Added Remap tutorial in reST
@ -316,7 +316,10 @@ extlinks = {'cvt_color': ('http://opencv.willowgarage.com/documentation/cpp/imgp
|
||||
'opencv_group' : ('http://tech.groups.yahoo.com/group/OpenCV/%s', None),
|
||||
'hough_lines' : ('http://opencv.willowgarage.com/documentation/cpp/imgproc_feature_detection.html?#cv-houghlines%s', None),
|
||||
'hough_lines_p' : ('http://opencv.willowgarage.com/documentation/cpp/imgproc_feature_detection.html?#cv-houghlinesp%s', None),
|
||||
'hough_circles' : ('http://opencv.willowgarage.com/documentation/cpp/imgproc_feature_detection.html?#cv-houghcircles%s', None)
|
||||
'hough_circles' : ('http://opencv.willowgarage.com/documentation/cpp/imgproc_feature_detection.html?#cv-houghcircles%s', None),
|
||||
'remap' : ('http://opencv.willowgarage.com/documentation/cpp/imgproc_geometric_image_transformations.html?#remap%s', None),
|
||||
'warp_affine' : ('http://opencv.willowgarage.com/documentation/cpp/imgproc_geometric_image_transformations.html?#cv-warpaffine%s' , None),
|
||||
'get_rotation_matrix_2d' : ('http://opencv.willowgarage.com/documentation/cpp/imgproc_geometric_image_transformations.html?#cv-getrotationmatrix2d%s', None)
|
||||
}
|
||||
|
||||
|
||||
|
After Width: | Height: | Size: 91 KiB |
After Width: | Height: | Size: 32 KiB |
After Width: | Height: | Size: 79 KiB |
After Width: | Height: | Size: 79 KiB |
After Width: | Height: | Size: 79 KiB |
After Width: | Height: | Size: 36 KiB |
After Width: | Height: | Size: 37 KiB |
314
doc/tutorials/imgproc/imgtrans/remap/remap.rst
Normal file
@ -0,0 +1,314 @@
|
||||
.. _remap:
|
||||
|
||||
Remapping
|
||||
*********
|
||||
|
||||
Goal
|
||||
====
|
||||
|
||||
In this tutorial you will learn how to:
|
||||
|
||||
a. Use the OpenCV function :remap:`remap <>` to implement simple remapping routines.
|
||||
|
||||
Theory
|
||||
======
|
||||
|
||||
What is remapping?
|
||||
------------------
|
||||
|
||||
* It is the process of taking pixels from one place in the image and locating them in another position in a new image.
|
||||
|
||||
* To accomplish the mapping process, it might be necessary to do some interpolation for non-integer pixel locations, since there will not always be a one-to-one-pixel correspondence between source and destination images.
|
||||
|
||||
* We can express the remap for every pixel location :math:`(x,y)` as:
|
||||
|
||||
.. math::
|
||||
|
||||
g(x,y) = f ( h(x,y) )
|
||||
|
||||
where :math:`g()` is the remapped image, :math:`f()` the source image and :math:`h(x,y)` is the mapping function that operates on :math:`(x,y)`.
|
||||
|
||||
* Let's think in a quick example. Imagine that we have an image :math:`I` and, say, we want to do a remap such that:
|
||||
|
||||
.. math::
|
||||
|
||||
h(x,y) = (I.cols - x, y )
|
||||
|
||||
What would happen? It is easily seen that the image would flip in the :math:`x` direction. For instance, consider the input image:
|
||||
|
||||
.. image:: images/Remap_Tutorial_Theory_0.jpg
|
||||
:alt: Original test image
|
||||
:width: 120pt
|
||||
:align: center
|
||||
|
||||
observe how the red circle changes positions with respect to x (considering :math:`x` the horizontal direction):
|
||||
|
||||
.. image:: images/Remap_Tutorial_Theory_1.jpg
|
||||
:alt: Original test image
|
||||
:width: 120pt
|
||||
:align: center
|
||||
|
||||
* In OpenCV, the function :remap:`remap <>` offers a simple remapping implementation.
|
||||
|
||||
Code
|
||||
====
|
||||
|
||||
#. **What does this program do?**
|
||||
|
||||
* Loads an image
|
||||
* Each second, apply 1 of 4 different remapping processes to the image and display them indefinitely in a window.
|
||||
* Wait for the user to exit the program
|
||||
|
||||
#. The tutorial code's is shown lines below. You can also download it from `here <https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgTrans/Remap_Demo.cpp>`_
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include <iostream>
|
||||
#include <stdio.h>
|
||||
|
||||
using namespace cv;
|
||||
|
||||
/// Global variables
|
||||
Mat src, dst;
|
||||
Mat map_x, map_y;
|
||||
char* remap_window = "Remap demo";
|
||||
int ind = 0;
|
||||
|
||||
/// Function Headers
|
||||
void update_map( void );
|
||||
|
||||
/**
|
||||
* @function main
|
||||
*/
|
||||
int main( int argc, char** argv )
|
||||
{
|
||||
/// Load the image
|
||||
src = imread( argv[1], 1 );
|
||||
|
||||
/// Create dst, map_x and map_y with the same size as src:
|
||||
dst.create( src.size(), src.type() );
|
||||
map_x.create( src.size(), CV_32FC1 );
|
||||
map_y.create( src.size(), CV_32FC1 );
|
||||
|
||||
/// Create window
|
||||
namedWindow( remap_window, CV_WINDOW_AUTOSIZE );
|
||||
|
||||
/// Loop
|
||||
while( true )
|
||||
{
|
||||
/// Each 1 sec. Press ESC to exit the program
|
||||
int c = waitKey( 1000 );
|
||||
|
||||
if( (char)c == 27 )
|
||||
{ break; }
|
||||
|
||||
/// Update map_x & map_y. Then apply remap
|
||||
update_map();
|
||||
remap( src, dst, map_x, map_y, CV_INTER_LINEAR, BORDER_CONSTANT, Scalar(0,0, 0) );
|
||||
|
||||
/// Display results
|
||||
imshow( remap_window, dst );
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @function update_map
|
||||
* @brief Fill the map_x and map_y matrices with 4 types of mappings
|
||||
*/
|
||||
void update_map( void )
|
||||
{
|
||||
ind = ind%4;
|
||||
|
||||
for( int j = 0; j < src.rows; j++ )
|
||||
{ for( int i = 0; i < src.cols; i++ )
|
||||
{
|
||||
switch( ind )
|
||||
{
|
||||
case 0:
|
||||
if( i > src.cols*0.25 && i < src.cols*0.75 && j > src.rows*0.25 && j < src.rows*0.75 )
|
||||
{
|
||||
map_x.at<float>(j,i) = 2*( i - src.cols*0.25 ) + 0.5 ;
|
||||
map_y.at<float>(j,i) = 2*( j - src.rows*0.25 ) + 0.5 ;
|
||||
}
|
||||
else
|
||||
{ map_x.at<float>(j,i) = 0 ;
|
||||
map_y.at<float>(j,i) = 0 ;
|
||||
}
|
||||
break;
|
||||
case 1:
|
||||
map_x.at<float>(j,i) = i ;
|
||||
map_y.at<float>(j,i) = src.rows - j ;
|
||||
break;
|
||||
case 2:
|
||||
map_x.at<float>(j,i) = src.cols - i ;
|
||||
map_y.at<float>(j,i) = j ;
|
||||
break;
|
||||
case 3:
|
||||
map_x.at<float>(j,i) = src.cols - i ;
|
||||
map_y.at<float>(j,i) = src.rows - j ;
|
||||
break;
|
||||
} // end of switch
|
||||
}
|
||||
}
|
||||
ind++;
|
||||
}
|
||||
|
||||
Explanation
|
||||
===========
|
||||
|
||||
#. Create some variables we will use:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
Mat src, dst;
|
||||
Mat map_x, map_y;
|
||||
char* remap_window = "Remap demo";
|
||||
int ind = 0;
|
||||
|
||||
#. Load an image:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
src = imread( argv[1], 1 );
|
||||
|
||||
#. Create the destination image and the two mapping matrices (for x and y )
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
dst.create( src.size(), src.type() );
|
||||
map_x.create( src.size(), CV_32FC1 );
|
||||
map_y.create( src.size(), CV_32FC1 );
|
||||
|
||||
#. Create a window to display results
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
namedWindow( remap_window, CV_WINDOW_AUTOSIZE );
|
||||
|
||||
#. Establish a loop. Each 1000 ms we update our mapping matrices (*mat_x* and *mat_y*) and apply them to our source image:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
while( true )
|
||||
{
|
||||
/// Each 1 sec. Press ESC to exit the program
|
||||
int c = waitKey( 1000 );
|
||||
|
||||
if( (char)c == 27 )
|
||||
{ break; }
|
||||
|
||||
/// Update map_x & map_y. Then apply remap
|
||||
update_map();
|
||||
remap( src, dst, map_x, map_y, CV_INTER_LINEAR, BORDER_CONSTANT, Scalar(0,0, 0) );
|
||||
|
||||
/// Display results
|
||||
imshow( remap_window, dst );
|
||||
}
|
||||
|
||||
The function that applies the remapping is :remap:`remap <>`. We give the following arguments:
|
||||
|
||||
* **src**: Source image
|
||||
* **dst**: Destination image of same size as *src*
|
||||
* **map_x**: The mapping function in the x direction. It is equivalent to the first component of :math:`h(i,j)`
|
||||
* **map_y**: Same as above, but in y direction. Note that *map_y* and *map_x* are both of the same size as *src*
|
||||
* **CV_INTER_LINEAR**: The type of interpolation to use for non-integer pixels. This is by default.
|
||||
* **BORDER_CONSTANT**: Default
|
||||
|
||||
How do we update our mapping matrices *mat_x* and *mat_y*? Go on reading:
|
||||
|
||||
#. **Updating the mapping matrices:** We are going to perform 4 different mappings:
|
||||
|
||||
a. Reduce the picture to half its size and will display it in the middle:
|
||||
|
||||
.. math::
|
||||
|
||||
h(i,j) = ( 2*i - src.cols/2 + 0.5, 2*j - src.rows/2 + 0.5)
|
||||
|
||||
for all pairs :math:`(i,j)` such that: :math:`\dfrac{src.cols}{4}<i<\dfrac{3 \cdot src.cols}{4}` and :math:`\dfrac{src.rows}{4}<j<\dfrac{3 \cdot src.rows}{4}`
|
||||
|
||||
b. Turn the image upside down: :math:`h( i, j ) = (i, src.rows - j)`
|
||||
|
||||
c. Reflect the image from left to right: :math:`h(i,j) = ( src.cols - i, j )`
|
||||
|
||||
d. Combination of b and c: :math:`h(i,j) = ( src.cols - i, src.rows - j )`
|
||||
|
||||
This is expressed in the following snippet. Here, *map_x* represents the first coordinate of *h(i,j)* and *map_y* the second coordinate.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
for( int j = 0; j < src.rows; j++ )
|
||||
{ for( int i = 0; i < src.cols; i++ )
|
||||
{
|
||||
switch( ind )
|
||||
{
|
||||
case 0:
|
||||
if( i > src.cols*0.25 && i < src.cols*0.75 && j > src.rows*0.25 && j < src.rows*0.75 )
|
||||
{
|
||||
map_x.at<float>(j,i) = 2*( i - src.cols*0.25 ) + 0.5 ;
|
||||
map_y.at<float>(j,i) = 2*( j - src.rows*0.25 ) + 0.5 ;
|
||||
}
|
||||
else
|
||||
{ map_x.at<float>(j,i) = 0 ;
|
||||
map_y.at<float>(j,i) = 0 ;
|
||||
}
|
||||
break;
|
||||
case 1:
|
||||
map_x.at<float>(j,i) = i ;
|
||||
map_y.at<float>(j,i) = src.rows - j ;
|
||||
break;
|
||||
case 2:
|
||||
map_x.at<float>(j,i) = src.cols - i ;
|
||||
map_y.at<float>(j,i) = j ;
|
||||
break;
|
||||
case 3:
|
||||
map_x.at<float>(j,i) = src.cols - i ;
|
||||
map_y.at<float>(j,i) = src.rows - j ;
|
||||
break;
|
||||
} // end of switch
|
||||
}
|
||||
}
|
||||
ind++;
|
||||
}
|
||||
|
||||
|
||||
Result
|
||||
======
|
||||
|
||||
#. After compiling the code above, you can execute it giving as argument an image path. For instance, by using the following image:
|
||||
|
||||
.. image:: images/Remap_Tutorial_Original_Image.jpg
|
||||
:alt: Original test image
|
||||
:width: 250pt
|
||||
:align: center
|
||||
|
||||
#. This is the result of reducing it to half the size and centering it:
|
||||
|
||||
.. image:: images/Remap_Tutorial_Result_0.jpg
|
||||
:alt: Result 0 for remapping
|
||||
:width: 250pt
|
||||
:align: center
|
||||
|
||||
#. Turning it upside down:
|
||||
|
||||
.. image:: images/Remap_Tutorial_Result_1.jpg
|
||||
:alt: Result 0 for remapping
|
||||
:width: 250pt
|
||||
:align: center
|
||||
|
||||
#. Reflecting it in the x direction:
|
||||
|
||||
.. image:: images/Remap_Tutorial_Result_2.jpg
|
||||
:alt: Result 0 for remapping
|
||||
:width: 250pt
|
||||
:align: center
|
||||
|
||||
#. Reflecting it in both directions:
|
||||
|
||||
.. image:: images/Remap_Tutorial_Result_3.jpg
|
||||
:alt: Result 0 for remapping
|
||||
:width: 250pt
|
||||
:align: center
|
||||
|
After Width: | Height: | Size: 35 KiB |
After Width: | Height: | Size: 20 KiB |
After Width: | Height: | Size: 19 KiB |
117
doc/tutorials/imgproc/imgtrans/warp_affine/warp_affine.rst
Normal file
@ -0,0 +1,117 @@
|
||||
.. _warp_affine:
|
||||
|
||||
Affine Transformations
|
||||
**********************
|
||||
|
||||
|
||||
Goal
|
||||
====
|
||||
|
||||
In this tutorial you will learn how to:
|
||||
|
||||
a. Use the OpenCV function :warp_affine:`warpAffine <>` to implement simple remapping routines.
|
||||
b. Use the OpenCV function :get_rotation_matrix_2d:`getRotationMatrix2D <>` to obtain a :math:`2 \times 3` rotation matrix
|
||||
|
||||
|
||||
Theory
|
||||
======
|
||||
|
||||
Code
|
||||
====
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include <iostream>
|
||||
#include <stdio.h>
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
/// Global variables
|
||||
char* source_window = "Source image";
|
||||
char* warp_window = "Warp";
|
||||
char* warp_rotate_window = "Warp + Rotate";
|
||||
|
||||
/** @function main */
|
||||
int main( int argc, char** argv )
|
||||
{
|
||||
Point2f srcTri[3];
|
||||
Point2f dstTri[3];
|
||||
|
||||
Mat rot_mat( 2, 3, CV_32FC1 );
|
||||
Mat warp_mat( 2, 3, CV_32FC1 );
|
||||
Mat src, warp_dst, warp_rotate_dst;
|
||||
|
||||
/// Load the image
|
||||
src = imread( argv[1], 1 );
|
||||
|
||||
/// Set the dst image the same type and size as src
|
||||
warp_dst = Mat::zeros( src.rows, src.cols, src.type() );
|
||||
|
||||
/// Set your 3 points to calculate the Affine Transform
|
||||
srcTri[0] = Point2f( 0,0 );
|
||||
srcTri[1] = Point2f( src.cols - 1, 0 );
|
||||
srcTri[2] = Point2f( 0, src.rows - 1 );
|
||||
|
||||
dstTri[0] = Point2f( src.cols*0.0, src.rows*0.33 );
|
||||
dstTri[1] = Point2f( src.cols*0.85, src.rows*0.25 );
|
||||
dstTri[2] = Point2f( src.cols*0.15, src.rows*0.7 );
|
||||
|
||||
/// Get the Affine Transform
|
||||
warp_mat = getAffineTransform( srcTri, dstTri );
|
||||
|
||||
/// Apply the Affine Transform just found to the src image
|
||||
warpAffine( src, warp_dst, warp_mat, warp_dst.size() );
|
||||
|
||||
/** Rotating the image after Warp */
|
||||
|
||||
/// Compute a rotation matrix with respect to the center of the image
|
||||
Point center = Point( warp_dst.cols/2, warp_dst.rows/2 );
|
||||
double angle = -50.0;
|
||||
double scale = 0.6;
|
||||
|
||||
/// Get the rotation matrix with the specifications above
|
||||
rot_mat = getRotationMatrix2D( center, angle, scale );
|
||||
|
||||
/// Rotate the warped image
|
||||
warpAffine( warp_dst, warp_rotate_dst, rot_mat, warp_dst.size() );
|
||||
|
||||
/// Show what you got
|
||||
namedWindow( source_window, CV_WINDOW_AUTOSIZE );
|
||||
imshow( source_window, src );
|
||||
|
||||
namedWindow( warp_window, CV_WINDOW_AUTOSIZE );
|
||||
imshow( warp_window, warp_dst );
|
||||
|
||||
namedWindow( warp_rotate_window, CV_WINDOW_AUTOSIZE );
|
||||
imshow( warp_rotate_window, warp_rotate_dst );
|
||||
|
||||
/// Wait until user exits the program
|
||||
waitKey(0);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
Explanation
|
||||
===========
|
||||
|
||||
Result
|
||||
======
|
||||
|
||||
.. image:: images/Warp_Affine_Tutorial_Original_Image.jpg
|
||||
:alt: Original image
|
||||
:width: 250pt
|
||||
:align: center
|
||||
|
||||
.. image:: images/Warp_Affine_Tutorial_Result_Warp.jpg
|
||||
:alt: Original image
|
||||
:width: 250pt
|
||||
:align: center
|
||||
|
||||
.. image:: images/Warp_Affine_Tutorial_Result_Warp_Rotate.jpg
|
||||
:alt: Original image
|
||||
:width: 250pt
|
||||
:align: center
|
||||
|
After Width: | Height: | Size: 79 KiB |
After Width: | Height: | Size: 20 KiB |
@ -239,3 +239,38 @@ In this section you will learn about the image processing (manipulation) functio
|
||||
:height: 100pt
|
||||
:width: 100pt
|
||||
|
||||
* :ref:`remap`
|
||||
|
||||
===================== ==============================================
|
||||
|Remap| *Title:* **Remapping**
|
||||
|
||||
*Compatibility:* > OpenCV 2.0
|
||||
|
||||
*Author:* |Author_AnaH|
|
||||
|
||||
Where we learn how to manipulate pixels locations
|
||||
|
||||
===================== ==============================================
|
||||
|
||||
.. |Remap| image:: images/imgtrans/Remap_Tutorial_Cover.jpg
|
||||
:height: 100pt
|
||||
:width: 100pt
|
||||
|
||||
|
||||
* :ref:`warp_affine`
|
||||
|
||||
===================== ==============================================
|
||||
|WarpAffine| *Title:* **Affine Transforms**
|
||||
|
||||
*Compatibility:* > OpenCV 2.0
|
||||
|
||||
*Author:* |Author_AnaH|
|
||||
|
||||
Where we learn how to rotate, translate and scale our images
|
||||
|
||||
===================== ==============================================
|
||||
|
||||
.. |WarpAffine| image:: images/imgtrans/Warp_Affine_Tutorial_Cover.jpg
|
||||
:height: 100pt
|
||||
:width: 100pt
|
||||
|
||||
|