,6 +139,8 @@ CV_EXPORTS_W double getWindowProperty(const String& winname, int prop_id);
|
||||
//! assigns callback for mouse events
|
||||
CV_EXPORTS void setMouseCallback(const String& winname, MouseCallback onMouse, void* userdata = 0);
|
||||
|
||||
CV_EXPORTS int getMouseWheelDelta(int flags);
|
||||
|
||||
CV_EXPORTS int createTrackbar(const String& trackbarname, const String& winname,
|
||||
int* value, int count,
|
||||
TrackbarCallback onChange = 0,
|
||||
|
@ -170,7 +170,9 @@ enum
|
||||
CV_EVENT_MBUTTONUP =6,
|
||||
CV_EVENT_LBUTTONDBLCLK =7,
|
||||
CV_EVENT_RBUTTONDBLCLK =8,
|
||||
CV_EVENT_MBUTTONDBLCLK =9
|
||||
CV_EVENT_MBUTTONDBLCLK =9,
|
||||
CV_EVENT_MOUSEWHEEL =10,
|
||||
CV_EVENT_MOUSEHWHEEL =11
|
||||
};
|
||||
|
||||
enum
|
||||
@ -183,6 +185,9 @@ enum
|
||||
CV_EVENT_FLAG_ALTKEY =32
|
||||
};
|
||||
|
||||
|
||||
#define CV_GET_WHEEL_DELTA(flags) ((short)((flags >> 16) & 0xffff)) // upper 16 bits
|
||||
|
||||
typedef void (CV_CDECL *CvMouseCallback )(int event, int x, int y, int flags, void* param);
|
||||
|
||||
/* assign callback for mouse events */
|
||||
|
@ -53,7 +53,7 @@ enum
|
||||
RBS_THROW_EOS=-123, // <end of stream> exception code
|
||||
RBS_THROW_FORB=-124, // <forrbidden huffman code> exception code
|
||||
RBS_HUFF_FORB=2047, // forrbidden huffman code "value"
|
||||
RBS_BAD_HEADER=-125, // invalid header
|
||||
RBS_BAD_HEADER=-125 // invalid header
|
||||
};
|
||||
|
||||
typedef unsigned long ulong;
|
||||
|
@ -2096,7 +2096,7 @@ enum
|
||||
VideoCodec_YV12 = (('Y'<<24)|('V'<<16)|('1'<<8)|('2')), // Y,V,U (4:2:0)
|
||||
VideoCodec_NV12 = (('N'<<24)|('V'<<16)|('1'<<8)|('2')), // Y,UV (4:2:0)
|
||||
VideoCodec_YUYV = (('Y'<<24)|('U'<<16)|('Y'<<8)|('V')), // YUYV/YUY2 (4:2:2)
|
||||
VideoCodec_UYVY = (('U'<<24)|('Y'<<16)|('V'<<8)|('Y')), // UYVY (4:2:2)
|
||||
VideoCodec_UYVY = (('U'<<24)|('Y'<<16)|('V'<<8)|('Y')) // UYVY (4:2:2)
|
||||
};
|
||||
|
||||
enum
|
||||
@ -2104,7 +2104,7 @@ enum
|
||||
VideoChromaFormat_Monochrome = 0,
|
||||
VideoChromaFormat_YUV420,
|
||||
VideoChromaFormat_YUV422,
|
||||
VideoChromaFormat_YUV444,
|
||||
VideoChromaFormat_YUV444
|
||||
};
|
||||
|
||||
struct InputMediaStream_FFMPEG
|
||||
|
@ -58,6 +58,14 @@
|
||||
#include <assert.h>
|
||||
|
||||
#if defined WIN32 || defined WINCE
|
||||
#if !defined _WIN32_WINNT
|
||||
#ifdef HAVE_MSMF
|
||||
#define _WIN32_WINNT 0x0600 // Windows Vista
|
||||
#else
|
||||
#define _WIN32_WINNT 0x0500 // Windows 2000
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#include <windows.h>
|
||||
#undef small
|
||||
#undef min
|
||||
|
@ -216,6 +216,11 @@ void cv::setMouseCallback( const String& windowName, MouseCallback onMouse, void
|
||||
cvSetMouseCallback(windowName.c_str(), onMouse, param);
|
||||
}
|
||||
|
||||
int cv::getMouseWheelDelta( int flags )
|
||||
{
|
||||
return CV_GET_WHEEL_DELTA(flags);
|
||||
}
|
||||
|
||||
int cv::startWindowThread()
|
||||
{
|
||||
return cvStartWindowThread();
|
||||
|
@ -40,30 +40,15 @@
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include <windowsx.h> // required for GET_X_LPARAM() and GET_Y_LPARAM() macros
|
||||
|
||||
#if defined WIN32 || defined _WIN32
|
||||
|
||||
#define COMPILE_MULTIMON_STUBS // Required for multi-monitor support
|
||||
#ifndef _MULTIMON_USE_SECURE_CRT
|
||||
# define _MULTIMON_USE_SECURE_CRT 0 // some MinGW platforms have no strncpy_s
|
||||
#endif
|
||||
|
||||
#if defined SM_CMONITORS && !defined MONITOR_DEFAULTTONEAREST
|
||||
# define MONITOR_DEFAULTTONULL 0x00000000
|
||||
# define MONITOR_DEFAULTTOPRIMARY 0x00000001
|
||||
# define MONITOR_DEFAULTTONEAREST 0x00000002
|
||||
# define MONITORINFOF_PRIMARY 0x00000001
|
||||
#endif
|
||||
#ifndef __inout
|
||||
# define __inout
|
||||
#endif
|
||||
|
||||
#ifdef __GNUC__
|
||||
# pragma GCC diagnostic ignored "-Wmissing-declarations"
|
||||
#endif
|
||||
|
||||
#include <commctrl.h>
|
||||
#include <winuser.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
@ -1377,6 +1362,39 @@ MainWindowProc( HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam )
|
||||
SetFocus(window->hwnd);
|
||||
break;
|
||||
|
||||
case WM_MOUSEWHEEL:
|
||||
case WM_MOUSEHWHEEL:
|
||||
if( window->on_mouse )
|
||||
{
|
||||
int flags = (wParam & MK_LBUTTON ? CV_EVENT_FLAG_LBUTTON : 0)|
|
||||
(wParam & MK_RBUTTON ? CV_EVENT_FLAG_RBUTTON : 0)|
|
||||
(wParam & MK_MBUTTON ? CV_EVENT_FLAG_MBUTTON : 0)|
|
||||
(wParam & MK_CONTROL ? CV_EVENT_FLAG_CTRLKEY : 0)|
|
||||
(wParam & MK_SHIFT ? CV_EVENT_FLAG_SHIFTKEY : 0)|
|
||||
(GetKeyState(VK_MENU) < 0 ? CV_EVENT_FLAG_ALTKEY : 0);
|
||||
int event = (uMsg == WM_MOUSEWHEEL ? CV_EVENT_MOUSEWHEEL : CV_EVENT_MOUSEHWHEEL);
|
||||
|
||||
// Set the wheel delta of mouse wheel to be in the upper word of 'event'
|
||||
int delta = GET_WHEEL_DELTA_WPARAM(wParam);
|
||||
flags |= (delta << 16);
|
||||
|
||||
POINT pt;
|
||||
pt.x = GET_X_LPARAM( lParam );
|
||||
pt.y = GET_Y_LPARAM( lParam );
|
||||
::ScreenToClient(hwnd, &pt); // Convert screen coordinates to client coordinates.
|
||||
|
||||
RECT rect;
|
||||
GetClientRect( window->hwnd, &rect );
|
||||
|
||||
SIZE size = {0,0};
|
||||
icvGetBitmapData( window, &size, 0, 0 );
|
||||
|
||||
window->on_mouse( event, pt.x*size.cx/MAX(rect.right - rect.left,1),
|
||||
pt.y*size.cy/MAX(rect.bottom - rect.top,1), flags,
|
||||
window->on_mouse_param );
|
||||
}
|
||||
break;
|
||||
|
||||
case WM_ERASEBKGND:
|
||||
{
|
||||
RECT cr, tr, wrc;
|
||||
@ -1474,8 +1492,8 @@ static LRESULT CALLBACK HighGUIProc( HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM
|
||||
if( uMsg == WM_LBUTTONUP || uMsg == WM_RBUTTONUP || uMsg == WM_MBUTTONUP )
|
||||
ReleaseCapture();
|
||||
|
||||
pt.x = LOWORD( lParam );
|
||||
pt.y = HIWORD( lParam );
|
||||
pt.x = GET_X_LPARAM( lParam );
|
||||
pt.y = GET_Y_LPARAM( lParam );
|
||||
|
||||
GetClientRect( window->hwnd, &rect );
|
||||
icvGetBitmapData( window, &size, 0, 0 );
|
||||
|
82
modules/imgproc/perf/opencl/perf_blend.cpp
Normal file
82
modules/imgproc/perf/opencl/perf_blend.cpp
Normal file
@ -0,0 +1,82 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Fangfang Bai, fangfang@multicorewareinc.com
|
||||
// Jin Ma, jin@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "perf_precomp.hpp"
|
||||
#include "opencv2/ts/ocl_perf.hpp"
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
namespace cvtest {
|
||||
namespace ocl {
|
||||
|
||||
///////////// BlendLinear ////////////////////////
|
||||
|
||||
typedef Size_MatType BlendLinearFixture;
|
||||
|
||||
OCL_PERF_TEST_P(BlendLinearFixture, BlendLinear, ::testing::Combine(OCL_TEST_SIZES, OCL_PERF_ENUM(CV_32FC1, CV_32FC4)))
|
||||
{
|
||||
Size_MatType_t params = GetParam();
|
||||
const Size srcSize = get<0>(params);
|
||||
const int srcType = get<1>(params);
|
||||
const double eps = CV_MAT_DEPTH(srcType) <= CV_32S ? 1.0 : 0.2;
|
||||
|
||||
checkDeviceMaxMemoryAllocSize(srcSize, srcType);
|
||||
|
||||
UMat src1(srcSize, srcType), src2(srcSize, srcType), dst(srcSize, srcType);
|
||||
UMat weights1(srcSize, CV_32FC1), weights2(srcSize, CV_32FC1);
|
||||
|
||||
declare.in(src1, src2, WARMUP_RNG).in(weights1, weights2, WARMUP_READ).out(dst);
|
||||
randu(weights1, 0, 1);
|
||||
randu(weights2, 0, 1);
|
||||
|
||||
OCL_TEST_CYCLE() cv::blendLinear(src1, src2, weights1, weights2, dst);
|
||||
|
||||
SANITY_CHECK(dst, eps);
|
||||
}
|
||||
|
||||
} } // namespace cvtest::ocl
|
||||
|
||||
#endif // HAVE_OPENCL
|
104
modules/imgproc/perf/opencl/perf_color.cpp
Normal file
104
modules/imgproc/perf/opencl/perf_color.cpp
Normal file
@ -0,0 +1,104 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Fangfang Bai, fangfang@multicorewareinc.com
|
||||
// Jin Ma, jin@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "perf_precomp.hpp"
|
||||
#include "opencv2/ts/ocl_perf.hpp"
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
namespace cvtest {
|
||||
namespace ocl {
|
||||
|
||||
using std::tr1::make_tuple;
|
||||
|
||||
///////////// cvtColor////////////////////////
|
||||
|
||||
CV_ENUM(ConversionTypes, COLOR_RGB2GRAY, COLOR_RGB2BGR, COLOR_RGB2YUV, COLOR_YUV2RGB, COLOR_RGB2YCrCb,
|
||||
COLOR_YCrCb2RGB, COLOR_RGB2XYZ, COLOR_XYZ2RGB, COLOR_RGB2HSV, COLOR_HSV2RGB, COLOR_RGB2HLS,
|
||||
COLOR_HLS2RGB, COLOR_BGR5652BGR, COLOR_BGR2BGR565, COLOR_RGBA2mRGBA, COLOR_mRGBA2RGBA, COLOR_YUV2RGB_NV12)
|
||||
|
||||
typedef tuple<Size, tuple<ConversionTypes, int, int> > CvtColorParams;
|
||||
typedef TestBaseWithParam<CvtColorParams> CvtColorFixture;
|
||||
|
||||
OCL_PERF_TEST_P(CvtColorFixture, CvtColor, testing::Combine(
|
||||
OCL_TEST_SIZES,
|
||||
testing::Values(
|
||||
make_tuple(ConversionTypes(COLOR_RGB2GRAY), 3, 1),
|
||||
make_tuple(ConversionTypes(COLOR_RGB2BGR), 3, 3),
|
||||
make_tuple(ConversionTypes(COLOR_RGB2YUV), 3, 3),
|
||||
make_tuple(ConversionTypes(COLOR_YUV2RGB), 3, 3),
|
||||
make_tuple(ConversionTypes(COLOR_RGB2YCrCb), 3, 3),
|
||||
make_tuple(ConversionTypes(COLOR_YCrCb2RGB), 3, 3),
|
||||
make_tuple(ConversionTypes(COLOR_RGB2XYZ), 3, 3),
|
||||
make_tuple(ConversionTypes(COLOR_XYZ2RGB), 3, 3),
|
||||
make_tuple(ConversionTypes(COLOR_RGB2HSV), 3, 3),
|
||||
make_tuple(ConversionTypes(COLOR_HSV2RGB), 3, 3),
|
||||
make_tuple(ConversionTypes(COLOR_RGB2HLS), 3, 3),
|
||||
make_tuple(ConversionTypes(COLOR_HLS2RGB), 3, 3),
|
||||
make_tuple(ConversionTypes(COLOR_BGR5652BGR), 2, 3),
|
||||
make_tuple(ConversionTypes(COLOR_BGR2BGR565), 3, 2),
|
||||
make_tuple(ConversionTypes(COLOR_RGBA2mRGBA), 4, 4),
|
||||
make_tuple(ConversionTypes(COLOR_mRGBA2RGBA), 4, 4),
|
||||
make_tuple(ConversionTypes(COLOR_YUV2RGB_NV12), 1, 3)
|
||||
)))
|
||||
{
|
||||
CvtColorParams params = GetParam();
|
||||
const Size srcSize = get<0>(params);
|
||||
const tuple<int, int, int> conversionParams = get<1>(params);
|
||||
const int code = get<0>(conversionParams), scn = get<1>(conversionParams),
|
||||
dcn = get<2>(conversionParams);
|
||||
|
||||
UMat src(srcSize, CV_8UC(scn)), dst(srcSize, CV_8UC(scn));
|
||||
declare.in(src, WARMUP_RNG).out(dst);
|
||||
|
||||
OCL_TEST_CYCLE() cv::cvtColor(src, dst, code, dcn);
|
||||
|
||||
SANITY_CHECK(dst, 1);
|
||||
}
|
||||
|
||||
} } // namespace cvtest::ocl
|
||||
|
||||
#endif // HAVE_OPENCL
|
302
modules/imgproc/perf/opencl/perf_filters.cpp
Normal file
302
modules/imgproc/perf/opencl/perf_filters.cpp
Normal file
@ -0,0 +1,302 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Fangfang Bai, fangfang@multicorewareinc.com
|
||||
// Jin Ma, jin@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "perf_precomp.hpp"
|
||||
#include "opencv2/ts/ocl_perf.hpp"
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
namespace cvtest {
|
||||
namespace ocl {
|
||||
|
||||
typedef tuple<Size, MatType, int> FilterParams;
|
||||
typedef TestBaseWithParam<FilterParams> FilterFixture;
|
||||
|
||||
///////////// Blur ////////////////////////
|
||||
|
||||
typedef FilterFixture BlurFixture;
|
||||
|
||||
OCL_PERF_TEST_P(BlurFixture, Blur,
|
||||
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES, OCL_PERF_ENUM(3, 5)))
|
||||
{
|
||||
const FilterParams params = GetParam();
|
||||
const Size srcSize = get<0>(params);
|
||||
const int type = get<1>(params), ksize = get<2>(params), bordertype = BORDER_CONSTANT;
|
||||
const double eps = CV_MAT_DEPTH(type) <= CV_32S ? 1 : 1e-5;
|
||||
|
||||
checkDeviceMaxMemoryAllocSize(srcSize, type);
|
||||
|
||||
UMat src(srcSize, type), dst(srcSize, type);
|
||||
declare.in(src, WARMUP_RNG).out(dst);
|
||||
|
||||
OCL_TEST_CYCLE() cv::blur(src, dst, Size(ksize, ksize), Point(-1, -1), bordertype);
|
||||
|
||||
SANITY_CHECK(dst, eps);
|
||||
}
|
||||
|
||||
///////////// Laplacian////////////////////////
|
||||
|
||||
typedef FilterFixture LaplacianFixture;
|
||||
|
||||
OCL_PERF_TEST_P(LaplacianFixture, Laplacian,
|
||||
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES, OCL_PERF_ENUM(3, 5)))
|
||||
{
|
||||
const FilterParams params = GetParam();
|
||||
const Size srcSize = get<0>(params);
|
||||
const int type = get<1>(params), ksize = get<2>(params);
|
||||
const double eps = CV_MAT_DEPTH(type) <= CV_32S ? 1 : 1e-5;
|
||||
|
||||
checkDeviceMaxMemoryAllocSize(srcSize, type);
|
||||
|
||||
UMat src(srcSize, type), dst(srcSize, type);
|
||||
declare.in(src, WARMUP_RNG).out(dst);
|
||||
|
||||
OCL_TEST_CYCLE() cv::Laplacian(src, dst, -1, ksize, 1);
|
||||
|
||||
SANITY_CHECK(dst, eps);
|
||||
}
|
||||
|
||||
///////////// Erode ////////////////////
|
||||
|
||||
typedef FilterFixture ErodeFixture;
|
||||
|
||||
OCL_PERF_TEST_P(ErodeFixture, Erode,
|
||||
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES, OCL_PERF_ENUM(3, 5)))
|
||||
{
|
||||
const FilterParams params = GetParam();
|
||||
const Size srcSize = get<0>(params);
|
||||
const int type = get<1>(params), ksize = get<2>(params);
|
||||
const Mat ker = getStructuringElement(MORPH_RECT, Size(ksize, ksize));
|
||||
|
||||
checkDeviceMaxMemoryAllocSize(srcSize, type);
|
||||
|
||||
UMat src(srcSize, type), dst(srcSize, type);
|
||||
declare.in(src, WARMUP_RNG).out(dst).in(ker);
|
||||
|
||||
OCL_TEST_CYCLE() cv::erode(src, dst, ker);
|
||||
|
||||
SANITY_CHECK(dst);
|
||||
}
|
||||
|
||||
///////////// Dilate ////////////////////
|
||||
|
||||
typedef FilterFixture DilateFixture;
|
||||
|
||||
OCL_PERF_TEST_P(DilateFixture, Dilate,
|
||||
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES, OCL_PERF_ENUM(3, 5)))
|
||||
{
|
||||
const FilterParams params = GetParam();
|
||||
const Size srcSize = get<0>(params);
|
||||
const int type = get<1>(params), ksize = get<2>(params);
|
||||
const Mat ker = getStructuringElement(MORPH_RECT, Size(ksize, ksize));
|
||||
|
||||
checkDeviceMaxMemoryAllocSize(srcSize, type);
|
||||
|
||||
UMat src(srcSize, type), dst(srcSize, type);
|
||||
declare.in(src, WARMUP_RNG).out(dst).in(ker);
|
||||
|
||||
OCL_TEST_CYCLE() cv::dilate(src, dst, ker);
|
||||
|
||||
SANITY_CHECK(dst);
|
||||
}
|
||||
|
||||
///////////// MorphologyEx ////////////////////////
|
||||
|
||||
CV_ENUM(MorphOp, MORPH_OPEN, MORPH_CLOSE, MORPH_GRADIENT, MORPH_TOPHAT, MORPH_BLACKHAT)
|
||||
|
||||
typedef tuple<Size, MatType, MorphOp, int> MorphologyExParams;
|
||||
typedef TestBaseWithParam<MorphologyExParams> MorphologyExFixture;
|
||||
|
||||
OCL_PERF_TEST_P(MorphologyExFixture, MorphologyEx,
|
||||
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES, MorphOp::all(), OCL_PERF_ENUM(3, 5)))
|
||||
{
|
||||
const MorphologyExParams params = GetParam();
|
||||
const Size srcSize = get<0>(params);
|
||||
const int type = get<1>(params), op = get<2>(params), ksize = get<3>(params);
|
||||
const Mat ker = getStructuringElement(MORPH_RECT, Size(ksize, ksize));
|
||||
|
||||
checkDeviceMaxMemoryAllocSize(srcSize, type);
|
||||
|
||||
UMat src(srcSize, type), dst(srcSize, type);
|
||||
declare.in(src, WARMUP_RNG).out(dst).in(ker);
|
||||
|
||||
OCL_TEST_CYCLE() cv::morphologyEx(src, dst, op, ker);
|
||||
|
||||
SANITY_CHECK(dst);
|
||||
}
|
||||
|
||||
///////////// Sobel ////////////////////////
|
||||
|
||||
typedef Size_MatType SobelFixture;
|
||||
|
||||
OCL_PERF_TEST_P(SobelFixture, Sobel,
|
||||
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES))
|
||||
{
|
||||
const Size_MatType_t params = GetParam();
|
||||
const Size srcSize = get<0>(params);
|
||||
const int type = get<1>(params), dx = 1, dy = 1;
|
||||
|
||||
checkDeviceMaxMemoryAllocSize(srcSize, type, sizeof(float) * 2);
|
||||
|
||||
UMat src(srcSize, type), dst(srcSize, type);
|
||||
declare.in(src, WARMUP_RNG).out(dst);
|
||||
|
||||
OCL_TEST_CYCLE() cv::Sobel(src, dst, -1, dx, dy);
|
||||
|
||||
SANITY_CHECK(dst);
|
||||
}
|
||||
|
||||
///////////// Scharr ////////////////////////
|
||||
|
||||
typedef Size_MatType ScharrFixture;
|
||||
|
||||
OCL_PERF_TEST_P(ScharrFixture, Scharr,
|
||||
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES))
|
||||
{
|
||||
const Size_MatType_t params = GetParam();
|
||||
const Size srcSize = get<0>(params);
|
||||
const int type = get<1>(params), dx = 1, dy = 0;
|
||||
const double eps = CV_MAT_DEPTH(type) <= CV_32S ? 1 : 1e-5;
|
||||
|
||||
checkDeviceMaxMemoryAllocSize(srcSize, type, sizeof(float) * 2);
|
||||
|
||||
UMat src(srcSize, type), dst(srcSize, type);
|
||||
declare.in(src, WARMUP_RNG).out(dst);
|
||||
|
||||
OCL_TEST_CYCLE() cv::Scharr(src, dst, -1, dx, dy);
|
||||
|
||||
SANITY_CHECK(dst, eps);
|
||||
}
|
||||
|
||||
///////////// GaussianBlur ////////////////////////
|
||||
|
||||
typedef FilterFixture GaussianBlurFixture;
|
||||
|
||||
OCL_PERF_TEST_P(GaussianBlurFixture, GaussianBlur,
|
||||
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES, OCL_PERF_ENUM(3, 5, 7)))
|
||||
{
|
||||
const FilterParams params = GetParam();
|
||||
const Size srcSize = get<0>(params);
|
||||
const int type = get<1>(params), ksize = get<2>(params);
|
||||
const double eps = CV_MAT_DEPTH(type) <= CV_32S ? 1 + DBL_EPSILON : 3e-4;
|
||||
|
||||
checkDeviceMaxMemoryAllocSize(srcSize, type);
|
||||
|
||||
UMat src(srcSize, type), dst(srcSize, type);
|
||||
declare.in(src, WARMUP_RNG).out(dst);
|
||||
|
||||
OCL_TEST_CYCLE() cv::GaussianBlur(src, dst, Size(ksize, ksize), 0);
|
||||
|
||||
SANITY_CHECK(dst, eps);
|
||||
}
|
||||
|
||||
///////////// Filter2D ////////////////////////
|
||||
|
||||
typedef FilterFixture Filter2DFixture;
|
||||
|
||||
OCL_PERF_TEST_P(Filter2DFixture, Filter2D,
|
||||
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES, OCL_PERF_ENUM(3, 5)))
|
||||
{
|
||||
const FilterParams params = GetParam();
|
||||
const Size srcSize = get<0>(params);
|
||||
const int type = get<1>(params), ksize = get<2>(params);
|
||||
const double eps = CV_MAT_DEPTH(type) <= CV_32S ? 1 : 1e-5;
|
||||
|
||||
checkDeviceMaxMemoryAllocSize(srcSize, type);
|
||||
|
||||
UMat src(srcSize, type), dst(srcSize, type), kernel(ksize, ksize, CV_32SC1);
|
||||
declare.in(src, WARMUP_RNG).in(kernel).out(dst);
|
||||
randu(kernel, -3.0, 3.0);
|
||||
|
||||
OCL_TEST_CYCLE() cv::filter2D(src, dst, -1, kernel);
|
||||
|
||||
SANITY_CHECK(dst, eps);
|
||||
}
|
||||
|
||||
///////////// Bilateral ////////////////////////
|
||||
|
||||
typedef TestBaseWithParam<Size> BilateralFixture;
|
||||
|
||||
OCL_PERF_TEST_P(BilateralFixture, Bilateral, OCL_TEST_SIZES)
|
||||
{
|
||||
const Size srcSize = GetParam();
|
||||
const int d = 7;
|
||||
const double sigmacolor = 50.0, sigmaspace = 50.0;
|
||||
|
||||
checkDeviceMaxMemoryAllocSize(srcSize, CV_8UC1);
|
||||
|
||||
UMat src(srcSize, CV_8UC1), dst(srcSize, CV_8UC1);
|
||||
declare.in(src, WARMUP_RNG).out(dst);
|
||||
|
||||
OCL_TEST_CYCLE() cv::bilateralFilter(src, dst, d, sigmacolor, sigmaspace);
|
||||
|
||||
SANITY_CHECK(dst);
|
||||
}
|
||||
|
||||
///////////// MedianBlur ////////////////////////
|
||||
|
||||
typedef tuple<Size, int> MedianBlurParams;
|
||||
typedef TestBaseWithParam<MedianBlurParams> MedianBlurFixture;
|
||||
|
||||
OCL_PERF_TEST_P(MedianBlurFixture, Bilateral, ::testing::Combine(OCL_TEST_SIZES, OCL_PERF_ENUM(3, 5)))
|
||||
{
|
||||
MedianBlurParams params = GetParam();
|
||||
const Size srcSize = get<0>(params);
|
||||
const int ksize = get<1>(params);
|
||||
|
||||
checkDeviceMaxMemoryAllocSize(srcSize, CV_8UC1);
|
||||
|
||||
UMat src(srcSize, CV_8UC1), dst(srcSize, CV_8UC1);
|
||||
declare.in(src, WARMUP_RNG).out(dst);
|
||||
|
||||
OCL_TEST_CYCLE() cv::medianBlur(src, dst, ksize);
|
||||
|
||||
SANITY_CHECK(dst);
|
||||
}
|
||||
|
||||
} } // namespace cvtest::ocl
|
||||
|
||||
#endif // HAVE_OPENCL
|
246
modules/imgproc/perf/opencl/perf_imgproc.cpp
Normal file
246
modules/imgproc/perf/opencl/perf_imgproc.cpp
Normal file
@ -0,0 +1,246 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Fangfang Bai, fangfang@multicorewareinc.com
|
||||
// Jin Ma, jin@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "perf_precomp.hpp"
|
||||
#include "opencv2/ts/ocl_perf.hpp"
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
namespace cvtest {
|
||||
namespace ocl {
|
||||
|
||||
///////////// equalizeHist ////////////////////////
|
||||
|
||||
typedef TestBaseWithParam<Size> EqualizeHistFixture;
|
||||
|
||||
OCL_PERF_TEST_P(EqualizeHistFixture, EqualizeHist, OCL_TEST_SIZES)
|
||||
{
|
||||
const Size srcSize = GetParam();
|
||||
const double eps = 1;
|
||||
|
||||
UMat src(srcSize, CV_8UC1), dst(srcSize, CV_8UC1);
|
||||
declare.in(src, WARMUP_RNG).out(dst);
|
||||
|
||||
OCL_TEST_CYCLE() cv::equalizeHist(src, dst);
|
||||
|
||||
SANITY_CHECK(dst, eps);
|
||||
}
|
||||
|
||||
/////////// CopyMakeBorder //////////////////////
|
||||
|
||||
CV_ENUM(Border, BORDER_CONSTANT, BORDER_REPLICATE, BORDER_REFLECT, BORDER_WRAP, BORDER_REFLECT_101)
|
||||
|
||||
typedef tuple<Size, MatType, Border> CopyMakeBorderParamType;
|
||||
typedef TestBaseWithParam<CopyMakeBorderParamType> CopyMakeBorderFixture;
|
||||
|
||||
OCL_PERF_TEST_P(CopyMakeBorderFixture, CopyMakeBorder,
|
||||
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES, Border::all()))
|
||||
{
|
||||
const CopyMakeBorderParamType params = GetParam();
|
||||
const Size srcSize = get<0>(params);
|
||||
const int type = get<1>(params), borderType = get<2>(params);
|
||||
|
||||
UMat src(srcSize, type), dst;
|
||||
const Size dstSize = srcSize + Size(12, 12);
|
||||
dst.create(dstSize, type);
|
||||
declare.in(src, WARMUP_RNG).out(dst);
|
||||
|
||||
OCL_TEST_CYCLE() cv::copyMakeBorder(src, dst, 7, 5, 5, 7, borderType, cv::Scalar(1.0));
|
||||
|
||||
SANITY_CHECK(dst);
|
||||
}
|
||||
|
||||
///////////// CornerMinEigenVal ////////////////////////
|
||||
|
||||
typedef Size_MatType CornerMinEigenValFixture;
|
||||
|
||||
OCL_PERF_TEST_P(CornerMinEigenValFixture, CornerMinEigenVal,
|
||||
::testing::Combine(OCL_TEST_SIZES, OCL_PERF_ENUM(CV_8UC1, CV_32FC1)))
|
||||
{
|
||||
const Size_MatType_t params = GetParam();
|
||||
const Size srcSize = get<0>(params);
|
||||
const int type = get<1>(params), borderType = BORDER_REFLECT;
|
||||
const int blockSize = 7, apertureSize = 1 + 2 * 3;
|
||||
|
||||
UMat src(srcSize, type), dst(srcSize, CV_32FC1);
|
||||
declare.in(src, WARMUP_RNG).out(dst);
|
||||
|
||||
const int depth = CV_MAT_DEPTH(type);
|
||||
const ERROR_TYPE errorType = depth == CV_8U ? ERROR_ABSOLUTE : ERROR_RELATIVE;
|
||||
|
||||
OCL_TEST_CYCLE() cv::cornerMinEigenVal(src, dst, blockSize, apertureSize, borderType);
|
||||
|
||||
SANITY_CHECK(dst, 1e-6, errorType);
|
||||
}
|
||||
|
||||
///////////// CornerHarris ////////////////////////
|
||||
|
||||
typedef Size_MatType CornerHarrisFixture;
|
||||
|
||||
OCL_PERF_TEST_P(CornerHarrisFixture, CornerHarris,
|
||||
::testing::Combine(OCL_TEST_SIZES, OCL_PERF_ENUM(CV_8UC1, CV_32FC1)))
|
||||
{
|
||||
const Size_MatType_t params = GetParam();
|
||||
const Size srcSize = get<0>(params);
|
||||
const int type = get<1>(params), borderType = BORDER_REFLECT;
|
||||
|
||||
UMat src(srcSize, type), dst(srcSize, CV_32FC1);
|
||||
declare.in(src, WARMUP_RNG).out(dst);
|
||||
|
||||
OCL_TEST_CYCLE() cv::cornerHarris(src, dst, 5, 7, 0.1, borderType);
|
||||
|
||||
SANITY_CHECK(dst, 5e-5);
|
||||
}
|
||||
|
||||
///////////// Integral ////////////////////////
|
||||
|
||||
typedef tuple<Size, MatDepth> IntegralParams;
|
||||
typedef TestBaseWithParam<IntegralParams> IntegralFixture;
|
||||
|
||||
OCL_PERF_TEST_P(IntegralFixture, Integral1, ::testing::Combine(OCL_TEST_SIZES, OCL_PERF_ENUM(CV_32S, CV_32F)))
|
||||
{
|
||||
const IntegralParams params = GetParam();
|
||||
const Size srcSize = get<0>(params);
|
||||
const int ddepth = get<1>(params);
|
||||
|
||||
UMat src(srcSize, CV_8UC1), dst(srcSize + Size(1, 1), ddepth);
|
||||
declare.in(src, WARMUP_RNG).out(dst);
|
||||
|
||||
OCL_TEST_CYCLE() cv::integral(src, dst, ddepth);
|
||||
|
||||
SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE);
|
||||
}
|
||||
|
||||
///////////// Threshold ////////////////////////
|
||||
|
||||
CV_ENUM(ThreshType, THRESH_BINARY, THRESH_BINARY_INV, THRESH_TRUNC, THRESH_TOZERO_INV)
|
||||
|
||||
typedef tuple<Size, MatType, ThreshType> ThreshParams;
|
||||
typedef TestBaseWithParam<ThreshParams> ThreshFixture;
|
||||
|
||||
OCL_PERF_TEST_P(ThreshFixture, Threshold,
|
||||
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES, ThreshType::all()))
|
||||
{
|
||||
const ThreshParams params = GetParam();
|
||||
const Size srcSize = get<0>(params);
|
||||
const int srcType = get<1>(params);
|
||||
const int threshType = get<2>(params);
|
||||
const double maxValue = 220.0, threshold = 50;
|
||||
|
||||
UMat src(srcSize, srcType), dst(srcSize, srcType);
|
||||
declare.in(src, WARMUP_RNG).out(dst);
|
||||
|
||||
OCL_TEST_CYCLE() cv::threshold(src, dst, threshold, maxValue, threshType);
|
||||
|
||||
SANITY_CHECK(dst);
|
||||
}
|
||||
|
||||
///////////// CLAHE ////////////////////////
|
||||
|
||||
typedef TestBaseWithParam<Size> CLAHEFixture;
|
||||
|
||||
OCL_PERF_TEST_P(CLAHEFixture, CLAHE, OCL_TEST_SIZES)
|
||||
{
|
||||
const Size srcSize = GetParam();
|
||||
|
||||
UMat src(srcSize, CV_8UC1), dst(srcSize, CV_8UC1);
|
||||
const double clipLimit = 40.0;
|
||||
declare.in(src, WARMUP_RNG).out(dst);
|
||||
|
||||
cv::Ptr<cv::CLAHE> clahe = cv::createCLAHE(clipLimit);
|
||||
OCL_TEST_CYCLE() clahe->apply(src, dst);
|
||||
|
||||
SANITY_CHECK(dst);
|
||||
}
|
||||
|
||||
///////////// SqrBoxFilter ////////////////////////
|
||||
|
||||
typedef TestBaseWithParam<Size> SqrBoxFilterFixture;
|
||||
|
||||
OCL_PERF_TEST_P(SqrBoxFilterFixture, SqrBoxFilter, OCL_TEST_SIZES)
|
||||
{
|
||||
const Size srcSize = GetParam();
|
||||
|
||||
UMat src(srcSize, CV_8UC1), dst(srcSize, CV_32SC1);
|
||||
declare.in(src, WARMUP_RNG).out(dst);
|
||||
|
||||
OCL_TEST_CYCLE() cv::sqrBoxFilter(src, dst, CV_32S, Size(3, 3));
|
||||
|
||||
SANITY_CHECK(dst);
|
||||
}
|
||||
|
||||
///////////// Canny ////////////////////////
|
||||
|
||||
typedef tuple<int, bool> CannyParams;
|
||||
typedef TestBaseWithParam<CannyParams> CannyFixture;
|
||||
|
||||
OCL_PERF_TEST_P(CannyFixture, Canny, ::testing::Combine(OCL_PERF_ENUM(3, 5), Bool()))
|
||||
{
|
||||
const CannyParams params = GetParam();
|
||||
int apertureSize = get<0>(params);
|
||||
bool L2Grad = get<1>(params);
|
||||
|
||||
Mat _img = imread(getDataPath("gpu/stereobm/aloe-L.png"), cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_TRUE(!_img.empty()) << "can't open aloe-L.png";
|
||||
|
||||
UMat img;
|
||||
_img.copyTo(img);
|
||||
UMat edges(img.size(), CV_8UC1);
|
||||
|
||||
declare.in(img, WARMUP_RNG).out(edges);
|
||||
|
||||
OCL_TEST_CYCLE() cv::Canny(img, edges, 50.0, 100.0, apertureSize, L2Grad);
|
||||
|
||||
if (apertureSize == 3)
|
||||
SANITY_CHECK(edges);
|
||||
else
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
|
||||
} } // namespace cvtest::ocl
|
||||
|
||||
#endif // HAVE_OPENCL
|
210
modules/imgproc/perf/opencl/perf_imgwarp.cpp
Normal file
210
modules/imgproc/perf/opencl/perf_imgwarp.cpp
Normal file
@ -0,0 +1,210 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Fangfang Bai, fangfang@multicorewareinc.com
|
||||
// Jin Ma, jin@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "perf_precomp.hpp"
|
||||
#include "opencv2/ts/ocl_perf.hpp"
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
namespace cvtest {
|
||||
namespace ocl {
|
||||
|
||||
///////////// WarpAffine ////////////////////////
|
||||
|
||||
CV_ENUM(InterType, INTER_NEAREST, INTER_LINEAR)
|
||||
|
||||
typedef tuple<Size, MatType, InterType> WarpAffineParams;
|
||||
typedef TestBaseWithParam<WarpAffineParams> WarpAffineFixture;
|
||||
|
||||
OCL_PERF_TEST_P(WarpAffineFixture, WarpAffine,
|
||||
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES, InterType::all()))
|
||||
{
|
||||
static const double coeffs[2][3] =
|
||||
{
|
||||
{ cos(CV_PI / 6), -sin(CV_PI / 6), 100.0 },
|
||||
{ sin(CV_PI / 6), cos(CV_PI / 6) , -100.0 }
|
||||
};
|
||||
Mat M(2, 3, CV_64F, (void *)coeffs);
|
||||
|
||||
const WarpAffineParams params = GetParam();
|
||||
const Size srcSize = get<0>(params);
|
||||
const int type = get<1>(params), interpolation = get<2>(params);
|
||||
const double eps = CV_MAT_DEPTH(type) <= CV_32S ? 1 : 1e-4;
|
||||
|
||||
checkDeviceMaxMemoryAllocSize(srcSize, type);
|
||||
|
||||
UMat src(srcSize, type), dst(srcSize, type);
|
||||
declare.in(src, WARMUP_RNG).out(dst);
|
||||
|
||||
OCL_TEST_CYCLE() cv::warpAffine(src, dst, M, srcSize, interpolation);
|
||||
|
||||
SANITY_CHECK(dst, eps);
|
||||
}
|
||||
|
||||
///////////// WarpPerspective ////////////////////////
|
||||
|
||||
typedef WarpAffineParams WarpPerspectiveParams;
|
||||
typedef TestBaseWithParam<WarpPerspectiveParams> WarpPerspectiveFixture;
|
||||
|
||||
OCL_PERF_TEST_P(WarpPerspectiveFixture, WarpPerspective,
|
||||
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES, InterType::all()))
|
||||
{
|
||||
static const double coeffs[3][3] =
|
||||
{
|
||||
{cos(CV_PI / 6), -sin(CV_PI / 6), 100.0},
|
||||
{sin(CV_PI / 6), cos(CV_PI / 6), -100.0},
|
||||
{0.0, 0.0, 1.0}
|
||||
};
|
||||
Mat M(3, 3, CV_64F, (void *)coeffs);
|
||||
|
||||
const WarpPerspectiveParams params = GetParam();
|
||||
const Size srcSize = get<0>(params);
|
||||
const int type = get<1>(params), interpolation = get<2>(params);
|
||||
const double eps = CV_MAT_DEPTH(type) <= CV_32S ? 1 : 1e-4;
|
||||
|
||||
checkDeviceMaxMemoryAllocSize(srcSize, type);
|
||||
|
||||
UMat src(srcSize, type), dst(srcSize, type);
|
||||
declare.in(src, WARMUP_RNG).out(dst);
|
||||
|
||||
OCL_TEST_CYCLE() cv::warpPerspective(src, dst, M, srcSize, interpolation);
|
||||
|
||||
SANITY_CHECK(dst, eps);
|
||||
}
|
||||
|
||||
///////////// Resize ////////////////////////
|
||||
|
||||
typedef tuple<Size, MatType, InterType, double> ResizeParams;
|
||||
typedef TestBaseWithParam<ResizeParams> ResizeFixture;
|
||||
|
||||
OCL_PERF_TEST_P(ResizeFixture, Resize,
|
||||
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES,
|
||||
InterType::all(), ::testing::Values(0.5, 2.0)))
|
||||
{
|
||||
const ResizeParams params = GetParam();
|
||||
const Size srcSize = get<0>(params);
|
||||
const int type = get<1>(params), interType = get<2>(params);
|
||||
double scale = get<3>(params);
|
||||
const Size dstSize(cvRound(srcSize.width * scale), cvRound(srcSize.height * scale));
|
||||
const double eps = CV_MAT_DEPTH(type) <= CV_32S ? 1 : 1e-4;
|
||||
|
||||
checkDeviceMaxMemoryAllocSize(srcSize, type);
|
||||
checkDeviceMaxMemoryAllocSize(dstSize, type);
|
||||
|
||||
UMat src(srcSize, type), dst(dstSize, type);
|
||||
declare.in(src, WARMUP_RNG).out(dst);
|
||||
|
||||
OCL_TEST_CYCLE() cv::resize(src, dst, Size(), scale, scale, interType);
|
||||
|
||||
SANITY_CHECK(dst, eps);
|
||||
}
|
||||
|
||||
typedef tuple<Size, MatType, double> ResizeAreaParams;
|
||||
typedef TestBaseWithParam<ResizeAreaParams> ResizeAreaFixture;
|
||||
|
||||
OCL_PERF_TEST_P(ResizeAreaFixture, Resize,
|
||||
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES, ::testing::Values(0.3, 0.5, 0.6)))
|
||||
{
|
||||
const ResizeAreaParams params = GetParam();
|
||||
const Size srcSize = get<0>(params);
|
||||
const int type = get<1>(params);
|
||||
double scale = get<2>(params);
|
||||
const Size dstSize(cvRound(srcSize.width * scale), cvRound(srcSize.height * scale));
|
||||
const double eps = CV_MAT_DEPTH(type) <= CV_32S ? 1 : 1e-4;
|
||||
|
||||
checkDeviceMaxMemoryAllocSize(srcSize, type);
|
||||
checkDeviceMaxMemoryAllocSize(dstSize, type);
|
||||
|
||||
UMat src(srcSize, type), dst(dstSize, type);
|
||||
declare.in(src, WARMUP_RNG).out(dst);
|
||||
|
||||
OCL_TEST_CYCLE() cv::resize(src, dst, Size(), scale, scale, cv::INTER_AREA);
|
||||
|
||||
SANITY_CHECK(dst, eps);
|
||||
}
|
||||
|
||||
///////////// Remap ////////////////////////
|
||||
|
||||
typedef tuple<Size, MatType, InterType> RemapParams;
|
||||
typedef TestBaseWithParam<RemapParams> RemapFixture;
|
||||
|
||||
OCL_PERF_TEST_P(RemapFixture, Remap,
|
||||
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES, InterType::all()))
|
||||
{
|
||||
const RemapParams params = GetParam();
|
||||
const Size srcSize = get<0>(params);
|
||||
const int type = get<1>(params), interpolation = get<2>(params), borderMode = BORDER_CONSTANT;
|
||||
const double eps = CV_MAT_DEPTH(type) <= CV_32S ? 1 : 1e-4;
|
||||
|
||||
checkDeviceMaxMemoryAllocSize(srcSize, type);
|
||||
|
||||
UMat src(srcSize, type), dst(srcSize, type);
|
||||
UMat xmap(srcSize, CV_32FC1), ymap(srcSize, CV_32FC1);
|
||||
|
||||
{
|
||||
Mat _xmap = xmap.getMat(ACCESS_WRITE), _ymap = ymap.getMat(ACCESS_WRITE);
|
||||
for (int i = 0; i < srcSize.height; ++i)
|
||||
{
|
||||
float * const xmap_row = _xmap.ptr<float>(i);
|
||||
float * const ymap_row = _ymap.ptr<float>(i);
|
||||
|
||||
for (int j = 0; j < srcSize.width; ++j)
|
||||
{
|
||||
xmap_row[j] = (j - srcSize.width * 0.5f) * 0.75f + srcSize.width * 0.5f;
|
||||
ymap_row[j] = (i - srcSize.height * 0.5f) * 0.75f + srcSize.height * 0.5f;
|
||||
}
|
||||
}
|
||||
}
|
||||
declare.in(src, WARMUP_RNG).in(xmap, ymap, WARMUP_READ).out(dst);
|
||||
|
||||
OCL_TEST_CYCLE() cv::remap(src, dst, xmap, ymap, interpolation, borderMode);
|
||||
|
||||
SANITY_CHECK(dst, eps);
|
||||
}
|
||||
|
||||
} } // namespace cvtest::ocl
|
||||
|
||||
#endif // HAVE_OPENCL
|
78
modules/imgproc/perf/opencl/perf_moments.cpp
Normal file
78
modules/imgproc/perf/opencl/perf_moments.cpp
Normal file
@ -0,0 +1,78 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Fangfang Bai, fangfang@multicorewareinc.com
|
||||
// Jin Ma, jin@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other Materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "perf_precomp.hpp"
|
||||
#include "opencv2/ts/ocl_perf.hpp"
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
namespace cvtest {
|
||||
namespace ocl {
|
||||
|
||||
///////////// Moments ////////////////////////
|
||||
|
||||
typedef tuple<Size, bool> MomentsParams;
|
||||
typedef TestBaseWithParam<MomentsParams> MomentsFixture;
|
||||
|
||||
OCL_PERF_TEST_P(MomentsFixture, Moments,
|
||||
::testing::Combine(OCL_TEST_SIZES, ::testing::Bool()))
|
||||
{
|
||||
const MomentsParams params = GetParam();
|
||||
const Size srcSize = get<0>(params);
|
||||
const bool binaryImage = get<1>(params);
|
||||
|
||||
cv::Moments m;
|
||||
UMat src(srcSize, CV_8UC1);
|
||||
declare.in(src, WARMUP_RNG);
|
||||
|
||||
OCL_TEST_CYCLE() m = cv::moments(src, binaryImage);
|
||||
|
||||
SANITY_CHECK_MOMENTS(m, 1e-6, ERROR_RELATIVE);
|
||||
}
|
||||
|
||||
} } // namespace cvtest::ocl
|
||||
|
||||
#endif // HAVE_OPENCL
|
105
modules/imgproc/perf/opencl/perf_pyramid.cpp
Normal file
105
modules/imgproc/perf/opencl/perf_pyramid.cpp
Normal file
@ -0,0 +1,105 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Fangfang Bai, fangfang@multicorewareinc.com
|
||||
// Jin Ma, jin@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "perf_precomp.hpp"
|
||||
#include "opencv2/ts/ocl_perf.hpp"
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
namespace cvtest {
|
||||
namespace ocl {
|
||||
|
||||
///////////// PyrDown //////////////////////
|
||||
|
||||
typedef Size_MatType PyrDownFixture;
|
||||
|
||||
OCL_PERF_TEST_P(PyrDownFixture, PyrDown,
|
||||
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES))
|
||||
{
|
||||
const Size_MatType_t params = GetParam();
|
||||
const Size srcSize = get<0>(params);
|
||||
const int type = get<1>(params);
|
||||
const Size dstSize((srcSize.height + 1) >> 1, (srcSize.width + 1) >> 1);
|
||||
const double eps = CV_MAT_DEPTH(type) <= CV_32S ? 1 : 1e-5;
|
||||
|
||||
checkDeviceMaxMemoryAllocSize(srcSize, type);
|
||||
checkDeviceMaxMemoryAllocSize(dstSize, type);
|
||||
|
||||
UMat src(srcSize, type), dst(dstSize, type);
|
||||
declare.in(src, WARMUP_RNG).out(dst);
|
||||
|
||||
OCL_TEST_CYCLE() cv::pyrDown(src, dst);
|
||||
|
||||
SANITY_CHECK(dst, eps);
|
||||
}
|
||||
|
||||
///////////// PyrUp ////////////////////////
|
||||
|
||||
typedef Size_MatType PyrUpFixture;
|
||||
|
||||
OCL_PERF_TEST_P(PyrUpFixture, PyrUp,
|
||||
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES))
|
||||
{
|
||||
const Size_MatType_t params = GetParam();
|
||||
const Size srcSize = get<0>(params);
|
||||
const int type = get<1>(params);
|
||||
const Size dstSize(srcSize.height << 1, srcSize.width << 1);
|
||||
const double eps = CV_MAT_DEPTH(type) <= CV_32S ? 1 : 1e-5;
|
||||
|
||||
checkDeviceMaxMemoryAllocSize(srcSize, type);
|
||||
checkDeviceMaxMemoryAllocSize(dstSize, type);
|
||||
|
||||
UMat src(srcSize, type), dst(dstSize, type);
|
||||
declare.in(src, WARMUP_RNG).out(dst);
|
||||
|
||||
OCL_TEST_CYCLE() cv::pyrDown(src, dst);
|
||||
|
||||
SANITY_CHECK(dst, eps);
|
||||
}
|
||||
|
||||
} } // namespace cvtest::ocl
|
||||
|
||||
#endif // HAVE_OPENCL
|
@ -8,7 +8,7 @@ using std::tr1::make_tuple;
|
||||
using std::tr1::get;
|
||||
|
||||
|
||||
CV_ENUM(BorderMode, BORDER_CONSTANT, BORDER_REPLICATE, BORDER_REFLECT_101);
|
||||
CV_ENUM(BorderMode, BORDER_CONSTANT, BORDER_REPLICATE, BORDER_REFLECT_101)
|
||||
|
||||
typedef TestBaseWithParam< tr1::tuple<Size, int, BorderMode> > TestFilter2d;
|
||||
typedef TestBaseWithParam< tr1::tuple<string, int> > Image_KernelSize;
|
||||
|
@ -40,6 +40,7 @@
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "opencl_kernels.hpp"
|
||||
|
||||
/*
|
||||
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
|
||||
@ -48,9 +49,11 @@
|
||||
#undef USE_IPP_CANNY
|
||||
#endif
|
||||
*/
|
||||
#ifdef USE_IPP_CANNY
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
#ifdef USE_IPP_CANNY
|
||||
static bool ippCanny(const Mat& _src, Mat& _dst, float low, float high)
|
||||
{
|
||||
int size = 0, size1 = 0;
|
||||
@ -83,22 +86,165 @@ static bool ippCanny(const Mat& _src, Mat& _dst, float low, float high)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
static bool ocl_Canny(InputArray _src, OutputArray _dst, float low_thresh, float high_thresh,
|
||||
int aperture_size, bool L2gradient, int cn, const Size & size)
|
||||
{
|
||||
UMat dx(size, CV_16SC(cn)), dy(size, CV_16SC(cn));
|
||||
|
||||
if (L2gradient)
|
||||
{
|
||||
low_thresh = std::min(32767.0f, low_thresh);
|
||||
high_thresh = std::min(32767.0f, high_thresh);
|
||||
|
||||
if (low_thresh > 0) low_thresh *= low_thresh;
|
||||
if (high_thresh > 0) high_thresh *= high_thresh;
|
||||
}
|
||||
int low = cvFloor(low_thresh), high = cvFloor(high_thresh);
|
||||
Size esize(size.width + 2, size.height + 2);
|
||||
|
||||
UMat mag;
|
||||
size_t globalsize[2] = { size.width * cn, size.height }, localsize[2] = { 16, 16 };
|
||||
|
||||
if (aperture_size == 3 && !_src.isSubmatrix())
|
||||
{
|
||||
// Sobel calculation
|
||||
ocl::Kernel calcSobelRowPassKernel("calcSobelRowPass", ocl::imgproc::canny_oclsrc);
|
||||
if (calcSobelRowPassKernel.empty())
|
||||
return false;
|
||||
|
||||
UMat src = _src.getUMat(), dxBuf(size, CV_16SC(cn)), dyBuf(size, CV_16SC(cn));
|
||||
calcSobelRowPassKernel.args(ocl::KernelArg::ReadOnly(src),
|
||||
ocl::KernelArg::WriteOnlyNoSize(dxBuf),
|
||||
ocl::KernelArg::WriteOnlyNoSize(dyBuf));
|
||||
|
||||
if (!calcSobelRowPassKernel.run(2, globalsize, localsize, false))
|
||||
return false;
|
||||
|
||||
// magnitude calculation
|
||||
ocl::Kernel magnitudeKernel("calcMagnitude_buf", ocl::imgproc::canny_oclsrc,
|
||||
L2gradient ? " -D L2GRAD" : "");
|
||||
if (magnitudeKernel.empty())
|
||||
return false;
|
||||
|
||||
mag = UMat(esize, CV_32SC(cn), Scalar::all(0));
|
||||
dx.create(size, CV_16SC(cn));
|
||||
dy.create(size, CV_16SC(cn));
|
||||
|
||||
magnitudeKernel.args(ocl::KernelArg::ReadOnlyNoSize(dxBuf), ocl::KernelArg::ReadOnlyNoSize(dyBuf),
|
||||
ocl::KernelArg::WriteOnlyNoSize(dx), ocl::KernelArg::WriteOnlyNoSize(dy),
|
||||
ocl::KernelArg::WriteOnlyNoSize(mag, cn), size.height, size.width);
|
||||
|
||||
if (!magnitudeKernel.run(2, globalsize, localsize, false))
|
||||
return false;
|
||||
}
|
||||
else
|
||||
{
|
||||
dx.create(size, CV_16SC(cn));
|
||||
dy.create(size, CV_16SC(cn));
|
||||
|
||||
Sobel(_src, dx, CV_16SC1, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE);
|
||||
Sobel(_src, dy, CV_16SC1, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE);
|
||||
|
||||
// magnitude calculation
|
||||
ocl::Kernel magnitudeKernel("calcMagnitude", ocl::imgproc::canny_oclsrc,
|
||||
L2gradient ? " -D L2GRAD" : "");
|
||||
if (magnitudeKernel.empty())
|
||||
return false;
|
||||
|
||||
mag = UMat(esize, CV_32SC(cn), Scalar::all(0));
|
||||
magnitudeKernel.args(ocl::KernelArg::ReadOnlyNoSize(dx), ocl::KernelArg::ReadOnlyNoSize(dy),
|
||||
ocl::KernelArg::WriteOnlyNoSize(mag, cn), size.height, size.width);
|
||||
|
||||
if (!magnitudeKernel.run(2, globalsize, NULL, false))
|
||||
return false;
|
||||
}
|
||||
|
||||
// map calculation
|
||||
ocl::Kernel calcMapKernel("calcMap", ocl::imgproc::canny_oclsrc);
|
||||
if (calcMapKernel.empty())
|
||||
return false;
|
||||
|
||||
UMat map(esize, CV_32SC(cn));
|
||||
calcMapKernel.args(ocl::KernelArg::ReadOnlyNoSize(dx), ocl::KernelArg::ReadOnlyNoSize(dy),
|
||||
ocl::KernelArg::ReadOnlyNoSize(mag), ocl::KernelArg::WriteOnlyNoSize(map, cn),
|
||||
size.height, size.width, low, high);
|
||||
|
||||
if (!calcMapKernel.run(2, globalsize, localsize, false))
|
||||
return false;
|
||||
|
||||
// local hysteresis thresholding
|
||||
ocl::Kernel edgesHysteresisLocalKernel("edgesHysteresisLocal", ocl::imgproc::canny_oclsrc);
|
||||
if (edgesHysteresisLocalKernel.empty())
|
||||
return false;
|
||||
|
||||
UMat stack(1, size.area(), CV_16UC2), counter(1, 1, CV_32SC1, Scalar::all(0));
|
||||
edgesHysteresisLocalKernel.args(ocl::KernelArg::ReadOnlyNoSize(map), ocl::KernelArg::PtrReadWrite(stack),
|
||||
ocl::KernelArg::PtrReadWrite(counter), size.height, size.width);
|
||||
if (!edgesHysteresisLocalKernel.run(2, globalsize, localsize, false))
|
||||
return false;
|
||||
|
||||
// global hysteresis thresholding
|
||||
UMat stack2(1, size.area(), CV_16UC2);
|
||||
int count;
|
||||
|
||||
for ( ; ; )
|
||||
{
|
||||
ocl::Kernel edgesHysteresisGlobalKernel("edgesHysteresisGlobal", ocl::imgproc::canny_oclsrc);
|
||||
if (edgesHysteresisGlobalKernel.empty())
|
||||
return false;
|
||||
|
||||
{
|
||||
Mat _counter = counter.getMat(ACCESS_RW);
|
||||
count = _counter.at<int>(0, 0);
|
||||
if (count == 0)
|
||||
break;
|
||||
|
||||
_counter.at<int>(0, 0) = 0;
|
||||
}
|
||||
|
||||
edgesHysteresisGlobalKernel.args(ocl::KernelArg::ReadOnlyNoSize(map), ocl::KernelArg::PtrReadWrite(stack),
|
||||
ocl::KernelArg::PtrReadWrite(stack2), ocl::KernelArg::PtrReadWrite(counter),
|
||||
size.height, size.width, count);
|
||||
|
||||
#define divUp(total, grain) ((total + grain - 1) / grain)
|
||||
size_t localsize2[2] = { 128, 1 }, globalsize2[2] = { std::min(count, 65535) * 128, divUp(count, 65535) };
|
||||
#undef divUp
|
||||
|
||||
if (!edgesHysteresisGlobalKernel.run(2, globalsize2, localsize2, false))
|
||||
return false;
|
||||
|
||||
std::swap(stack, stack2);
|
||||
}
|
||||
|
||||
// get edges
|
||||
ocl::Kernel getEdgesKernel("getEdges", ocl::imgproc::canny_oclsrc);
|
||||
if (getEdgesKernel.empty())
|
||||
return false;
|
||||
|
||||
_dst.create(size, CV_8UC(cn));
|
||||
UMat dst = _dst.getUMat();
|
||||
|
||||
getEdgesKernel.args(ocl::KernelArg::ReadOnlyNoSize(map), ocl::KernelArg::WriteOnly(dst));
|
||||
return getEdgesKernel.run(2, globalsize, NULL, false);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void cv::Canny( InputArray _src, OutputArray _dst,
|
||||
double low_thresh, double high_thresh,
|
||||
int aperture_size, bool L2gradient )
|
||||
{
|
||||
Mat src = _src.getMat();
|
||||
CV_Assert( src.depth() == CV_8U );
|
||||
const int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
|
||||
const Size size = _src.size();
|
||||
|
||||
_dst.create(src.size(), CV_8U);
|
||||
Mat dst = _dst.getMat();
|
||||
CV_Assert( depth == CV_8U );
|
||||
_dst.create(size, CV_8U);
|
||||
|
||||
if (!L2gradient && (aperture_size & CV_CANNY_L2_GRADIENT) == CV_CANNY_L2_GRADIENT)
|
||||
{
|
||||
//backward compatibility
|
||||
// backward compatibility
|
||||
aperture_size &= ~CV_CANNY_L2_GRADIENT;
|
||||
L2gradient = true;
|
||||
}
|
||||
@ -109,6 +255,12 @@ void cv::Canny( InputArray _src, OutputArray _dst,
|
||||
if (low_thresh > high_thresh)
|
||||
std::swap(low_thresh, high_thresh);
|
||||
|
||||
if (ocl::useOpenCL() && _dst.isUMat() && cn == 1 &&
|
||||
ocl_Canny(_src, _dst, (float)low_thresh, (float)high_thresh, aperture_size, L2gradient, cn, size))
|
||||
return;
|
||||
|
||||
Mat src = _src.getMat(), dst = _dst.getMat();
|
||||
|
||||
#ifdef HAVE_TEGRA_OPTIMIZATION
|
||||
if (tegra::canny(src, dst, low_thresh, high_thresh, aperture_size, L2gradient))
|
||||
return;
|
||||
@ -120,12 +272,11 @@ void cv::Canny( InputArray _src, OutputArray _dst,
|
||||
return;
|
||||
#endif
|
||||
|
||||
const int cn = src.channels();
|
||||
Mat dx(src.rows, src.cols, CV_16SC(cn));
|
||||
Mat dy(src.rows, src.cols, CV_16SC(cn));
|
||||
|
||||
Sobel(src, dx, CV_16S, 1, 0, aperture_size, 1, 0, cv::BORDER_REPLICATE);
|
||||
Sobel(src, dy, CV_16S, 0, 1, aperture_size, 1, 0, cv::BORDER_REPLICATE);
|
||||
Sobel(src, dx, CV_16S, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE);
|
||||
Sobel(src, dy, CV_16S, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE);
|
||||
|
||||
if (L2gradient)
|
||||
{
|
||||
|
@ -2878,6 +2878,8 @@ static bool ocl_cvtColor( InputArray _src, OutputArray _dst, int code, int dcn )
|
||||
|
||||
k.create("RGB2XYZ", ocl::imgproc::cvtcolor_oclsrc,
|
||||
format("-D depth=%d -D scn=%d -D dcn=3 -D bidx=%d", depth, scn, bidx));
|
||||
if (k.empty())
|
||||
return false;
|
||||
k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnly(dst), ocl::KernelArg::PtrReadOnly(c));
|
||||
return k.run(2, globalsize, 0, false);
|
||||
}
|
||||
@ -2927,6 +2929,8 @@ static bool ocl_cvtColor( InputArray _src, OutputArray _dst, int code, int dcn )
|
||||
|
||||
k.create("XYZ2RGB", ocl::imgproc::cvtcolor_oclsrc,
|
||||
format("-D depth=%d -D scn=3 -D dcn=%d -D bidx=%d", depth, dcn, bidx));
|
||||
if (k.empty())
|
||||
return false;
|
||||
k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnly(dst), ocl::KernelArg::PtrReadOnly(c));
|
||||
return k.run(2, globalsize, 0, false);
|
||||
}
|
||||
@ -2981,6 +2985,8 @@ static bool ocl_cvtColor( InputArray _src, OutputArray _dst, int code, int dcn )
|
||||
|
||||
k.create("RGB2HSV", ocl::imgproc::cvtcolor_oclsrc, format("-D depth=%d -D hrange=%d -D bidx=%d -D dcn=3 -D scn=%d",
|
||||
depth, hrange, bidx, scn));
|
||||
if (k.empty())
|
||||
return false;
|
||||
|
||||
k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnly(dst),
|
||||
ocl::KernelArg::PtrReadOnly(sdiv_data), hrange == 256 ? ocl::KernelArg::PtrReadOnly(hdiv_data256) :
|
||||
|
@ -380,6 +380,6 @@ bool GCGraph<TWeight>::inSourceSegment( int i )
|
||||
{
|
||||
CV_Assert( i>=0 && i<(int)vtcs.size() );
|
||||
return vtcs[i].t == 0;
|
||||
};
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -2565,15 +2565,15 @@ struct RemapVec_8u
|
||||
int operator()( const Mat& _src, void* _dst, const short* XY,
|
||||
const ushort* FXY, const void* _wtab, int width ) const
|
||||
{
|
||||
int cn = _src.channels();
|
||||
int cn = _src.channels(), x = 0, sstep = (int)_src.step;
|
||||
|
||||
if( (cn != 1 && cn != 3 && cn != 4) || !checkHardwareSupport(CV_CPU_SSE2) )
|
||||
if( (cn != 1 && cn != 3 && cn != 4) || !checkHardwareSupport(CV_CPU_SSE2) ||
|
||||
sstep > 0x8000 )
|
||||
return 0;
|
||||
|
||||
const uchar *S0 = _src.data, *S1 = _src.data + _src.step;
|
||||
const short* wtab = cn == 1 ? (const short*)_wtab : &BilinearTab_iC4[0][0][0];
|
||||
uchar* D = (uchar*)_dst;
|
||||
int x = 0, sstep = (int)_src.step;
|
||||
__m128i delta = _mm_set1_epi32(INTER_REMAP_COEF_SCALE/2);
|
||||
__m128i xy2ofs = _mm_set1_epi32(cn + (sstep << 16));
|
||||
__m128i z = _mm_setzero_si128();
|
||||
|
514
modules/imgproc/src/opencl/canny.cl
Normal file
514
modules/imgproc/src/opencl/canny.cl
Normal file
@ -0,0 +1,514 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Peng Xiao, pengxiao@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
// Smoothing perpendicular to the derivative direction with a triangle filter
|
||||
// only support 3x3 Sobel kernel
|
||||
// h (-1) = 1, h (0) = 2, h (1) = 1
|
||||
// h'(-1) = -1, h'(0) = 0, h'(1) = 1
|
||||
// thus sobel 2D operator can be calculated as:
|
||||
// h'(x, y) = h'(x)h(y) for x direction
|
||||
//
|
||||
// src input 8bit single channel image data
|
||||
// dx_buf output dx buffer
|
||||
// dy_buf output dy buffer
|
||||
|
||||
__kernel void __attribute__((reqd_work_group_size(16, 16, 1)))
|
||||
calcSobelRowPass
|
||||
(__global const uchar * src, int src_step, int src_offset, int rows, int cols,
|
||||
__global uchar * dx_buf, int dx_buf_step, int dx_buf_offset,
|
||||
__global uchar * dy_buf, int dy_buf_step, int dy_buf_offset)
|
||||
{
|
||||
int gidx = get_global_id(0);
|
||||
int gidy = get_global_id(1);
|
||||
|
||||
int lidx = get_local_id(0);
|
||||
int lidy = get_local_id(1);
|
||||
|
||||
__local int smem[16][18];
|
||||
|
||||
smem[lidy][lidx + 1] = src[mad24(src_step, min(gidy, rows - 1), gidx + src_offset)];
|
||||
if (lidx == 0)
|
||||
{
|
||||
smem[lidy][0] = src[mad24(src_step, min(gidy, rows - 1), max(gidx - 1, 0) + src_offset)];
|
||||
smem[lidy][17] = src[mad24(src_step, min(gidy, rows - 1), min(gidx + 16, cols - 1) + src_offset)];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (gidy < rows && gidx < cols)
|
||||
{
|
||||
*(__global short *)(dx_buf + mad24(gidy, dx_buf_step, gidx * (int)sizeof(short) + dx_buf_offset)) =
|
||||
smem[lidy][lidx + 2] - smem[lidy][lidx];
|
||||
*(__global short *)(dy_buf + mad24(gidy, dy_buf_step, gidx * (int)sizeof(short) + dy_buf_offset)) =
|
||||
smem[lidy][lidx] + 2 * smem[lidy][lidx + 1] + smem[lidy][lidx + 2];
|
||||
}
|
||||
}
|
||||
|
||||
inline int calc(short x, short y)
|
||||
{
|
||||
#ifdef L2GRAD
|
||||
return x * x + y * y;
|
||||
#else
|
||||
return (x >= 0 ? x : -x) + (y >= 0 ? y : -y);
|
||||
#endif
|
||||
}
|
||||
|
||||
// calculate the magnitude of the filter pass combining both x and y directions
|
||||
// This is the non-buffered version(non-3x3 sobel)
|
||||
//
|
||||
// dx_buf dx buffer, calculated from calcSobelRowPass
|
||||
// dy_buf dy buffer, calculated from calcSobelRowPass
|
||||
// dx direvitive in x direction output
|
||||
// dy direvitive in y direction output
|
||||
// mag magnitude direvitive of xy output
|
||||
|
||||
__kernel void calcMagnitude(__global const uchar * dxptr, int dx_step, int dx_offset,
|
||||
__global const uchar * dyptr, int dy_step, int dy_offset,
|
||||
__global uchar * magptr, int mag_step, int mag_offset, int rows, int cols)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
|
||||
if (y < rows && x < cols)
|
||||
{
|
||||
int dx_index = mad24(dx_step, y, x * (int)sizeof(short) + dx_offset);
|
||||
int dy_index = mad24(dy_step, y, x * (int)sizeof(short) + dy_offset);
|
||||
int mag_index = mad24(mag_step, y + 1, (x + 1) * (int)sizeof(int) + mag_offset);
|
||||
|
||||
__global const short * dx = (__global const short *)(dxptr + dx_index);
|
||||
__global const short * dy = (__global const short *)(dyptr + dy_index);
|
||||
__global int * mag = (__global int *)(magptr + mag_index);
|
||||
|
||||
mag[0] = calc(dx[0], dy[0]);
|
||||
}
|
||||
}
|
||||
|
||||
// calculate the magnitude of the filter pass combining both x and y directions
|
||||
// This is the buffered version(3x3 sobel)
|
||||
//
|
||||
// dx_buf dx buffer, calculated from calcSobelRowPass
|
||||
// dy_buf dy buffer, calculated from calcSobelRowPass
|
||||
// dx direvitive in x direction output
|
||||
// dy direvitive in y direction output
|
||||
// mag magnitude direvitive of xy output
|
||||
__kernel void __attribute__((reqd_work_group_size(16, 16, 1)))
|
||||
calcMagnitude_buf
|
||||
(__global const short * dx_buf, int dx_buf_step, int dx_buf_offset,
|
||||
__global const short * dy_buf, int dy_buf_step, int dy_buf_offset,
|
||||
__global short * dx, int dx_step, int dx_offset,
|
||||
__global short * dy, int dy_step, int dy_offset,
|
||||
__global int * mag, int mag_step, int mag_offset,
|
||||
int rows, int cols)
|
||||
{
|
||||
dx_buf_step /= sizeof(*dx_buf);
|
||||
dx_buf_offset /= sizeof(*dx_buf);
|
||||
dy_buf_step /= sizeof(*dy_buf);
|
||||
dy_buf_offset /= sizeof(*dy_buf);
|
||||
dx_step /= sizeof(*dx);
|
||||
dx_offset /= sizeof(*dx);
|
||||
dy_step /= sizeof(*dy);
|
||||
dy_offset /= sizeof(*dy);
|
||||
mag_step /= sizeof(*mag);
|
||||
mag_offset /= sizeof(*mag);
|
||||
|
||||
int gidx = get_global_id(0);
|
||||
int gidy = get_global_id(1);
|
||||
|
||||
int lidx = get_local_id(0);
|
||||
int lidy = get_local_id(1);
|
||||
|
||||
__local short sdx[18][16];
|
||||
__local short sdy[18][16];
|
||||
|
||||
sdx[lidy + 1][lidx] = dx_buf[gidx + min(gidy, rows - 1) * dx_buf_step + dx_buf_offset];
|
||||
sdy[lidy + 1][lidx] = dy_buf[gidx + min(gidy, rows - 1) * dy_buf_step + dy_buf_offset];
|
||||
if (lidy == 0)
|
||||
{
|
||||
sdx[0][lidx] = dx_buf[gidx + min(max(gidy - 1, 0), rows - 1) * dx_buf_step + dx_buf_offset];
|
||||
sdx[17][lidx] = dx_buf[gidx + min(gidy + 16, rows - 1) * dx_buf_step + dx_buf_offset];
|
||||
|
||||
sdy[0][lidx] = dy_buf[gidx + min(max(gidy - 1, 0), rows - 1) * dy_buf_step + dy_buf_offset];
|
||||
sdy[17][lidx] = dy_buf[gidx + min(gidy + 16, rows - 1) * dy_buf_step + dy_buf_offset];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (gidx < cols && gidy < rows)
|
||||
{
|
||||
short x = sdx[lidy][lidx] + 2 * sdx[lidy + 1][lidx] + sdx[lidy + 2][lidx];
|
||||
short y = -sdy[lidy][lidx] + sdy[lidy + 2][lidx];
|
||||
|
||||
dx[gidx + gidy * dx_step + dx_offset] = x;
|
||||
dy[gidx + gidy * dy_step + dy_offset] = y;
|
||||
|
||||
mag[(gidx + 1) + (gidy + 1) * mag_step + mag_offset] = calc(x, y);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
// 0.4142135623730950488016887242097 is tan(22.5)
|
||||
|
||||
#define CANNY_SHIFT 15
|
||||
#define TG22 (int)(0.4142135623730950488016887242097f*(1<<CANNY_SHIFT) + 0.5f)
|
||||
|
||||
// First pass of edge detection and non-maximum suppression
|
||||
// edgetype is set to for each pixel:
|
||||
// 0 - below low thres, not an edge
|
||||
// 1 - maybe an edge
|
||||
// 2 - is an edge, either magnitude is greater than high thres, or
|
||||
// Given estimates of the image gradients, a search is then carried out
|
||||
// to determine if the gradient magnitude assumes a local maximum in the gradient direction.
|
||||
// if the rounded gradient angle is zero degrees (i.e. the edge is in the north-south direction) the point will be considered to be on the edge if its gradient magnitude is greater than the magnitudes in the west and east directions,
|
||||
// if the rounded gradient angle is 90 degrees (i.e. the edge is in the east-west direction) the point will be considered to be on the edge if its gradient magnitude is greater than the magnitudes in the north and south directions,
|
||||
// if the rounded gradient angle is 135 degrees (i.e. the edge is in the north east-south west direction) the point will be considered to be on the edge if its gradient magnitude is greater than the magnitudes in the north west and south east directions,
|
||||
// if the rounded gradient angle is 45 degrees (i.e. the edge is in the north west-south east direction)the point will be considered to be on the edge if its gradient magnitude is greater than the magnitudes in the north east and south west directions.
|
||||
//
|
||||
// dx, dy direvitives of x and y direction
|
||||
// mag magnitudes calculated from calcMagnitude function
|
||||
// map output containing raw edge types
|
||||
|
||||
__kernel void __attribute__((reqd_work_group_size(16,16,1)))
|
||||
calcMap(
|
||||
__global const uchar * dx, int dx_step, int dx_offset,
|
||||
__global const uchar * dy, int dy_step, int dy_offset,
|
||||
__global const uchar * mag, int mag_step, int mag_offset,
|
||||
__global uchar * map, int map_step, int map_offset,
|
||||
int rows, int cols, int low_thresh, int high_thresh)
|
||||
{
|
||||
__local int smem[18][18];
|
||||
|
||||
int gidx = get_global_id(0);
|
||||
int gidy = get_global_id(1);
|
||||
|
||||
int lidx = get_local_id(0);
|
||||
int lidy = get_local_id(1);
|
||||
|
||||
int grp_idx = get_global_id(0) & 0xFFFFF0;
|
||||
int grp_idy = get_global_id(1) & 0xFFFFF0;
|
||||
|
||||
int tid = lidx + lidy * 16;
|
||||
int lx = tid % 18;
|
||||
int ly = tid / 18;
|
||||
|
||||
mag += mag_offset;
|
||||
if (ly < 14)
|
||||
smem[ly][lx] = *(__global const int *)(mag +
|
||||
mad24(mag_step, min(grp_idy + ly, rows - 1), (int)sizeof(int) * (grp_idx + lx)));
|
||||
if (ly < 4 && grp_idy + ly + 14 <= rows && grp_idx + lx <= cols)
|
||||
smem[ly + 14][lx] = *(__global const int *)(mag +
|
||||
mad24(mag_step, min(grp_idy + ly + 14, rows - 1), (int)sizeof(int) * (grp_idx + lx)));
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (gidy < rows && gidx < cols)
|
||||
{
|
||||
// 0 - the pixel can not belong to an edge
|
||||
// 1 - the pixel might belong to an edge
|
||||
// 2 - the pixel does belong to an edge
|
||||
int edge_type = 0;
|
||||
int m = smem[lidy + 1][lidx + 1];
|
||||
|
||||
if (m > low_thresh)
|
||||
{
|
||||
short xs = *(__global const short *)(dx + mad24(gidy, dx_step, dx_offset + (int)sizeof(short) * gidx));
|
||||
short ys = *(__global const short *)(dy + mad24(gidy, dy_step, dy_offset + (int)sizeof(short) * gidx));
|
||||
int x = abs(xs), y = abs(ys);
|
||||
|
||||
int tg22x = x * TG22;
|
||||
y <<= CANNY_SHIFT;
|
||||
|
||||
if (y < tg22x)
|
||||
{
|
||||
if (m > smem[lidy + 1][lidx] && m >= smem[lidy + 1][lidx + 2])
|
||||
edge_type = 1 + (int)(m > high_thresh);
|
||||
}
|
||||
else
|
||||
{
|
||||
int tg67x = tg22x + (x << (1 + CANNY_SHIFT));
|
||||
if (y > tg67x)
|
||||
{
|
||||
if (m > smem[lidy][lidx + 1]&& m >= smem[lidy + 2][lidx + 1])
|
||||
edge_type = 1 + (int)(m > high_thresh);
|
||||
}
|
||||
else
|
||||
{
|
||||
int s = (xs ^ ys) < 0 ? -1 : 1;
|
||||
if (m > smem[lidy][lidx + 1 - s]&& m > smem[lidy + 2][lidx + 1 + s])
|
||||
edge_type = 1 + (int)(m > high_thresh);
|
||||
}
|
||||
}
|
||||
}
|
||||
*(__global int *)(map + mad24(map_step, gidy + 1, (gidx + 1) * (int)sizeof(int) + map_offset)) = edge_type;
|
||||
}
|
||||
}
|
||||
|
||||
#undef CANNY_SHIFT
|
||||
#undef TG22
|
||||
|
||||
struct PtrStepSz
|
||||
{
|
||||
__global uchar * ptr;
|
||||
int step, rows, cols;
|
||||
};
|
||||
|
||||
inline int get(struct PtrStepSz data, int y, int x)
|
||||
{
|
||||
return *(__global int *)(data.ptr + mad24(data.step, y + 1, (int)sizeof(int) * (x + 1)));
|
||||
}
|
||||
|
||||
inline void set(struct PtrStepSz data, int y, int x, int value)
|
||||
{
|
||||
*(__global int *)(data.ptr + mad24(data.step, y + 1, (int)sizeof(int) * (x + 1))) = value;
|
||||
}
|
||||
|
||||
// perform Hysteresis for pixel whose edge type is 1
|
||||
//
|
||||
// If candidate pixel (edge type is 1) has a neighbour pixel (in 3x3 area) with type 2, it is believed to be part of an edge and
|
||||
// marked as edge. Each thread will iterate for 16 times to connect local edges.
|
||||
// Candidate pixel being identified as edge will then be tested if there is nearby potiential edge points. If there is, counter will
|
||||
// be incremented by 1 and the point location is stored. These potiential candidates will be processed further in next kernel.
|
||||
//
|
||||
// map raw edge type results calculated from calcMap.
|
||||
// stack the potiential edge points found in this kernel call
|
||||
// counter the number of potiential edge points
|
||||
|
||||
__kernel void __attribute__((reqd_work_group_size(16,16,1)))
|
||||
edgesHysteresisLocal
|
||||
(__global uchar * map_ptr, int map_step, int map_offset,
|
||||
__global ushort2 * st, __global unsigned int * counter,
|
||||
int rows, int cols)
|
||||
{
|
||||
struct PtrStepSz map = { map_ptr + map_offset, map_step, rows + 1, cols + 1 };
|
||||
|
||||
__local int smem[18][18];
|
||||
|
||||
int2 blockIdx = (int2)(get_group_id(0), get_group_id(1));
|
||||
int2 blockDim = (int2)(get_local_size(0), get_local_size(1));
|
||||
int2 threadIdx = (int2)(get_local_id(0), get_local_id(1));
|
||||
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
smem[threadIdx.y + 1][threadIdx.x + 1] = x < map.cols && y < map.rows ? get(map, y, x) : 0;
|
||||
if (threadIdx.y == 0)
|
||||
smem[0][threadIdx.x + 1] = x < map.cols ? get(map, y - 1, x) : 0;
|
||||
if (threadIdx.y == blockDim.y - 1)
|
||||
smem[blockDim.y + 1][threadIdx.x + 1] = y + 1 < map.rows ? get(map, y + 1, x) : 0;
|
||||
if (threadIdx.x == 0)
|
||||
smem[threadIdx.y + 1][0] = y < map.rows ? get(map, y, x - 1) : 0;
|
||||
if (threadIdx.x == blockDim.x - 1)
|
||||
smem[threadIdx.y + 1][blockDim.x + 1] = x + 1 < map.cols && y < map.rows ? get(map, y, x + 1) : 0;
|
||||
if (threadIdx.x == 0 && threadIdx.y == 0)
|
||||
smem[0][0] = y > 0 && x > 0 ? get(map, y - 1, x - 1) : 0;
|
||||
if (threadIdx.x == blockDim.x - 1 && threadIdx.y == 0)
|
||||
smem[0][blockDim.x + 1] = y > 0 && x + 1 < map.cols ? get(map, y - 1, x + 1) : 0;
|
||||
if (threadIdx.x == 0 && threadIdx.y == blockDim.y - 1)
|
||||
smem[blockDim.y + 1][0] = y + 1 < map.rows && x > 0 ? get(map, y + 1, x - 1) : 0;
|
||||
if (threadIdx.x == blockDim.x - 1 && threadIdx.y == blockDim.y - 1)
|
||||
smem[blockDim.y + 1][blockDim.x + 1] = y + 1 < map.rows && x + 1 < map.cols ? get(map, y + 1, x + 1) : 0;
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (x >= cols || y >= rows)
|
||||
return;
|
||||
|
||||
int n;
|
||||
|
||||
#pragma unroll
|
||||
for (int k = 0; k < 16; ++k)
|
||||
{
|
||||
n = 0;
|
||||
|
||||
if (smem[threadIdx.y + 1][threadIdx.x + 1] == 1)
|
||||
{
|
||||
n += smem[threadIdx.y ][threadIdx.x ] == 2;
|
||||
n += smem[threadIdx.y ][threadIdx.x + 1] == 2;
|
||||
n += smem[threadIdx.y ][threadIdx.x + 2] == 2;
|
||||
|
||||
n += smem[threadIdx.y + 1][threadIdx.x ] == 2;
|
||||
n += smem[threadIdx.y + 1][threadIdx.x + 2] == 2;
|
||||
|
||||
n += smem[threadIdx.y + 2][threadIdx.x ] == 2;
|
||||
n += smem[threadIdx.y + 2][threadIdx.x + 1] == 2;
|
||||
n += smem[threadIdx.y + 2][threadIdx.x + 2] == 2;
|
||||
}
|
||||
|
||||
if (n > 0)
|
||||
smem[threadIdx.y + 1][threadIdx.x + 1] = 2;
|
||||
}
|
||||
|
||||
const int e = smem[threadIdx.y + 1][threadIdx.x + 1];
|
||||
set(map, y, x, e);
|
||||
n = 0;
|
||||
|
||||
if (e == 2)
|
||||
{
|
||||
n += smem[threadIdx.y ][threadIdx.x ] == 1;
|
||||
n += smem[threadIdx.y ][threadIdx.x + 1] == 1;
|
||||
n += smem[threadIdx.y ][threadIdx.x + 2] == 1;
|
||||
|
||||
n += smem[threadIdx.y + 1][threadIdx.x ] == 1;
|
||||
n += smem[threadIdx.y + 1][threadIdx.x + 2] == 1;
|
||||
|
||||
n += smem[threadIdx.y + 2][threadIdx.x ] == 1;
|
||||
n += smem[threadIdx.y + 2][threadIdx.x + 1] == 1;
|
||||
n += smem[threadIdx.y + 2][threadIdx.x + 2] == 1;
|
||||
}
|
||||
|
||||
if (n > 0)
|
||||
{
|
||||
const int ind = atomic_inc(counter);
|
||||
st[ind] = (ushort2)(x + 1, y + 1);
|
||||
}
|
||||
}
|
||||
|
||||
__constant int c_dx[8] = {-1, 0, 1, -1, 1, -1, 0, 1};
|
||||
__constant int c_dy[8] = {-1, -1, -1, 0, 0, 1, 1, 1};
|
||||
|
||||
|
||||
#define stack_size 512
|
||||
#define map_index mad24(map_step, pos.y, pos.x * (int)sizeof(int))
|
||||
|
||||
__kernel void __attribute__((reqd_work_group_size(128, 1, 1)))
|
||||
edgesHysteresisGlobal(__global uchar * map, int map_step, int map_offset,
|
||||
__global ushort2 * st1, __global ushort2 * st2, __global int * counter,
|
||||
int rows, int cols, int count)
|
||||
{
|
||||
map += map_offset;
|
||||
|
||||
int lidx = get_local_id(0);
|
||||
|
||||
int grp_idx = get_group_id(0);
|
||||
int grp_idy = get_group_id(1);
|
||||
|
||||
__local unsigned int s_counter, s_ind;
|
||||
__local ushort2 s_st[stack_size];
|
||||
|
||||
if (lidx == 0)
|
||||
s_counter = 0;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
int ind = mad24(grp_idy, (int)get_local_size(0), grp_idx);
|
||||
|
||||
if (ind < count)
|
||||
{
|
||||
ushort2 pos = st1[ind];
|
||||
if (lidx < 8)
|
||||
{
|
||||
pos.x += c_dx[lidx];
|
||||
pos.y += c_dy[lidx];
|
||||
if (pos.x > 0 && pos.x <= cols && pos.y > 0 && pos.y <= rows && *(__global int *)(map + map_index) == 1)
|
||||
{
|
||||
*(__global int *)(map + map_index) = 2;
|
||||
ind = atomic_inc(&s_counter);
|
||||
s_st[ind] = pos;
|
||||
}
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
while (s_counter > 0 && s_counter <= stack_size - get_local_size(0))
|
||||
{
|
||||
const int subTaskIdx = lidx >> 3;
|
||||
const int portion = min(s_counter, (uint)(get_local_size(0)>> 3));
|
||||
|
||||
if (subTaskIdx < portion)
|
||||
pos = s_st[s_counter - 1 - subTaskIdx];
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (lidx == 0)
|
||||
s_counter -= portion;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (subTaskIdx < portion)
|
||||
{
|
||||
pos.x += c_dx[lidx & 7];
|
||||
pos.y += c_dy[lidx & 7];
|
||||
if (pos.x > 0 && pos.x <= cols && pos.y > 0 && pos.y <= rows && *(__global int *)(map + map_index) == 1)
|
||||
{
|
||||
*(__global int *)(map + map_index) = 2;
|
||||
ind = atomic_inc(&s_counter);
|
||||
s_st[ind] = pos;
|
||||
}
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
if (s_counter > 0)
|
||||
{
|
||||
if (lidx == 0)
|
||||
{
|
||||
ind = atomic_add(counter, s_counter);
|
||||
s_ind = ind - s_counter;
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
ind = s_ind;
|
||||
for (int i = lidx; i < (int)s_counter; i += get_local_size(0))
|
||||
st2[ind + i] = s_st[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#undef map_index
|
||||
#undef stack_size
|
||||
|
||||
// Get the edge result. egde type of value 2 will be marked as an edge point and set to 255. Otherwise 0.
|
||||
// map edge type mappings
|
||||
// dst edge output
|
||||
|
||||
__kernel void getEdges(__global const uchar * mapptr, int map_step, int map_offset,
|
||||
__global uchar * dst, int dst_step, int dst_offset, int rows, int cols)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
|
||||
if (y < rows && x < cols)
|
||||
{
|
||||
int map_index = mad24(map_step, y + 1, (x + 1) * (int)sizeof(int) + map_offset);
|
||||
int dst_index = mad24(dst_step, y, x + dst_offset);
|
||||
|
||||
__global const int * map = (__global const int *)(mapptr + map_index);
|
||||
|
||||
dst[dst_index] = (uchar)(-(map[0] >> 1));
|
||||
}
|
||||
}
|
@ -50,7 +50,6 @@
|
||||
#define INTER_RESIZE_COEF_BITS 11
|
||||
#define INTER_RESIZE_COEF_SCALE (1 << INTER_RESIZE_COEF_BITS)
|
||||
#define CAST_BITS (INTER_RESIZE_COEF_BITS << 1)
|
||||
#define CAST_SCALE (1.0f/(1<<CAST_BITS))
|
||||
#define INC(x,l) min(x+1,l-1)
|
||||
|
||||
#define PIXSIZE ((int)sizeof(PIXTYPE))
|
||||
|
117
modules/imgproc/test/ocl/test_canny.cpp
Normal file
117
modules/imgproc/test/ocl/test_canny.cpp
Normal file
@ -0,0 +1,117 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Peng Xiao, pengxiao@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
#include "opencv2/ts/ocl_test.hpp"
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
namespace cvtest {
|
||||
namespace ocl {
|
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// Canny
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(AppertureSize, int)
|
||||
IMPLEMENT_PARAM_CLASS(L2gradient, bool)
|
||||
IMPLEMENT_PARAM_CLASS(UseRoi, bool)
|
||||
|
||||
PARAM_TEST_CASE(Canny, AppertureSize, L2gradient, UseRoi)
|
||||
{
|
||||
int apperture_size;
|
||||
bool useL2gradient, use_roi;
|
||||
|
||||
TEST_DECLARE_INPUT_PARAMETER(src)
|
||||
TEST_DECLARE_OUTPUT_PARAMETER(dst)
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
apperture_size = GET_PARAM(0);
|
||||
useL2gradient = GET_PARAM(1);
|
||||
use_roi = GET_PARAM(2);
|
||||
}
|
||||
|
||||
void generateTestData()
|
||||
{
|
||||
Mat img = readImage("shared/fruits.png", IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(img.empty()) << "cann't load shared/fruits.png";
|
||||
|
||||
Size roiSize = img.size();
|
||||
int type = img.type();
|
||||
ASSERT_EQ(CV_8UC1, type);
|
||||
|
||||
Border srcBorder = randomBorder(0, use_roi ? MAX_VALUE : 0);
|
||||
randomSubMat(src, src_roi, roiSize, srcBorder, type, 2, 100);
|
||||
img.copyTo(src_roi);
|
||||
|
||||
Border dstBorder = randomBorder(0, use_roi ? MAX_VALUE : 0);
|
||||
randomSubMat(dst, dst_roi, roiSize, dstBorder, type, 5, 16);
|
||||
|
||||
UMAT_UPLOAD_INPUT_PARAMETER(src)
|
||||
UMAT_UPLOAD_OUTPUT_PARAMETER(dst)
|
||||
}
|
||||
};
|
||||
|
||||
OCL_TEST_P(Canny, Accuracy)
|
||||
{
|
||||
generateTestData();
|
||||
|
||||
const double low_thresh = 50.0, high_thresh = 100.0;
|
||||
|
||||
OCL_OFF(cv::Canny(src_roi, dst_roi, low_thresh, high_thresh, apperture_size, useL2gradient));
|
||||
OCL_ON(cv::Canny(usrc_roi, udst_roi, low_thresh, high_thresh, apperture_size, useL2gradient));
|
||||
|
||||
EXPECT_MAT_SIMILAR(dst_roi, udst_roi, 1e-2);
|
||||
EXPECT_MAT_SIMILAR(dst, udst, 1e-2);
|
||||
}
|
||||
|
||||
OCL_INSTANTIATE_TEST_CASE_P(ImgProc, Canny, testing::Combine(
|
||||
testing::Values(AppertureSize(3), AppertureSize(5)),
|
||||
testing::Values(L2gradient(false), L2gradient(true)),
|
||||
testing::Values(UseRoi(false), UseRoi(true))));
|
||||
|
||||
} } // namespace cvtest::ocl
|
||||
|
||||
#endif // HAVE_OPENCL
|
@ -603,7 +603,7 @@ CV_ENUM(YUVCVTS, CV_YUV2RGB_NV12, CV_YUV2BGR_NV12, CV_YUV2RGB_NV21, CV_YUV2BGR_N
|
||||
CV_YUV2RGBA_YUY2, CV_YUV2BGRA_YUY2, CV_YUV2RGBA_YVYU, CV_YUV2BGRA_YVYU,
|
||||
CV_YUV2GRAY_420, CV_YUV2GRAY_UYVY, CV_YUV2GRAY_YUY2,
|
||||
CV_YUV2BGR, CV_YUV2RGB, CV_RGB2YUV_YV12, CV_BGR2YUV_YV12, CV_RGBA2YUV_YV12,
|
||||
CV_BGRA2YUV_YV12, CV_RGB2YUV_I420, CV_BGR2YUV_I420, CV_RGBA2YUV_I420, CV_BGRA2YUV_I420);
|
||||
CV_BGRA2YUV_YV12, CV_RGB2YUV_I420, CV_BGR2YUV_I420, CV_RGBA2YUV_I420, CV_BGRA2YUV_I420)
|
||||
|
||||
typedef ::testing::TestWithParam<YUVCVTS> Imgproc_ColorYUV;
|
||||
|
||||
|
@ -205,7 +205,7 @@ double CvVSModule::GetParam(const char* name)
|
||||
if(p->pInt) return p->pInt[0];
|
||||
}
|
||||
return 0;
|
||||
};
|
||||
}
|
||||
|
||||
const char* CvVSModule::GetParamStr(const char* name)
|
||||
{
|
||||
|
@ -209,7 +209,7 @@ public:
|
||||
CvBlobDetectorSimple();
|
||||
~CvBlobDetectorSimple();
|
||||
int DetectNewBlob(IplImage* pImg, IplImage* pFGMask, CvBlobSeq* pNewBlobList, CvBlobSeq* pOldBlobList);
|
||||
void Release(){delete this;};
|
||||
void Release(){delete this;}
|
||||
|
||||
protected:
|
||||
IplImage* m_pMaskBlobNew;
|
||||
@ -219,7 +219,7 @@ protected:
|
||||
};
|
||||
|
||||
/* Blob detector creator (sole interface function for this file) */
|
||||
CvBlobDetector* cvCreateBlobDetectorSimple(){return new CvBlobDetectorSimple;};
|
||||
CvBlobDetector* cvCreateBlobDetectorSimple(){return new CvBlobDetectorSimple;}
|
||||
|
||||
/* Constructor of BlobDetector: */
|
||||
CvBlobDetectorSimple::CvBlobDetectorSimple()
|
||||
|
@ -52,7 +52,7 @@ enum
|
||||
{
|
||||
MOUTH = 0,
|
||||
LEYE = 1,
|
||||
REYE = 2,
|
||||
REYE = 2
|
||||
};
|
||||
|
||||
#define MAX_LAYERS 64
|
||||
|
@ -52,7 +52,7 @@ CV_INIT_ALGORITHM(EM, "StatModel.EM",
|
||||
obj.info()->addParam(obj, "epsilon", obj.epsilon);
|
||||
obj.info()->addParam(obj, "weights", obj.weights, true);
|
||||
obj.info()->addParam(obj, "means", obj.means, true);
|
||||
obj.info()->addParam(obj, "covs", obj.covs, true));
|
||||
obj.info()->addParam(obj, "covs", obj.covs, true))
|
||||
|
||||
bool initModule_ml(void)
|
||||
{
|
||||
|
@ -52,7 +52,7 @@ CV_INIT_ALGORITHM(SURF, "Feature2D.SURF",
|
||||
obj.info()->addParam(obj, "nOctaves", obj.nOctaves);
|
||||
obj.info()->addParam(obj, "nOctaveLayers", obj.nOctaveLayers);
|
||||
obj.info()->addParam(obj, "extended", obj.extended);
|
||||
obj.info()->addParam(obj, "upright", obj.upright));
|
||||
obj.info()->addParam(obj, "upright", obj.upright))
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@ -61,7 +61,7 @@ CV_INIT_ALGORITHM(SIFT, "Feature2D.SIFT",
|
||||
obj.info()->addParam(obj, "nOctaveLayers", obj.nOctaveLayers);
|
||||
obj.info()->addParam(obj, "contrastThreshold", obj.contrastThreshold);
|
||||
obj.info()->addParam(obj, "edgeThreshold", obj.edgeThreshold);
|
||||
obj.info()->addParam(obj, "sigma", obj.sigma));
|
||||
obj.info()->addParam(obj, "sigma", obj.sigma))
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
61
modules/objdetect/perf/opencl/perf_cascades.cpp
Normal file
61
modules/objdetect/perf/opencl/perf_cascades.cpp
Normal file
@ -0,0 +1,61 @@
|
||||
#include "perf_precomp.hpp"
|
||||
#include <opencv2/imgproc.hpp>
|
||||
|
||||
#include "opencv2/ts/ocl_perf.hpp"
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace perf;
|
||||
using std::tr1::make_tuple;
|
||||
using std::tr1::get;
|
||||
|
||||
typedef std::tr1::tuple<std::string, std::string, int> Cascade_Image_MinSize_t;
|
||||
typedef perf::TestBaseWithParam<Cascade_Image_MinSize_t> Cascade_Image_MinSize;
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
OCL_PERF_TEST_P(Cascade_Image_MinSize, CascadeClassifier,
|
||||
testing::Combine(
|
||||
testing::Values( string("cv/cascadeandhog/cascades/haarcascade_frontalface_alt.xml"),
|
||||
string("cv/cascadeandhog/cascades/haarcascade_frontalface_alt_old.xml"),
|
||||
string("cv/cascadeandhog/cascades/lbpcascade_frontalface.xml") ),
|
||||
testing::Values( string("cv/shared/lena.png"),
|
||||
string("cv/cascadeandhog/images/bttf301.png"),
|
||||
string("cv/cascadeandhog/images/class57.png") ),
|
||||
testing::Values(30, 64, 90) ) )
|
||||
{
|
||||
const string cascasePath = get<0>(GetParam());
|
||||
const string imagePath = get<1>(GetParam());
|
||||
int min_size = get<2>(GetParam());
|
||||
Size minSize(min_size, min_size);
|
||||
|
||||
CascadeClassifier cc( getDataPath(cascasePath) );
|
||||
if (cc.empty())
|
||||
FAIL() << "Can't load cascade file: " << getDataPath(cascasePath);
|
||||
|
||||
Mat img = imread(getDataPath(imagePath), IMREAD_GRAYSCALE);
|
||||
if (img.empty())
|
||||
FAIL() << "Can't load source image: " << getDataPath(imagePath);
|
||||
|
||||
vector<Rect> faces;
|
||||
|
||||
equalizeHist(img, img);
|
||||
declare.in(img).time(60);
|
||||
|
||||
UMat uimg = img.getUMat(ACCESS_READ);
|
||||
|
||||
while(next())
|
||||
{
|
||||
faces.clear();
|
||||
cvtest::ocl::perf::safeFinish();
|
||||
|
||||
startTimer();
|
||||
cc.detectMultiScale(uimg, faces, 1.1, 3, 0, minSize);
|
||||
stopTimer();
|
||||
}
|
||||
|
||||
sort(faces.begin(), faces.end(), comparators::RectLess());
|
||||
SANITY_CHECK(faces, min_size/5);
|
||||
}
|
||||
|
||||
#endif //HAVE_OPENCL
|
@ -1,56 +0,0 @@
|
||||
#include "perf_precomp.hpp"
|
||||
#include <opencv2/imgproc.hpp>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace perf;
|
||||
using std::tr1::make_tuple;
|
||||
using std::tr1::get;
|
||||
|
||||
typedef std::tr1::tuple<std::string, int> ImageName_MinSize_t;
|
||||
typedef perf::TestBaseWithParam<ImageName_MinSize_t> ImageName_MinSize;
|
||||
|
||||
PERF_TEST_P(ImageName_MinSize, CascadeClassifierLBPFrontalFace,
|
||||
testing::Combine(testing::Values( std::string("cv/shared/lena.png"),
|
||||
std::string("cv/shared/1_itseez-0000289.png"),
|
||||
std::string("cv/shared/1_itseez-0000492.png"),
|
||||
std::string("cv/shared/1_itseez-0000573.png")),
|
||||
testing::Values(24, 30, 40, 50, 60, 70, 80, 90)
|
||||
)
|
||||
)
|
||||
{
|
||||
const string filename = get<0>(GetParam());
|
||||
int min_size = get<1>(GetParam());
|
||||
Size minSize(min_size, min_size);
|
||||
|
||||
CascadeClassifier cc(getDataPath("cv/cascadeandhog/cascades/lbpcascade_frontalface.xml"));
|
||||
if (cc.empty())
|
||||
FAIL() << "Can't load cascade file";
|
||||
|
||||
Mat img = imread(getDataPath(filename), 0);
|
||||
if (img.empty())
|
||||
FAIL() << "Can't load source image";
|
||||
|
||||
vector<Rect> faces;
|
||||
|
||||
equalizeHist(img, img);
|
||||
declare.in(img);
|
||||
|
||||
while(next())
|
||||
{
|
||||
faces.clear();
|
||||
|
||||
startTimer();
|
||||
cc.detectMultiScale(img, faces, 1.1, 3, 0, minSize);
|
||||
stopTimer();
|
||||
}
|
||||
// for some reason OpenCL version detects the face, which CPU version does not detect, we just remove it
|
||||
// TODO better solution: implement smart way of comparing two set of rectangles
|
||||
if( filename == "cv/shared/1_itseez-0000492.png" && faces.size() == (size_t)3 )
|
||||
{
|
||||
faces.erase(faces.begin());
|
||||
}
|
||||
|
||||
std::sort(faces.begin(), faces.end(), comparators::RectLess());
|
||||
SANITY_CHECK(faces, 3.001 * faces.size());
|
||||
}
|
@ -167,7 +167,7 @@ namespace cv
|
||||
CACHE_NONE = 0, // do not cache OpenCL binary
|
||||
CACHE_DEBUG = 0x1 << 0, // cache OpenCL binary when built in debug mode
|
||||
CACHE_RELEASE = 0x1 << 1, // default behavior, only cache when built in release mode
|
||||
CACHE_ALL = CACHE_DEBUG | CACHE_RELEASE, // cache opencl binary
|
||||
CACHE_ALL = CACHE_DEBUG | CACHE_RELEASE // cache opencl binary
|
||||
};
|
||||
//! Enable or disable OpenCL program binary caching onto local disk
|
||||
// After a program (*.cl files in opencl/ folder) is built at runtime, we allow the
|
||||
|
@ -108,7 +108,7 @@ inline cl_int getStringInfo(Functor f, ObjectType obj, cl_uint name, std::string
|
||||
}
|
||||
|
||||
return CL_SUCCESS;
|
||||
};
|
||||
}
|
||||
|
||||
} // namespace cl_utils
|
||||
|
||||
|
@ -48,8 +48,8 @@
|
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// Canny
|
||||
IMPLEMENT_PARAM_CLASS(AppertureSize, int);
|
||||
IMPLEMENT_PARAM_CLASS(L2gradient, bool);
|
||||
IMPLEMENT_PARAM_CLASS(AppertureSize, int)
|
||||
IMPLEMENT_PARAM_CLASS(L2gradient, bool)
|
||||
|
||||
PARAM_TEST_CASE(Canny, AppertureSize, L2gradient)
|
||||
{
|
||||
|
@ -50,7 +50,7 @@
|
||||
// MatchTemplate
|
||||
#define ALL_TEMPLATE_METHODS testing::Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_CCORR), TemplateMethod(cv::TM_CCOEFF), TemplateMethod(cv::TM_SQDIFF_NORMED), TemplateMethod(cv::TM_CCORR_NORMED), TemplateMethod(cv::TM_CCOEFF_NORMED))
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(TemplateSize, cv::Size);
|
||||
IMPLEMENT_PARAM_CLASS(TemplateSize, cv::Size)
|
||||
|
||||
#define MTEMP_SIZES testing::Values(cv::Size(128, 256), cv::Size(1024, 768))
|
||||
|
||||
|
@ -180,7 +180,7 @@ INSTANTIATE_TEST_CASE_P(OCL_ObjDetect, HOG, testing::Combine(
|
||||
|
||||
|
||||
///////////////////////////// Haar //////////////////////////////
|
||||
IMPLEMENT_PARAM_CLASS(CascadeName, std::string);
|
||||
IMPLEMENT_PARAM_CLASS(CascadeName, std::string)
|
||||
CascadeName cascade_frontalface_alt(std::string("haarcascade_frontalface_alt.xml"));
|
||||
CascadeName cascade_frontalface_alt2(std::string("haarcascade_frontalface_alt2.xml"));
|
||||
|
||||
|
@ -273,7 +273,7 @@ CV_ENUM(Interpolation, INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, INTER_AREA)
|
||||
CV_ENUM(Border, BORDER_REFLECT101, BORDER_REPLICATE, BORDER_CONSTANT, BORDER_REFLECT, BORDER_WRAP)
|
||||
CV_ENUM(TemplateMethod, TM_SQDIFF, TM_SQDIFF_NORMED, TM_CCORR, TM_CCORR_NORMED, TM_CCOEFF, TM_CCOEFF_NORMED)
|
||||
|
||||
CV_FLAGS(GemmFlags, GEMM_1_T, GEMM_2_T, GEMM_3_T);
|
||||
CV_FLAGS(GemmFlags, GEMM_1_T, GEMM_2_T, GEMM_3_T)
|
||||
CV_FLAGS(WarpFlags, INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, WARP_INVERSE_MAP)
|
||||
CV_FLAGS(DftFlags, DFT_INVERSE, DFT_SCALE, DFT_ROWS, DFT_COMPLEX_OUTPUT, DFT_REAL_OUTPUT)
|
||||
|
||||
|
@ -487,7 +487,7 @@ namespace
|
||||
obj.info()->addParam(obj, "blurKernelSize", obj.blurKernelSize_, false, 0, 0, "Gaussian blur kernel size.");
|
||||
obj.info()->addParam(obj, "blurSigma", obj.blurSigma_, false, 0, 0, "Gaussian blur sigma.");
|
||||
obj.info()->addParam(obj, "temporalAreaRadius", obj.temporalAreaRadius_, false, 0, 0, "Radius of the temporal search area.");
|
||||
obj.info()->addParam<DenseOpticalFlowExt>(obj, "opticalFlow", obj.opticalFlow_, false, 0, 0, "Dense optical flow algorithm."));
|
||||
obj.info()->addParam<DenseOpticalFlowExt>(obj, "opticalFlow", obj.opticalFlow_, false, 0, 0, "Dense optical flow algorithm."))
|
||||
|
||||
BTVL1::BTVL1()
|
||||
{
|
||||
|
@ -582,7 +582,7 @@ namespace
|
||||
obj.info()->addParam(obj, "blurKernelSize", obj.blurKernelSize_, false, 0, 0, "Gaussian blur kernel size.");
|
||||
obj.info()->addParam(obj, "blurSigma", obj.blurSigma_, false, 0, 0, "Gaussian blur sigma.");
|
||||
obj.info()->addParam(obj, "temporalAreaRadius", obj.temporalAreaRadius_, false, 0, 0, "Radius of the temporal search area.");
|
||||
obj.info()->addParam<DenseOpticalFlowExt>(obj, "opticalFlow", obj.opticalFlow_, false, 0, 0, "Dense optical flow algorithm."));
|
||||
obj.info()->addParam<DenseOpticalFlowExt>(obj, "opticalFlow", obj.opticalFlow_, false, 0, 0, "Dense optical flow algorithm."))
|
||||
|
||||
BTVL1_OCL::BTVL1_OCL()
|
||||
{
|
||||
|
@ -148,7 +148,7 @@ namespace
|
||||
obj.info()->addParam(obj, "numIters", obj.numIters_);
|
||||
obj.info()->addParam(obj, "polyN", obj.polyN_);
|
||||
obj.info()->addParam(obj, "polySigma", obj.polySigma_);
|
||||
obj.info()->addParam(obj, "flags", obj.flags_));
|
||||
obj.info()->addParam(obj, "flags", obj.flags_))
|
||||
|
||||
Farneback::Farneback() : CpuOpticalFlow(CV_8UC1)
|
||||
{
|
||||
@ -218,7 +218,7 @@ namespace
|
||||
obj.info()->addParam(obj, "upscaleAveragingRadius", obj.upscaleAveragingRadius_);
|
||||
obj.info()->addParam(obj, "upscaleSigmaDist", obj.upscaleSigmaDist_);
|
||||
obj.info()->addParam(obj, "upscaleSigmaColor", obj.upscaleSigmaColor_);
|
||||
obj.info()->addParam(obj, "speedUpThr", obj.speedUpThr_));
|
||||
obj.info()->addParam(obj, "speedUpThr", obj.speedUpThr_))
|
||||
|
||||
Simple::Simple() : CpuOpticalFlow(CV_8UC3)
|
||||
{
|
||||
@ -301,7 +301,7 @@ namespace
|
||||
obj.info()->addParam(obj, "warps", obj.warps_);
|
||||
obj.info()->addParam(obj, "epsilon", obj.epsilon_);
|
||||
obj.info()->addParam(obj, "iterations", obj.iterations_);
|
||||
obj.info()->addParam(obj, "useInitialFlow", obj.useInitialFlow_));
|
||||
obj.info()->addParam(obj, "useInitialFlow", obj.useInitialFlow_))
|
||||
|
||||
DualTVL1::DualTVL1() : CpuOpticalFlow(CV_8UC1)
|
||||
{
|
||||
@ -472,7 +472,7 @@ namespace
|
||||
obj.info()->addParam(obj, "scaleFactor", obj.scaleFactor_, false, 0, 0, "Pyramid scale factor");
|
||||
obj.info()->addParam(obj, "innerIterations", obj.innerIterations_, false, 0, 0, "Number of lagged non-linearity iterations (inner loop)");
|
||||
obj.info()->addParam(obj, "outerIterations", obj.outerIterations_, false, 0, 0, "Number of warping iterations (number of pyramid levels)");
|
||||
obj.info()->addParam(obj, "solverIterations", obj.solverIterations_, false, 0, 0, "Number of linear system solver iterations"));
|
||||
obj.info()->addParam(obj, "solverIterations", obj.solverIterations_, false, 0, 0, "Number of linear system solver iterations"))
|
||||
|
||||
Brox_CUDA::Brox_CUDA() : GpuOpticalFlow(CV_32FC1), alg_(0.197f, 50.0f, 0.8f, 10, 77, 10)
|
||||
{
|
||||
@ -536,7 +536,7 @@ namespace
|
||||
CV_INIT_ALGORITHM(PyrLK_CUDA, "DenseOpticalFlowExt.PyrLK_CUDA",
|
||||
obj.info()->addParam(obj, "winSize", obj.winSize_);
|
||||
obj.info()->addParam(obj, "maxLevel", obj.maxLevel_);
|
||||
obj.info()->addParam(obj, "iterations", obj.iterations_));
|
||||
obj.info()->addParam(obj, "iterations", obj.iterations_))
|
||||
|
||||
PyrLK_CUDA::PyrLK_CUDA() : GpuOpticalFlow(CV_8UC1)
|
||||
{
|
||||
@ -603,7 +603,7 @@ namespace
|
||||
obj.info()->addParam(obj, "numIters", obj.numIters_);
|
||||
obj.info()->addParam(obj, "polyN", obj.polyN_);
|
||||
obj.info()->addParam(obj, "polySigma", obj.polySigma_);
|
||||
obj.info()->addParam(obj, "flags", obj.flags_));
|
||||
obj.info()->addParam(obj, "flags", obj.flags_))
|
||||
|
||||
Farneback_CUDA::Farneback_CUDA() : GpuOpticalFlow(CV_8UC1)
|
||||
{
|
||||
@ -679,7 +679,7 @@ namespace
|
||||
obj.info()->addParam(obj, "warps", obj.warps_);
|
||||
obj.info()->addParam(obj, "epsilon", obj.epsilon_);
|
||||
obj.info()->addParam(obj, "iterations", obj.iterations_);
|
||||
obj.info()->addParam(obj, "useInitialFlow", obj.useInitialFlow_));
|
||||
obj.info()->addParam(obj, "useInitialFlow", obj.useInitialFlow_))
|
||||
|
||||
DualTVL1_CUDA::DualTVL1_CUDA() : GpuOpticalFlow(CV_8UC1)
|
||||
{
|
||||
@ -801,7 +801,7 @@ namespace
|
||||
CV_INIT_ALGORITHM(PyrLK_OCL, "DenseOpticalFlowExt.PyrLK_OCL",
|
||||
obj.info()->addParam(obj, "winSize", obj.winSize_);
|
||||
obj.info()->addParam(obj, "maxLevel", obj.maxLevel_);
|
||||
obj.info()->addParam(obj, "iterations", obj.iterations_));
|
||||
obj.info()->addParam(obj, "iterations", obj.iterations_))
|
||||
|
||||
PyrLK_OCL::PyrLK_OCL() : oclOpticalFlow(CV_8UC1)
|
||||
{
|
||||
@ -870,7 +870,7 @@ namespace
|
||||
obj.info()->addParam(obj, "warps", obj.warps_);
|
||||
obj.info()->addParam(obj, "epsilon", obj.epsilon_);
|
||||
obj.info()->addParam(obj, "iterations", obj.iterations_);
|
||||
obj.info()->addParam(obj, "useInitialFlow", obj.useInitialFlow_));
|
||||
obj.info()->addParam(obj, "useInitialFlow", obj.useInitialFlow_))
|
||||
|
||||
DualTVL1_OCL::DualTVL1_OCL() : oclOpticalFlow(CV_8UC1)
|
||||
{
|
||||
@ -947,7 +947,7 @@ namespace
|
||||
obj.info()->addParam(obj, "numIters", obj.numIters_);
|
||||
obj.info()->addParam(obj, "polyN", obj.polyN_);
|
||||
obj.info()->addParam(obj, "polySigma", obj.polySigma_);
|
||||
obj.info()->addParam(obj, "flags", obj.flags_));
|
||||
obj.info()->addParam(obj, "flags", obj.flags_))
|
||||
|
||||
FarneBack_OCL::FarneBack_OCL() : oclOpticalFlow(CV_8UC1)
|
||||
{
|
||||
|
@ -57,19 +57,33 @@ using std::tr1::tuple;
|
||||
|
||||
#define OCL_PERF_STRATEGY PERF_STRATEGY_SIMPLE
|
||||
|
||||
#define OCL_PERF_TEST(fixture, name) SIMPLE_PERF_TEST(fixture, name)
|
||||
#define OCL_PERF_TEST_P(fixture, name, params) SIMPLE_PERF_TEST_P(fixture, name, params)
|
||||
|
||||
#define SIMPLE_PERF_TEST_P(fixture, name, params)\
|
||||
class OCL##_##fixture##_##name : public fixture {\
|
||||
public:\
|
||||
OCL##_##fixture##_##name() {}\
|
||||
protected:\
|
||||
virtual void PerfTestBody();\
|
||||
};\
|
||||
TEST_P(OCL##_##fixture##_##name, name){ declare.strategy(OCL_PERF_STRATEGY); RunPerfTestBody(); }\
|
||||
INSTANTIATE_TEST_CASE_P(/*none*/, OCL##_##fixture##_##name, params);\
|
||||
#define SIMPLE_PERF_TEST(fixture, name) \
|
||||
class OCL##_##fixture##_##name : \
|
||||
public ::perf::TestBase \
|
||||
{ \
|
||||
public: \
|
||||
OCL##_##fixture##_##name() { } \
|
||||
protected: \
|
||||
virtual void PerfTestBody(); \
|
||||
}; \
|
||||
TEST_F(OCL##_##fixture##_##name, name) { declare.strategy(OCL_PERF_STRATEGY); RunPerfTestBody(); } \
|
||||
void OCL##_##fixture##_##name::PerfTestBody()
|
||||
|
||||
#define SIMPLE_PERF_TEST_P(fixture, name, params) \
|
||||
class OCL##_##fixture##_##name : \
|
||||
public fixture \
|
||||
{ \
|
||||
public: \
|
||||
OCL##_##fixture##_##name() { } \
|
||||
protected: \
|
||||
virtual void PerfTestBody(); \
|
||||
}; \
|
||||
TEST_P(OCL##_##fixture##_##name, name) { declare.strategy(OCL_PERF_STRATEGY); RunPerfTestBody(); } \
|
||||
INSTANTIATE_TEST_CASE_P(/*none*/, OCL##_##fixture##_##name, params); \
|
||||
void OCL##_##fixture##_##name::PerfTestBody()
|
||||
|
||||
#define OCL_SIZE_1 szVGA
|
||||
#define OCL_SIZE_2 sz720p
|
||||
|
@ -96,18 +96,18 @@ extern int test_loop_times;
|
||||
|
||||
#define EXPECT_MAT_NEAR(mat1, mat2, eps) \
|
||||
{ \
|
||||
ASSERT_EQ(mat1.type(), mat2.type()); \
|
||||
ASSERT_EQ(mat1.size(), mat2.size()); \
|
||||
EXPECT_LE(checkNorm(mat1, mat2), eps) \
|
||||
<< cv::format("Size: %d x %d", mat1.size().width, mat1.size().height) << std::endl; \
|
||||
ASSERT_EQ(mat1.type(), mat2.type()); \
|
||||
ASSERT_EQ(mat1.size(), mat2.size()); \
|
||||
EXPECT_LE(checkNorm(mat1, mat2), eps) \
|
||||
<< "Size: " << mat1.size() << std::endl; \
|
||||
}
|
||||
|
||||
#define EXPECT_MAT_NEAR_RELATIVE(mat1, mat2, eps) \
|
||||
{ \
|
||||
ASSERT_EQ(mat1.type(), mat2.type()); \
|
||||
ASSERT_EQ(mat1.size(), mat2.size()); \
|
||||
EXPECT_LE(checkNormRelative(mat1, mat2), eps) \
|
||||
<< cv::format("Size: %d x %d", mat1.size().width, mat1.size().height) << std::endl; \
|
||||
ASSERT_EQ(mat1.type(), mat2.type()); \
|
||||
ASSERT_EQ(mat1.size(), mat2.size()); \
|
||||
EXPECT_LE(checkNormRelative(mat1, mat2), eps) \
|
||||
<< "Size: " << mat1.size() << std::endl; \
|
||||
}
|
||||
|
||||
#define OCL_EXPECT_MATS_NEAR(name, eps) \
|
||||
@ -134,8 +134,8 @@ extern int test_loop_times;
|
||||
{ \
|
||||
ASSERT_EQ(mat1.type(), mat2.type()); \
|
||||
ASSERT_EQ(mat1.size(), mat2.size()); \
|
||||
EXPECT_LE(checkSimilarity(mat1, mat2), eps); \
|
||||
<< cv::format("Size: %d x %d", mat1.size().width, mat1.size().height) << std::endl; \
|
||||
EXPECT_LE(checkSimilarity(mat1, mat2), eps) \
|
||||
<< "Size: " << mat1.size() << std::endl; \
|
||||
}
|
||||
|
||||
using perf::MatDepth;
|
||||
|
@ -164,6 +164,7 @@ class CV_EXPORTS Regression
|
||||
{
|
||||
public:
|
||||
static Regression& add(TestBase* test, const std::string& name, cv::InputArray array, double eps = DBL_EPSILON, ERROR_TYPE err = ERROR_ABSOLUTE);
|
||||
static Regression& addMoments(TestBase* test, const std::string& name, const cv::Moments & array, double eps = DBL_EPSILON, ERROR_TYPE err = ERROR_ABSOLUTE);
|
||||
static Regression& addKeypoints(TestBase* test, const std::string& name, const std::vector<cv::KeyPoint>& array, double eps = DBL_EPSILON, ERROR_TYPE err = ERROR_ABSOLUTE);
|
||||
static Regression& addMatches(TestBase* test, const std::string& name, const std::vector<cv::DMatch>& array, double eps = DBL_EPSILON, ERROR_TYPE err = ERROR_ABSOLUTE);
|
||||
static void Init(const std::string& testSuitName, const std::string& ext = ".xml");
|
||||
@ -201,6 +202,7 @@ private:
|
||||
};
|
||||
|
||||
#define SANITY_CHECK(array, ...) ::perf::Regression::add(this, #array, array , ## __VA_ARGS__)
|
||||
#define SANITY_CHECK_MOMENTS(array, ...) ::perf::Regression::addMoments(this, #array, array , ## __VA_ARGS__)
|
||||
#define SANITY_CHECK_KEYPOINTS(array, ...) ::perf::Regression::addKeypoints(this, #array, array , ## __VA_ARGS__)
|
||||
#define SANITY_CHECK_MATCHES(array, ...) ::perf::Regression::addMatches(this, #array, array , ## __VA_ARGS__)
|
||||
#define SANITY_CHECK_NOTHING() this->setVerified();
|
||||
@ -253,7 +255,7 @@ enum PERF_STRATEGY
|
||||
{
|
||||
PERF_STRATEGY_DEFAULT = -1,
|
||||
PERF_STRATEGY_BASE = 0,
|
||||
PERF_STRATEGY_SIMPLE = 1,
|
||||
PERF_STRATEGY_SIMPLE = 1
|
||||
};
|
||||
|
||||
|
||||
|
@ -115,6 +115,14 @@ Regression& Regression::add(TestBase* test, const std::string& name, cv::InputAr
|
||||
return instance()(name, array, eps, err);
|
||||
}
|
||||
|
||||
Regression& Regression::addMoments(TestBase* test, const std::string& name, const cv::Moments& array, double eps, ERROR_TYPE err)
|
||||
{
|
||||
int len = (int)sizeof(cv::Moments) / sizeof(double);
|
||||
cv::Mat m(1, len, CV_64F, (void*)&array);
|
||||
|
||||
return Regression::add(test, name, m, eps, err);
|
||||
}
|
||||
|
||||
Regression& Regression::addKeypoints(TestBase* test, const std::string& name, const std::vector<cv::KeyPoint>& array, double eps, ERROR_TYPE err)
|
||||
{
|
||||
int len = (int)array.size();
|
||||
|
@ -178,7 +178,7 @@ PERF_TEST_P(Path_Idx_Cn_NPoints_WSize_Deriv, OpticalFlowPyrLK_self, testing::Com
|
||||
SANITY_CHECK(err, 2);
|
||||
}
|
||||
|
||||
CV_ENUM(PyrBorderMode, BORDER_DEFAULT, BORDER_TRANSPARENT);
|
||||
CV_ENUM(PyrBorderMode, BORDER_DEFAULT, BORDER_TRANSPARENT)
|
||||
typedef tr1::tuple<std::string, int, bool, PyrBorderMode, bool> Path_Win_Deriv_Border_Reuse_t;
|
||||
typedef TestBaseWithParam<Path_Win_Deriv_Border_Reuse_t> Path_Win_Deriv_Border_Reuse;
|
||||
|
||||
|
@ -127,4 +127,4 @@ const Mat& KalmanFilter::correct(const Mat& measurement)
|
||||
return statePost;
|
||||
}
|
||||
|
||||
};
|
||||
}
|
||||
|
@ -947,7 +947,7 @@ CV_INIT_ALGORITHM(OpticalFlowDual_TVL1, "DenseOpticalFlow.DualTVL1",
|
||||
"inner iterations (between outlier filtering) used in the numerical scheme");
|
||||
obj.info()->addParam(obj, "outerIterations", obj.outerIterations, false, 0, 0,
|
||||
"outer iterations (number of inner loops) used in the numerical scheme");
|
||||
obj.info()->addParam(obj, "useInitialFlow", obj.useInitialFlow));
|
||||
obj.info()->addParam(obj, "useInitialFlow", obj.useInitialFlow))
|
||||
|
||||
} // namespace
|
||||
|
||||
|
@ -126,12 +126,12 @@ ASDFrameHolder::ASDFrameHolder( )
|
||||
{
|
||||
image = NULL;
|
||||
timeStamp = 0;
|
||||
};
|
||||
}
|
||||
|
||||
ASDFrameHolder::~ASDFrameHolder( )
|
||||
{
|
||||
cvReleaseImage(&image);
|
||||
};
|
||||
}
|
||||
|
||||
void ASDFrameHolder::assignFrame(IplImage *sourceImage, double frameTime)
|
||||
{
|
||||
@ -143,22 +143,22 @@ void ASDFrameHolder::assignFrame(IplImage *sourceImage, double frameTime)
|
||||
|
||||
image = cvCloneImage(sourceImage);
|
||||
timeStamp = frameTime;
|
||||
};
|
||||
}
|
||||
|
||||
IplImage *ASDFrameHolder::getImage()
|
||||
{
|
||||
return image;
|
||||
};
|
||||
}
|
||||
|
||||
double ASDFrameHolder::getTimeStamp()
|
||||
{
|
||||
return timeStamp;
|
||||
};
|
||||
}
|
||||
|
||||
void ASDFrameHolder::setImage(IplImage *sourceImage)
|
||||
{
|
||||
image = sourceImage;
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
//-------------------- ASDFrameSequencer -----------------------//
|
||||
@ -166,26 +166,26 @@ void ASDFrameHolder::setImage(IplImage *sourceImage)
|
||||
ASDFrameSequencer::~ASDFrameSequencer()
|
||||
{
|
||||
close();
|
||||
};
|
||||
}
|
||||
|
||||
IplImage *ASDFrameSequencer::getNextImage()
|
||||
{
|
||||
return NULL;
|
||||
};
|
||||
}
|
||||
|
||||
void ASDFrameSequencer::close()
|
||||
{
|
||||
|
||||
};
|
||||
}
|
||||
|
||||
bool ASDFrameSequencer::isOpen()
|
||||
{
|
||||
return false;
|
||||
};
|
||||
}
|
||||
|
||||
void ASDFrameSequencer::getFrameCaption(char* /*caption*/) {
|
||||
return;
|
||||
};
|
||||
}
|
||||
|
||||
IplImage* ASDCVFrameSequencer::getNextImage()
|
||||
{
|
||||
@ -201,7 +201,7 @@ IplImage* ASDCVFrameSequencer::getNextImage()
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
void ASDCVFrameSequencer::close()
|
||||
{
|
||||
@ -209,12 +209,12 @@ void ASDCVFrameSequencer::close()
|
||||
{
|
||||
cvReleaseCapture(&capture);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
bool ASDCVFrameSequencer::isOpen()
|
||||
{
|
||||
return (capture != NULL);
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
//-------------------- ASDFrameSequencerWebCam -----------------------//
|
||||
@ -233,7 +233,7 @@ bool ASDFrameSequencerWebCam::open(int cameraIndex)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
//-------------------- ASDFrameSequencerVideoFile -----------------------//
|
||||
@ -251,7 +251,7 @@ bool ASDFrameSequencerVideoFile::open(const char *fileName)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
//-------------------- ASDFrameSequencerImageFile -----------------------//
|
||||
@ -263,11 +263,11 @@ void ASDFrameSequencerImageFile::open(const char *fileNameMask, int startIndex,
|
||||
nEndIndex = endIndex;
|
||||
|
||||
std::sprintf(sFileNameMask, "%s", fileNameMask);
|
||||
};
|
||||
}
|
||||
|
||||
void ASDFrameSequencerImageFile::getFrameCaption(char *caption) {
|
||||
std::sprintf(caption, sFileNameMask, nCurrentIndex);
|
||||
};
|
||||
}
|
||||
|
||||
IplImage* ASDFrameSequencerImageFile::getNextImage()
|
||||
{
|
||||
@ -283,23 +283,23 @@ IplImage* ASDFrameSequencerImageFile::getNextImage()
|
||||
IplImage* img = cvLoadImage(fileName);
|
||||
|
||||
return img;
|
||||
};
|
||||
}
|
||||
|
||||
void ASDFrameSequencerImageFile::close()
|
||||
{
|
||||
nCurrentIndex = nEndIndex+1;
|
||||
};
|
||||
}
|
||||
|
||||
bool ASDFrameSequencerImageFile::isOpen()
|
||||
{
|
||||
return (nCurrentIndex <= nEndIndex);
|
||||
};
|
||||
}
|
||||
|
||||
static void putTextWithShadow(IplImage *img, const char *str, CvPoint point, CvFont *font, CvScalar color = CV_RGB(255, 255, 128))
|
||||
{
|
||||
cvPutText(img, str, cvPoint(point.x-1,point.y-1), font, CV_RGB(0, 0, 0));
|
||||
cvPutText(img, str, point, font, color);
|
||||
};
|
||||
}
|
||||
|
||||
#define ASD_RGB_SET_PIXEL(pointer, r, g, b) { (*pointer) = (unsigned char)b; (*(pointer+1)) = (unsigned char)g; (*(pointer+2)) = (unsigned char)r; }
|
||||
|
||||
@ -336,7 +336,7 @@ static void displayBuffer(IplImage *rgbDestImage, IplImage *buffer, int rValue,
|
||||
destY = 0;
|
||||
destX += dx;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
int main(int argc, char** argv )
|
||||
{
|
||||
|
@ -46,7 +46,7 @@ private:
|
||||
Point3f generateChessBoardCenter(const Mat& camMat, const Size& imgSize) const;
|
||||
Mat rvec, tvec;
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
@ -33,10 +33,10 @@ int main( int /*argc*/, char** /*argv*/ )
|
||||
{
|
||||
int k, clusterCount = rng.uniform(2, MAX_CLUSTERS+1);
|
||||
int i, sampleCount = rng.uniform(1, 1001);
|
||||
Mat points(sampleCount, 1, CV_32FC2), labels;
|
||||
Mat points(sampleCount, 2, CV_32F), labels;
|
||||
|
||||
clusterCount = MIN(clusterCount, sampleCount);
|
||||
Mat centers(clusterCount, 1, points.type());
|
||||
Mat centers;
|
||||
|
||||
/* generate random sample from multigaussian distribution */
|
||||
for( k = 0; k < clusterCount; k++ )
|
||||
|
@ -14,7 +14,7 @@ using namespace cv;
|
||||
/// Global variables
|
||||
|
||||
int threshold_value = 0;
|
||||
int threshold_type = 3;;
|
||||
int threshold_type = 3;
|
||||
int const max_value = 255;
|
||||
int const max_type = 4;
|
||||
int const max_BINARY_value = 255;
|
||||
|
Loading…
x
Reference in New Issue
Block a user