From 65e235060623b0e58ad96b126c7bcf256874a159 Mon Sep 17 00:00:00 2001 From: Alexander Mordvintsev Date: Thu, 12 Jul 2012 11:51:27 +0000 Subject: [PATCH] work on digits_video.py --- samples/python2/digits_video.py | 65 ++++++++++++++++++++------------- samples/python2/morphology.py | 1 + 2 files changed, 40 insertions(+), 26 deletions(-) diff --git a/samples/python2/digits_video.py b/samples/python2/digits_video.py index 2a46daad3..999ec9b24 100644 --- a/samples/python2/digits_video.py +++ b/samples/python2/digits_video.py @@ -1,70 +1,83 @@ import numpy as np import cv2 import os +import sys import video from common import mosaic from digits import * - def main(): - cap = video.create_capture() + try: src = sys.argv[1] + except: src = 0 + cap = video.create_capture(src) classifier_fn = 'digits_svm.dat' if not os.path.exists(classifier_fn): print '"%s" not found, run digits.py first' % classifier_fn return - model = SVM() - model.load('digits_svm.dat') + model.load(classifier_fn) + while True: ret, frame = cap.read() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) + bin = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 31, 10) bin = cv2.medianBlur(bin, 3) - contours, heirs = cv2.findContours( bin.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) - rects = map(cv2.boundingRect, contours) - valid_flags = [ 16 <= h <= 64 and w <= 1.2*h for x, y, w, h in rects] + contours, heirs = cv2.findContours( bin.copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE) + try: heirs = heirs[0] + except: heirs = [] - for i, cnt in enumerate(contours): - if not valid_flags[i]: + for cnt, heir in zip(contours, heirs): + _, _, _, outer_i = heir + if outer_i >= 0: continue - _, _, _, outer_i = heirs[0, i] - if outer_i >=0 and valid_flags[outer_i]: + x, y, w, h = cv2.boundingRect(cnt) + if not (16 <= h <= 64 and w <= 1.2*h): continue - x, y, w, h = rects[i] + pad = max(h-w, 0) + x, w = x-pad/2, w+pad cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0)) - sub = bin[y:,x:][:h,:w] - #sub = ~cv2.equalizeHist(sub) - #_, sub_bin = cv2.threshold(sub, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU) - s = 1.5*float(h)/SZ - m = cv2.moments(sub) - m00 = m['m00'] - if m00/255 < 0.1*w*h or m00/255 > 0.9*w*h: + bin_roi = bin[y:,x:][:h,:w] + gray_roi = gray[y:,x:][:h,:w] + + m = bin_roi != 0 + if not 0.1 < m.mean() < 0.4: continue - - c1 = np.float32([m['m10'], m['m01']]) / m00 + ''' + v_in, v_out = gray_roi[m], gray_roi[~m] + if v_out.std() > 10.0: + continue + s = "%f, %f" % (abs(v_in.mean() - v_out.mean()), v_out.std()) + cv2.putText(frame, s, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (200, 0, 0), thickness = 1) + ''' + + s = 1.5*float(h)/SZ + m = cv2.moments(bin_roi) + c1 = np.float32([m['m10'], m['m01']]) / m['m00'] c0 = np.float32([SZ/2, SZ/2]) t = c1 - s*c0 A = np.zeros((2, 3), np.float32) A[:,:2] = np.eye(2)*s A[:,2] = t - sub1 = cv2.warpAffine(sub, A, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR) - sub1 = deskew(sub1) + bin_norm = cv2.warpAffine(bin_roi, A, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR) + bin_norm = deskew(bin_norm) if x+w+SZ < frame.shape[1] and y+SZ < frame.shape[0]: - frame[y:,x+w:][:SZ, :SZ] = sub1[...,np.newaxis] + frame[y:,x+w:][:SZ, :SZ] = bin_norm[...,np.newaxis] - sample = preprocess_hog([sub1]) + sample = preprocess_hog([bin_norm]) digit = model.predict(sample)[0] cv2.putText(frame, '%d'%digit, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (200, 0, 0), thickness = 1) cv2.imshow('frame', frame) cv2.imshow('bin', bin) - if cv2.waitKey(1) == 27: + ch = cv2.waitKey(1) + if ch == 27: break if __name__ == '__main__': diff --git a/samples/python2/morphology.py b/samples/python2/morphology.py index 68b95d862..b7f84fbb2 100644 --- a/samples/python2/morphology.py +++ b/samples/python2/morphology.py @@ -10,6 +10,7 @@ if __name__ == '__main__': try: fn = sys.argv[1] except: fn = '../cpp/baboon.jpg' img = cv2.imread(fn) + cv2.imshow('original', img) modes = cycle(['erode/dilate', 'open/close', 'blackhat/tophat', 'gradient']) str_modes = cycle(['ellipse', 'rect', 'cross'])