added FAST_GPU and ORB_GPU classes

This commit is contained in:
Vladislav Vinogradov 2011-12-27 09:33:20 +00:00
parent e46e13a775
commit 5e38cf8042
8 changed files with 2159 additions and 37 deletions

View File

@ -1522,6 +1522,159 @@ public:
GpuMat maxPosBuffer;
};
////////////////////////////////// FAST //////////////////////////////////////////
class CV_EXPORTS FAST_GPU
{
public:
enum
{
LOCATION_ROW = 0,
RESPONSE_ROW,
ROWS_COUNT
};
// all features have same size
static const int FEATURE_SIZE = 7;
explicit FAST_GPU(int threshold, bool nonmaxSupression = true, double keypointsRatio = 0.05);
//! finds the keypoints using FAST detector
//! supports only CV_8UC1 images
void operator ()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints);
void operator ()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints);
//! download keypoints from device to host memory
void downloadKeypoints(const GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints);
//! convert keypoints to KeyPoint vector
void convertKeypoints(const Mat& h_keypoints, std::vector<KeyPoint>& keypoints);
//! release temporary buffer's memory
void release();
bool nonmaxSupression;
int threshold;
//! max keypoints = keypointsRatio * img.size().area()
double keypointsRatio;
//! find keypoints and compute it's response if nonmaxSupression is true
//! return count of detected keypoints
int calcKeyPointsLocation(const GpuMat& image, const GpuMat& mask);
//! get final array of keypoints
//! performs nonmax supression if needed
//! return final count of keypoints
int getKeyPoints(GpuMat& keypoints);
private:
GpuMat kpLoc_;
int count_;
GpuMat score_;
GpuMat d_keypoints_;
};
////////////////////////////////// ORB //////////////////////////////////////////
class CV_EXPORTS ORB_GPU
{
public:
enum
{
X_ROW = 0,
Y_ROW,
RESPONSE_ROW,
ANGLE_ROW,
OCTAVE_ROW,
SIZE_ROW,
ROWS_COUNT
};
enum
{
DEFAULT_FAST_THRESHOLD = 20
};
//! Constructor
//! n_features - the number of desired features
//! detector_params - parameters to use
explicit ORB_GPU(size_t n_features = 500, const ORB::CommonParams& detector_params = ORB::CommonParams());
//! Compute the ORB features on an image
//! image - the image to compute the features (supports only CV_8UC1 images)
//! mask - the mask to apply
//! keypoints - the resulting keypoints
void operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints);
void operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints);
//! Compute the ORB features and descriptors on an image
//! image - the image to compute the features (supports only CV_8UC1 images)
//! mask - the mask to apply
//! keypoints - the resulting keypoints
//! descriptors - descriptors array
void operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints, GpuMat& descriptors);
void operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints, GpuMat& descriptors);
//! download keypoints from device to host memory
void downloadKeyPoints(GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints);
//! convert keypoints to KeyPoint vector
void convertKeyPoints(Mat& d_keypoints, std::vector<KeyPoint>& keypoints);
//! returns the descriptor size in bytes
inline int descriptorSize() const { return kBytes; }
void setParams(size_t n_features, const ORB::CommonParams& detector_params);
inline void setFastParams(int threshold, bool nonmaxSupression = true)
{
fastDetector_.threshold = threshold;
fastDetector_.nonmaxSupression = nonmaxSupression;
}
//! release temporary buffer's memory
void release();
//! if true, image will be blurred before descriptors calculation
bool blurForDescriptor;
private:
enum { kBytes = 32 };
void buildScalePyramids(const GpuMat& image, const GpuMat& mask);
void computeKeyPointsPyramid();
void computeDescriptors(GpuMat& descriptors);
void mergeKeyPoints(GpuMat& keypoints);
ORB::CommonParams params_;
// The number of desired features per scale
std::vector<size_t> n_features_per_level_;
// Points to compute BRIEF descriptors from
GpuMat pattern_;
std::vector<GpuMat> imagePyr_;
std::vector<GpuMat> maskPyr_;
GpuMat buf_;
std::vector<GpuMat> keyPointsPyr_;
std::vector<int> keyPointsCount_;
FAST_GPU fastDetector_;
Ptr<FilterEngine_GPU> blurFilter;
GpuMat d_keypoints_;
};
////////////////////////////////// Optical Flow //////////////////////////////////////////
class CV_EXPORTS BroxOpticalFlow

View File

@ -122,11 +122,50 @@ PERF_TEST_P(DevInfo, SURF, testing::ValuesIn(devices()))
{
surf(img, GpuMat(), keypoints, descriptors);
}
Mat keypoints_host(keypoints);
Mat descriptors_host(descriptors);
SANITY_CHECK(keypoints_host);
SANITY_CHECK(descriptors_host);
}
PERF_TEST_P(DevInfo, FAST, testing::ValuesIn(devices()))
{
DeviceInfo devInfo = GetParam();
setDevice(devInfo.deviceID());
Mat img_host = readImage("gpu/perf/aloe.jpg", CV_LOAD_IMAGE_GRAYSCALE);
ASSERT_FALSE(img_host.empty());
GpuMat img(img_host);
GpuMat keypoints;
FAST_GPU fastGPU(20);
declare.time(2.0);
TEST_CYCLE(100)
{
fastGPU(img, GpuMat(), keypoints);
}
}
PERF_TEST_P(DevInfo, ORB, testing::ValuesIn(devices()))
{
DeviceInfo devInfo = GetParam();
setDevice(devInfo.deviceID());
Mat img_host = readImage("gpu/perf/aloe.jpg", CV_LOAD_IMAGE_GRAYSCALE);
ASSERT_FALSE(img_host.empty());
GpuMat img(img_host);
GpuMat keypoints, descriptors;
ORB_GPU orbGPU(4000);
declare.time(2.0);
TEST_CYCLE(100)
{
orbGPU(img, GpuMat(), keypoints, descriptors);
}
}

File diff suppressed because one or more lines are too long

418
modules/gpu/src/cuda/orb.cu Normal file
View File

@ -0,0 +1,418 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
// Copyright (c) 2010, Paul Furgale, Chi Hay Tong
//
// The original code was written by Paul Furgale and Chi Hay Tong
// and later optimized and prepared for integration into OpenCV by Itseez.
//
//M*/
#include <thrust/sort.h>
#include "opencv2/gpu/device/common.hpp"
#include "opencv2/gpu/device/utility.hpp"
#include "opencv2/gpu/device/functional.hpp"
namespace cv { namespace gpu { namespace device
{
namespace orb
{
////////////////////////////////////////////////////////////////////////////////////////////////////////
// cull
int cull_gpu(int* loc, float* response, int size, int n_points)
{
thrust::device_ptr<int> loc_ptr(loc);
thrust::device_ptr<float> response_ptr(response);
thrust::sort_by_key(response_ptr, response_ptr + size, loc_ptr, thrust::greater<float>());
return n_points;
}
////////////////////////////////////////////////////////////////////////////////////////////////////////
// HarrisResponses
__global__ void HarrisResponses(const PtrStepb img, const short2* loc_, float* response, const int npoints, const int blockSize, const float harris_k)
{
__shared__ int smem[8 * 32];
volatile int* srow = smem + threadIdx.y * blockDim.x;
const int ptidx = blockIdx.x * blockDim.y + threadIdx.y;
if (ptidx < npoints)
{
const short2 loc = loc_[ptidx];
const int r = blockSize / 2;
const int x0 = loc.x - r;
const int y0 = loc.y - r;
int a = 0, b = 0, c = 0;
for (int ind = threadIdx.x; ind < blockSize * blockSize; ind += blockDim.x)
{
const int i = ind / blockSize;
const int j = ind % blockSize;
int Ix = (img(y0 + i, x0 + j + 1) - img(y0 + i, x0 + j - 1)) * 2 +
(img(y0 + i - 1, x0 + j + 1) - img(y0 + i - 1, x0 + j - 1)) +
(img(y0 + i + 1, x0 + j + 1) - img(y0 + i + 1, x0 + j - 1));
int Iy = (img(y0 + i + 1, x0 + j) - img(y0 + i - 1, x0 + j)) * 2 +
(img(y0 + i + 1, x0 + j - 1) - img(y0 + i - 1, x0 + j - 1)) +
(img(y0 + i + 1, x0 + j + 1) - img(y0 + i - 1, x0 + j + 1));
a += Ix * Ix;
b += Iy * Iy;
c += Ix * Iy;
}
reduce<32>(srow, a, threadIdx.x, plus<volatile int>());
reduce<32>(srow, b, threadIdx.x, plus<volatile int>());
reduce<32>(srow, c, threadIdx.x, plus<volatile int>());
if (threadIdx.x == 0)
{
float scale = (1 << 2) * blockSize * 255.0f;
scale = 1.0f / scale;
const float scale_sq_sq = scale * scale * scale * scale;
response[ptidx] = ((float)a * b - (float)c * c - harris_k * ((float)a + b) * ((float)a + b)) * scale_sq_sq;
}
}
}
void HarrisResponses_gpu(DevMem2Db img, const short2* loc, float* response, const int npoints, int blockSize, float harris_k, cudaStream_t stream)
{
dim3 block(32, 8);
dim3 grid;
grid.x = divUp(npoints, block.y);
HarrisResponses<<<grid, block, 0, stream>>>(img, loc, response, npoints, blockSize, harris_k);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
////////////////////////////////////////////////////////////////////////////////////////////////////////
// IC_Angle
__constant__ int c_u_max[32];
void loadUMax(const int* u_max, int count)
{
cudaSafeCall( cudaMemcpyToSymbol(c_u_max, u_max, count * sizeof(int)) );
}
__global__ void IC_Angle(const PtrStepb image, const short2* loc_, float* angle, const int npoints, const int half_k)
{
__shared__ int smem[8 * 32];
volatile int* srow = smem + threadIdx.y * blockDim.x;
const int ptidx = blockIdx.x * blockDim.y + threadIdx.y;
if (ptidx < npoints)
{
int m_01 = 0, m_10 = 0;
const short2 loc = loc_[ptidx];
// Treat the center line differently, v=0
for (int u = threadIdx.x - half_k; u <= half_k; u += blockDim.x)
m_10 += u * image(loc.y, loc.x + u);
reduce<32>(srow, m_10, threadIdx.x, plus<volatile int>());
for (int v = 1; v <= half_k; ++v)
{
// Proceed over the two lines
int v_sum = 0;
int m_sum = 0;
const int d = c_u_max[v];
for (int u = threadIdx.x - d; u <= d; u += blockDim.x)
{
int val_plus = image(loc.y + v, loc.x + u);
int val_minus = image(loc.y - v, loc.x + u);
v_sum += (val_plus - val_minus);
m_sum += u * (val_plus + val_minus);
}
reduce<32>(srow, v_sum, threadIdx.x, plus<volatile int>());
reduce<32>(srow, m_sum, threadIdx.x, plus<volatile int>());
m_10 += m_sum;
m_01 += v * v_sum;
}
if (threadIdx.x == 0)
{
float kp_dir = ::atan2f((float)m_01, (float)m_10);
kp_dir += (kp_dir < 0) * (2.0f * CV_PI);
kp_dir *= 180.0f / CV_PI;
angle[ptidx] = kp_dir;
}
}
}
void IC_Angle_gpu(DevMem2Db image, const short2* loc, float* angle, int npoints, int half_k, cudaStream_t stream)
{
dim3 block(32, 8);
dim3 grid;
grid.x = divUp(npoints, block.y);
IC_Angle<<<grid, block, 0, stream>>>(image, loc, angle, npoints, half_k);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
////////////////////////////////////////////////////////////////////////////////////////////////////////
// computeOrbDescriptor
template <int WTA_K> struct OrbDescriptor;
#define GET_VALUE(idx) \
img(loc.y + __float2int_rn(pattern_x[idx] * sina + pattern_y[idx] * cosa), \
loc.x + __float2int_rn(pattern_x[idx] * cosa - pattern_y[idx] * sina))
template <> struct OrbDescriptor<2>
{
__device__ static int calc(const PtrStepb& img, short2 loc, const int* pattern_x, const int* pattern_y, float sina, float cosa, int i)
{
pattern_x += 16 * i;
pattern_y += 16 * i;
int t0, t1, val;
t0 = GET_VALUE(0); t1 = GET_VALUE(1);
val = t0 < t1;
t0 = GET_VALUE(2); t1 = GET_VALUE(3);
val |= (t0 < t1) << 1;
t0 = GET_VALUE(4); t1 = GET_VALUE(5);
val |= (t0 < t1) << 2;
t0 = GET_VALUE(6); t1 = GET_VALUE(7);
val |= (t0 < t1) << 3;
t0 = GET_VALUE(8); t1 = GET_VALUE(9);
val |= (t0 < t1) << 4;
t0 = GET_VALUE(10); t1 = GET_VALUE(11);
val |= (t0 < t1) << 5;
t0 = GET_VALUE(12); t1 = GET_VALUE(13);
val |= (t0 < t1) << 6;
t0 = GET_VALUE(14); t1 = GET_VALUE(15);
val |= (t0 < t1) << 7;
return val;
}
};
template <> struct OrbDescriptor<3>
{
__device__ static int calc(const PtrStepb& img, short2 loc, const int* pattern_x, const int* pattern_y, float sina, float cosa, int i)
{
pattern_x += 12 * i;
pattern_y += 12 * i;
int t0, t1, t2, val;
t0 = GET_VALUE(0); t1 = GET_VALUE(1); t2 = GET_VALUE(2);
val = t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0);
t0 = GET_VALUE(3); t1 = GET_VALUE(4); t2 = GET_VALUE(5);
val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 2;
t0 = GET_VALUE(6); t1 = GET_VALUE(7); t2 = GET_VALUE(8);
val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 4;
t0 = GET_VALUE(9); t1 = GET_VALUE(10); t2 = GET_VALUE(11);
val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 6;
return val;
}
};
template <> struct OrbDescriptor<4>
{
__device__ static int calc(const PtrStepb& img, short2 loc, const int* pattern_x, const int* pattern_y, float sina, float cosa, int i)
{
pattern_x += 16 * i;
pattern_y += 16 * i;
int t0, t1, t2, t3, k, val;
int a, b;
t0 = GET_VALUE(0); t1 = GET_VALUE(1);
t2 = GET_VALUE(2); t3 = GET_VALUE(3);
a = 0, b = 2;
if( t1 > t0 ) t0 = t1, a = 1;
if( t3 > t2 ) t2 = t3, b = 3;
k = t0 > t2 ? a : b;
val = k;
t0 = GET_VALUE(4); t1 = GET_VALUE(5);
t2 = GET_VALUE(6); t3 = GET_VALUE(7);
a = 0, b = 2;
if( t1 > t0 ) t0 = t1, a = 1;
if( t3 > t2 ) t2 = t3, b = 3;
k = t0 > t2 ? a : b;
val |= k << 2;
t0 = GET_VALUE(8); t1 = GET_VALUE(9);
t2 = GET_VALUE(10); t3 = GET_VALUE(11);
a = 0, b = 2;
if( t1 > t0 ) t0 = t1, a = 1;
if( t3 > t2 ) t2 = t3, b = 3;
k = t0 > t2 ? a : b;
val |= k << 4;
t0 = GET_VALUE(12); t1 = GET_VALUE(13);
t2 = GET_VALUE(14); t3 = GET_VALUE(15);
a = 0, b = 2;
if( t1 > t0 ) t0 = t1, a = 1;
if( t3 > t2 ) t2 = t3, b = 3;
k = t0 > t2 ? a : b;
val |= k << 6;
return val;
}
};
#undef GET_VALUE
template <int WTA_K>
__global__ void computeOrbDescriptor(const PtrStepb img, const short2* loc, const float* angle_, const int npoints,
const int* pattern_x, const int* pattern_y, PtrStepb desc, int dsize)
{
const int descidx = blockIdx.x * blockDim.x + threadIdx.x;
const int ptidx = blockIdx.y * blockDim.y + threadIdx.y;
if (ptidx < npoints && descidx < dsize)
{
float angle = angle_[ptidx];
angle *= (float)(CV_PI / 180.f);
float sina, cosa;
::sincosf(angle, &sina, &cosa);
desc.ptr(ptidx)[descidx] = OrbDescriptor<WTA_K>::calc(img, loc[ptidx], pattern_x, pattern_y, sina, cosa, descidx);
}
}
void computeOrbDescriptor_gpu(PtrStepb img, const short2* loc, const float* angle, const int npoints,
const int* pattern_x, const int* pattern_y, PtrStepb desc, int dsize, int WTA_K, cudaStream_t stream)
{
dim3 block(32, 8);
dim3 grid;
grid.x = divUp(dsize, block.x);
grid.y = divUp(npoints, block.y);
switch (WTA_K)
{
case 2:
computeOrbDescriptor<2><<<grid, block, 0, stream>>>(img, loc, angle, npoints, pattern_x, pattern_y, desc, dsize);
break;
case 3:
computeOrbDescriptor<3><<<grid, block, 0, stream>>>(img, loc, angle, npoints, pattern_x, pattern_y, desc, dsize);
break;
case 4:
computeOrbDescriptor<4><<<grid, block, 0, stream>>>(img, loc, angle, npoints, pattern_x, pattern_y, desc, dsize);
break;
}
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
////////////////////////////////////////////////////////////////////////////////////////////////////////
// mergeLocation
__global__ void mergeLocation(const short2* loc_, float* x, float* y, const int npoints, float scale)
{
const int ptidx = blockIdx.x * blockDim.x + threadIdx.x;
if (ptidx < npoints)
{
short2 loc = loc_[ptidx];
x[ptidx] = loc.x * scale;
y[ptidx] = loc.y * scale;
}
}
void mergeLocation_gpu(const short2* loc, float* x, float* y, int npoints, float scale, cudaStream_t stream)
{
dim3 block(256);
dim3 grid;
grid.x = divUp(npoints, block.x);
mergeLocation<<<grid, block, 0, stream>>>(loc, x, y, npoints, scale);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
}
}}}

171
modules/gpu/src/fast.cpp Normal file
View File

@ -0,0 +1,171 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other GpuMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or bpied warranties, including, but not limited to, the bpied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::gpu;
using namespace std;
#if !defined (HAVE_CUDA)
cv::gpu::FAST_GPU::FAST_GPU(int, bool, double) { throw_nogpu(); }
void cv::gpu::FAST_GPU::operator ()(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::FAST_GPU::operator ()(const GpuMat&, const GpuMat&, std::vector<KeyPoint>&) { throw_nogpu(); }
void cv::gpu::FAST_GPU::downloadKeypoints(const GpuMat&, std::vector<KeyPoint>&) { throw_nogpu(); }
void cv::gpu::FAST_GPU::convertKeypoints(const Mat&, std::vector<KeyPoint>&) { throw_nogpu(); }
void cv::gpu::FAST_GPU::release() { throw_nogpu(); }
int cv::gpu::FAST_GPU::calcKeyPointsLocation(const GpuMat&, const GpuMat&) { throw_nogpu(); return 0; }
int cv::gpu::FAST_GPU::getKeyPoints(GpuMat&) { throw_nogpu(); return 0; }
#else /* !defined (HAVE_CUDA) */
cv::gpu::FAST_GPU::FAST_GPU(int _threshold, bool _nonmaxSupression, double _keypointsRatio) :
nonmaxSupression(_nonmaxSupression), threshold(_threshold), keypointsRatio(_keypointsRatio), count_(0)
{
}
void cv::gpu::FAST_GPU::operator ()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints)
{
if (image.empty())
return;
(*this)(image, mask, d_keypoints_);
downloadKeypoints(d_keypoints_, keypoints);
}
void cv::gpu::FAST_GPU::downloadKeypoints(const GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints)
{
if (d_keypoints.empty())
return;
Mat h_keypoints(d_keypoints);
convertKeypoints(h_keypoints, keypoints);
}
void cv::gpu::FAST_GPU::convertKeypoints(const Mat& h_keypoints, std::vector<KeyPoint>& keypoints)
{
if (h_keypoints.empty())
return;
CV_Assert(h_keypoints.rows == ROWS_COUNT && h_keypoints.elemSize() == 4);
int npoints = h_keypoints.cols;
keypoints.resize(npoints);
const short2* loc_row = h_keypoints.ptr<short2>(LOCATION_ROW);
const float* response_row = h_keypoints.ptr<float>(RESPONSE_ROW);
for (int i = 0; i < npoints; ++i)
{
KeyPoint kp(loc_row[i].x, loc_row[i].y, static_cast<float>(FEATURE_SIZE), -1, response_row[i]);
keypoints[i] = kp;
}
}
void cv::gpu::FAST_GPU::operator ()(const GpuMat& img, const GpuMat& mask, GpuMat& keypoints)
{
calcKeyPointsLocation(img, mask);
keypoints.cols = getKeyPoints(keypoints);
}
namespace cv { namespace gpu { namespace device
{
namespace fast
{
int calcKeypoints_gpu(DevMem2Db img, DevMem2Db mask, short2* kpLoc, int maxKeypoints, DevMem2Di score, int threshold);
int nonmaxSupression_gpu(const short2* kpLoc, int count, DevMem2Di score, short2* loc, float* response);
}
}}}
int cv::gpu::FAST_GPU::calcKeyPointsLocation(const GpuMat& img, const GpuMat& mask)
{
using namespace cv::gpu::device::fast;
CV_Assert(img.type() == CV_8UC1);
CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.size() == img.size()));
int maxKeypoints = static_cast<int>(keypointsRatio * img.size().area());
ensureSizeIsEnough(1, maxKeypoints, CV_16SC2, kpLoc_);
if (nonmaxSupression)
{
ensureSizeIsEnough(img.size(), CV_32SC1, score_);
score_.setTo(Scalar::all(0));
}
count_ = calcKeypoints_gpu(img, mask, kpLoc_.ptr<short2>(), maxKeypoints, nonmaxSupression ? score_ : DevMem2Di(), threshold);
count_ = std::min(count_, maxKeypoints);
return count_;
}
int cv::gpu::FAST_GPU::getKeyPoints(GpuMat& keypoints)
{
using namespace cv::gpu::device::fast;
if (count_ == 0)
return 0;
ensureSizeIsEnough(ROWS_COUNT, count_, CV_32FC1, keypoints);
if (nonmaxSupression)
return nonmaxSupression_gpu(kpLoc_.ptr<short2>(), count_, score_, keypoints.ptr<short2>(LOCATION_ROW), keypoints.ptr<float>(RESPONSE_ROW));
GpuMat locRow(1, count_, kpLoc_.type(), keypoints.ptr(0));
kpLoc_.colRange(0, count_).copyTo(locRow);
keypoints.row(1).setTo(Scalar::all(0));
return count_;
}
void cv::gpu::FAST_GPU::release()
{
kpLoc_.release();
score_.release();
d_keypoints_.release();
}
#endif /* !defined (HAVE_CUDA) */

764
modules/gpu/src/orb.cpp Normal file
View File

@ -0,0 +1,764 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other GpuMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or bpied warranties, including, but not limited to, the bpied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace std;
using namespace cv;
using namespace cv::gpu;
#if !defined (HAVE_CUDA)
cv::gpu::ORB_GPU::ORB_GPU(size_t, const ORB::CommonParams&) : fastDetector_(0) { throw_nogpu(); }
void cv::gpu::ORB_GPU::operator()(const GpuMat&, const GpuMat&, std::vector<KeyPoint>&) { throw_nogpu(); }
void cv::gpu::ORB_GPU::operator()(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::ORB_GPU::operator()(const GpuMat&, const GpuMat&, std::vector<KeyPoint>&, GpuMat&) { throw_nogpu(); }
void cv::gpu::ORB_GPU::operator()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::ORB_GPU::downloadKeyPoints(GpuMat&, std::vector<KeyPoint>&) { throw_nogpu(); }
void cv::gpu::ORB_GPU::convertKeyPoints(Mat&, std::vector<KeyPoint>&) { throw_nogpu(); }
void cv::gpu::ORB_GPU::setParams(size_t, const ORB::CommonParams&) { throw_nogpu(); }
void cv::gpu::ORB_GPU::release() { throw_nogpu(); }
void cv::gpu::ORB_GPU::buildScalePyramids(const GpuMat&, const GpuMat&) { throw_nogpu(); }
void cv::gpu::ORB_GPU::computeKeyPointsPyramid() { throw_nogpu(); }
void cv::gpu::ORB_GPU::computeDescriptors(GpuMat&) { throw_nogpu(); }
void cv::gpu::ORB_GPU::mergeKeyPoints(GpuMat&) { throw_nogpu(); }
#else /* !defined (HAVE_CUDA) */
namespace cv { namespace gpu { namespace device
{
namespace orb
{
int cull_gpu(int* loc, float* response, int size, int n_points);
void HarrisResponses_gpu(DevMem2Db img, const short2* loc, float* response, const int npoints, int blockSize, float harris_k, cudaStream_t stream);
void loadUMax(const int* u_max, int count);
void IC_Angle_gpu(DevMem2Db image, const short2* loc, float* angle, int npoints, int half_k, cudaStream_t stream);
void computeOrbDescriptor_gpu(PtrStepb img, const short2* loc, const float* angle, const int npoints,
const int* pattern_x, const int* pattern_y, PtrStepb desc, int dsize, int WTA_K, cudaStream_t stream);
void mergeLocation_gpu(const short2* loc, float* x, float* y, int npoints, float scale, cudaStream_t stream);
}
}}}
cv::gpu::ORB_GPU::ORB_GPU(size_t n_features, const ORB::CommonParams& detector_params) :
fastDetector_(DEFAULT_FAST_THRESHOLD)
{
setParams(n_features, detector_params);
blurFilter = createGaussianFilter_GPU(CV_8UC1, Size(7, 7), 2, 2, BORDER_REFLECT_101);
blurForDescriptor = false;
}
namespace
{
const float HARRIS_K = 0.04f;
const int DESCRIPTOR_SIZE = 32;
const int bit_pattern_31_[256 * 4] =
{
8,-3, 9,5/*mean (0), correlation (0)*/,
4,2, 7,-12/*mean (1.12461e-05), correlation (0.0437584)*/,
-11,9, -8,2/*mean (3.37382e-05), correlation (0.0617409)*/,
7,-12, 12,-13/*mean (5.62303e-05), correlation (0.0636977)*/,
2,-13, 2,12/*mean (0.000134953), correlation (0.085099)*/,
1,-7, 1,6/*mean (0.000528565), correlation (0.0857175)*/,
-2,-10, -2,-4/*mean (0.0188821), correlation (0.0985774)*/,
-13,-13, -11,-8/*mean (0.0363135), correlation (0.0899616)*/,
-13,-3, -12,-9/*mean (0.121806), correlation (0.099849)*/,
10,4, 11,9/*mean (0.122065), correlation (0.093285)*/,
-13,-8, -8,-9/*mean (0.162787), correlation (0.0942748)*/,
-11,7, -9,12/*mean (0.21561), correlation (0.0974438)*/,
7,7, 12,6/*mean (0.160583), correlation (0.130064)*/,
-4,-5, -3,0/*mean (0.228171), correlation (0.132998)*/,
-13,2, -12,-3/*mean (0.00997526), correlation (0.145926)*/,
-9,0, -7,5/*mean (0.198234), correlation (0.143636)*/,
12,-6, 12,-1/*mean (0.0676226), correlation (0.16689)*/,
-3,6, -2,12/*mean (0.166847), correlation (0.171682)*/,
-6,-13, -4,-8/*mean (0.101215), correlation (0.179716)*/,
11,-13, 12,-8/*mean (0.200641), correlation (0.192279)*/,
4,7, 5,1/*mean (0.205106), correlation (0.186848)*/,
5,-3, 10,-3/*mean (0.234908), correlation (0.192319)*/,
3,-7, 6,12/*mean (0.0709964), correlation (0.210872)*/,
-8,-7, -6,-2/*mean (0.0939834), correlation (0.212589)*/,
-2,11, -1,-10/*mean (0.127778), correlation (0.20866)*/,
-13,12, -8,10/*mean (0.14783), correlation (0.206356)*/,
-7,3, -5,-3/*mean (0.182141), correlation (0.198942)*/,
-4,2, -3,7/*mean (0.188237), correlation (0.21384)*/,
-10,-12, -6,11/*mean (0.14865), correlation (0.23571)*/,
5,-12, 6,-7/*mean (0.222312), correlation (0.23324)*/,
5,-6, 7,-1/*mean (0.229082), correlation (0.23389)*/,
1,0, 4,-5/*mean (0.241577), correlation (0.215286)*/,
9,11, 11,-13/*mean (0.00338507), correlation (0.251373)*/,
4,7, 4,12/*mean (0.131005), correlation (0.257622)*/,
2,-1, 4,4/*mean (0.152755), correlation (0.255205)*/,
-4,-12, -2,7/*mean (0.182771), correlation (0.244867)*/,
-8,-5, -7,-10/*mean (0.186898), correlation (0.23901)*/,
4,11, 9,12/*mean (0.226226), correlation (0.258255)*/,
0,-8, 1,-13/*mean (0.0897886), correlation (0.274827)*/,
-13,-2, -8,2/*mean (0.148774), correlation (0.28065)*/,
-3,-2, -2,3/*mean (0.153048), correlation (0.283063)*/,
-6,9, -4,-9/*mean (0.169523), correlation (0.278248)*/,
8,12, 10,7/*mean (0.225337), correlation (0.282851)*/,
0,9, 1,3/*mean (0.226687), correlation (0.278734)*/,
7,-5, 11,-10/*mean (0.00693882), correlation (0.305161)*/,
-13,-6, -11,0/*mean (0.0227283), correlation (0.300181)*/,
10,7, 12,1/*mean (0.125517), correlation (0.31089)*/,
-6,-3, -6,12/*mean (0.131748), correlation (0.312779)*/,
10,-9, 12,-4/*mean (0.144827), correlation (0.292797)*/,
-13,8, -8,-12/*mean (0.149202), correlation (0.308918)*/,
-13,0, -8,-4/*mean (0.160909), correlation (0.310013)*/,
3,3, 7,8/*mean (0.177755), correlation (0.309394)*/,
5,7, 10,-7/*mean (0.212337), correlation (0.310315)*/,
-1,7, 1,-12/*mean (0.214429), correlation (0.311933)*/,
3,-10, 5,6/*mean (0.235807), correlation (0.313104)*/,
2,-4, 3,-10/*mean (0.00494827), correlation (0.344948)*/,
-13,0, -13,5/*mean (0.0549145), correlation (0.344675)*/,
-13,-7, -12,12/*mean (0.103385), correlation (0.342715)*/,
-13,3, -11,8/*mean (0.134222), correlation (0.322922)*/,
-7,12, -4,7/*mean (0.153284), correlation (0.337061)*/,
6,-10, 12,8/*mean (0.154881), correlation (0.329257)*/,
-9,-1, -7,-6/*mean (0.200967), correlation (0.33312)*/,
-2,-5, 0,12/*mean (0.201518), correlation (0.340635)*/,
-12,5, -7,5/*mean (0.207805), correlation (0.335631)*/,
3,-10, 8,-13/*mean (0.224438), correlation (0.34504)*/,
-7,-7, -4,5/*mean (0.239361), correlation (0.338053)*/,
-3,-2, -1,-7/*mean (0.240744), correlation (0.344322)*/,
2,9, 5,-11/*mean (0.242949), correlation (0.34145)*/,
-11,-13, -5,-13/*mean (0.244028), correlation (0.336861)*/,
-1,6, 0,-1/*mean (0.247571), correlation (0.343684)*/,
5,-3, 5,2/*mean (0.000697256), correlation (0.357265)*/,
-4,-13, -4,12/*mean (0.00213675), correlation (0.373827)*/,
-9,-6, -9,6/*mean (0.0126856), correlation (0.373938)*/,
-12,-10, -8,-4/*mean (0.0152497), correlation (0.364237)*/,
10,2, 12,-3/*mean (0.0299933), correlation (0.345292)*/,
7,12, 12,12/*mean (0.0307242), correlation (0.366299)*/,
-7,-13, -6,5/*mean (0.0534975), correlation (0.368357)*/,
-4,9, -3,4/*mean (0.099865), correlation (0.372276)*/,
7,-1, 12,2/*mean (0.117083), correlation (0.364529)*/,
-7,6, -5,1/*mean (0.126125), correlation (0.369606)*/,
-13,11, -12,5/*mean (0.130364), correlation (0.358502)*/,
-3,7, -2,-6/*mean (0.131691), correlation (0.375531)*/,
7,-8, 12,-7/*mean (0.160166), correlation (0.379508)*/,
-13,-7, -11,-12/*mean (0.167848), correlation (0.353343)*/,
1,-3, 12,12/*mean (0.183378), correlation (0.371916)*/,
2,-6, 3,0/*mean (0.228711), correlation (0.371761)*/,
-4,3, -2,-13/*mean (0.247211), correlation (0.364063)*/,
-1,-13, 1,9/*mean (0.249325), correlation (0.378139)*/,
7,1, 8,-6/*mean (0.000652272), correlation (0.411682)*/,
1,-1, 3,12/*mean (0.00248538), correlation (0.392988)*/,
9,1, 12,6/*mean (0.0206815), correlation (0.386106)*/,
-1,-9, -1,3/*mean (0.0364485), correlation (0.410752)*/,
-13,-13, -10,5/*mean (0.0376068), correlation (0.398374)*/,
7,7, 10,12/*mean (0.0424202), correlation (0.405663)*/,
12,-5, 12,9/*mean (0.0942645), correlation (0.410422)*/,
6,3, 7,11/*mean (0.1074), correlation (0.413224)*/,
5,-13, 6,10/*mean (0.109256), correlation (0.408646)*/,
2,-12, 2,3/*mean (0.131691), correlation (0.416076)*/,
3,8, 4,-6/*mean (0.165081), correlation (0.417569)*/,
2,6, 12,-13/*mean (0.171874), correlation (0.408471)*/,
9,-12, 10,3/*mean (0.175146), correlation (0.41296)*/,
-8,4, -7,9/*mean (0.183682), correlation (0.402956)*/,
-11,12, -4,-6/*mean (0.184672), correlation (0.416125)*/,
1,12, 2,-8/*mean (0.191487), correlation (0.386696)*/,
6,-9, 7,-4/*mean (0.192668), correlation (0.394771)*/,
2,3, 3,-2/*mean (0.200157), correlation (0.408303)*/,
6,3, 11,0/*mean (0.204588), correlation (0.411762)*/,
3,-3, 8,-8/*mean (0.205904), correlation (0.416294)*/,
7,8, 9,3/*mean (0.213237), correlation (0.409306)*/,
-11,-5, -6,-4/*mean (0.243444), correlation (0.395069)*/,
-10,11, -5,10/*mean (0.247672), correlation (0.413392)*/,
-5,-8, -3,12/*mean (0.24774), correlation (0.411416)*/,
-10,5, -9,0/*mean (0.00213675), correlation (0.454003)*/,
8,-1, 12,-6/*mean (0.0293635), correlation (0.455368)*/,
4,-6, 6,-11/*mean (0.0404971), correlation (0.457393)*/,
-10,12, -8,7/*mean (0.0481107), correlation (0.448364)*/,
4,-2, 6,7/*mean (0.050641), correlation (0.455019)*/,
-2,0, -2,12/*mean (0.0525978), correlation (0.44338)*/,
-5,-8, -5,2/*mean (0.0629667), correlation (0.457096)*/,
7,-6, 10,12/*mean (0.0653846), correlation (0.445623)*/,
-9,-13, -8,-8/*mean (0.0858749), correlation (0.449789)*/,
-5,-13, -5,-2/*mean (0.122402), correlation (0.450201)*/,
8,-8, 9,-13/*mean (0.125416), correlation (0.453224)*/,
-9,-11, -9,0/*mean (0.130128), correlation (0.458724)*/,
1,-8, 1,-2/*mean (0.132467), correlation (0.440133)*/,
7,-4, 9,1/*mean (0.132692), correlation (0.454)*/,
-2,1, -1,-4/*mean (0.135695), correlation (0.455739)*/,
11,-6, 12,-11/*mean (0.142904), correlation (0.446114)*/,
-12,-9, -6,4/*mean (0.146165), correlation (0.451473)*/,
3,7, 7,12/*mean (0.147627), correlation (0.456643)*/,
5,5, 10,8/*mean (0.152901), correlation (0.455036)*/,
0,-4, 2,8/*mean (0.167083), correlation (0.459315)*/,
-9,12, -5,-13/*mean (0.173234), correlation (0.454706)*/,
0,7, 2,12/*mean (0.18312), correlation (0.433855)*/,
-1,2, 1,7/*mean (0.185504), correlation (0.443838)*/,
5,11, 7,-9/*mean (0.185706), correlation (0.451123)*/,
3,5, 6,-8/*mean (0.188968), correlation (0.455808)*/,
-13,-4, -8,9/*mean (0.191667), correlation (0.459128)*/,
-5,9, -3,-3/*mean (0.193196), correlation (0.458364)*/,
-4,-7, -3,-12/*mean (0.196536), correlation (0.455782)*/,
6,5, 8,0/*mean (0.1972), correlation (0.450481)*/,
-7,6, -6,12/*mean (0.199438), correlation (0.458156)*/,
-13,6, -5,-2/*mean (0.211224), correlation (0.449548)*/,
1,-10, 3,10/*mean (0.211718), correlation (0.440606)*/,
4,1, 8,-4/*mean (0.213034), correlation (0.443177)*/,
-2,-2, 2,-13/*mean (0.234334), correlation (0.455304)*/,
2,-12, 12,12/*mean (0.235684), correlation (0.443436)*/,
-2,-13, 0,-6/*mean (0.237674), correlation (0.452525)*/,
4,1, 9,3/*mean (0.23962), correlation (0.444824)*/,
-6,-10, -3,-5/*mean (0.248459), correlation (0.439621)*/,
-3,-13, -1,1/*mean (0.249505), correlation (0.456666)*/,
7,5, 12,-11/*mean (0.00119208), correlation (0.495466)*/,
4,-2, 5,-7/*mean (0.00372245), correlation (0.484214)*/,
-13,9, -9,-5/*mean (0.00741116), correlation (0.499854)*/,
7,1, 8,6/*mean (0.0208952), correlation (0.499773)*/,
7,-8, 7,6/*mean (0.0220085), correlation (0.501609)*/,
-7,-4, -7,1/*mean (0.0233806), correlation (0.496568)*/,
-8,11, -7,-8/*mean (0.0236505), correlation (0.489719)*/,
-13,6, -12,-8/*mean (0.0268781), correlation (0.503487)*/,
2,4, 3,9/*mean (0.0323324), correlation (0.501938)*/,
10,-5, 12,3/*mean (0.0399235), correlation (0.494029)*/,
-6,-5, -6,7/*mean (0.0420153), correlation (0.486579)*/,
8,-3, 9,-8/*mean (0.0548021), correlation (0.484237)*/,
2,-12, 2,8/*mean (0.0616622), correlation (0.496642)*/,
-11,-2, -10,3/*mean (0.0627755), correlation (0.498563)*/,
-12,-13, -7,-9/*mean (0.0829622), correlation (0.495491)*/,
-11,0, -10,-5/*mean (0.0843342), correlation (0.487146)*/,
5,-3, 11,8/*mean (0.0929937), correlation (0.502315)*/,
-2,-13, -1,12/*mean (0.113327), correlation (0.48941)*/,
-1,-8, 0,9/*mean (0.132119), correlation (0.467268)*/,
-13,-11, -12,-5/*mean (0.136269), correlation (0.498771)*/,
-10,-2, -10,11/*mean (0.142173), correlation (0.498714)*/,
-3,9, -2,-13/*mean (0.144141), correlation (0.491973)*/,
2,-3, 3,2/*mean (0.14892), correlation (0.500782)*/,
-9,-13, -4,0/*mean (0.150371), correlation (0.498211)*/,
-4,6, -3,-10/*mean (0.152159), correlation (0.495547)*/,
-4,12, -2,-7/*mean (0.156152), correlation (0.496925)*/,
-6,-11, -4,9/*mean (0.15749), correlation (0.499222)*/,
6,-3, 6,11/*mean (0.159211), correlation (0.503821)*/,
-13,11, -5,5/*mean (0.162427), correlation (0.501907)*/,
11,11, 12,6/*mean (0.16652), correlation (0.497632)*/,
7,-5, 12,-2/*mean (0.169141), correlation (0.484474)*/,
-1,12, 0,7/*mean (0.169456), correlation (0.495339)*/,
-4,-8, -3,-2/*mean (0.171457), correlation (0.487251)*/,
-7,1, -6,7/*mean (0.175), correlation (0.500024)*/,
-13,-12, -8,-13/*mean (0.175866), correlation (0.497523)*/,
-7,-2, -6,-8/*mean (0.178273), correlation (0.501854)*/,
-8,5, -6,-9/*mean (0.181107), correlation (0.494888)*/,
-5,-1, -4,5/*mean (0.190227), correlation (0.482557)*/,
-13,7, -8,10/*mean (0.196739), correlation (0.496503)*/,
1,5, 5,-13/*mean (0.19973), correlation (0.499759)*/,
1,0, 10,-13/*mean (0.204465), correlation (0.49873)*/,
9,12, 10,-1/*mean (0.209334), correlation (0.49063)*/,
5,-8, 10,-9/*mean (0.211134), correlation (0.503011)*/,
-1,11, 1,-13/*mean (0.212), correlation (0.499414)*/,
-9,-3, -6,2/*mean (0.212168), correlation (0.480739)*/,
-1,-10, 1,12/*mean (0.212731), correlation (0.502523)*/,
-13,1, -8,-10/*mean (0.21327), correlation (0.489786)*/,
8,-11, 10,-6/*mean (0.214159), correlation (0.488246)*/,
2,-13, 3,-6/*mean (0.216993), correlation (0.50287)*/,
7,-13, 12,-9/*mean (0.223639), correlation (0.470502)*/,
-10,-10, -5,-7/*mean (0.224089), correlation (0.500852)*/,
-10,-8, -8,-13/*mean (0.228666), correlation (0.502629)*/,
4,-6, 8,5/*mean (0.22906), correlation (0.498305)*/,
3,12, 8,-13/*mean (0.233378), correlation (0.503825)*/,
-4,2, -3,-3/*mean (0.234323), correlation (0.476692)*/,
5,-13, 10,-12/*mean (0.236392), correlation (0.475462)*/,
4,-13, 5,-1/*mean (0.236842), correlation (0.504132)*/,
-9,9, -4,3/*mean (0.236977), correlation (0.497739)*/,
0,3, 3,-9/*mean (0.24314), correlation (0.499398)*/,
-12,1, -6,1/*mean (0.243297), correlation (0.489447)*/,
3,2, 4,-8/*mean (0.00155196), correlation (0.553496)*/,
-10,-10, -10,9/*mean (0.00239541), correlation (0.54297)*/,
8,-13, 12,12/*mean (0.0034413), correlation (0.544361)*/,
-8,-12, -6,-5/*mean (0.003565), correlation (0.551225)*/,
2,2, 3,7/*mean (0.00835583), correlation (0.55285)*/,
10,6, 11,-8/*mean (0.00885065), correlation (0.540913)*/,
6,8, 8,-12/*mean (0.0101552), correlation (0.551085)*/,
-7,10, -6,5/*mean (0.0102227), correlation (0.533635)*/,
-3,-9, -3,9/*mean (0.0110211), correlation (0.543121)*/,
-1,-13, -1,5/*mean (0.0113473), correlation (0.550173)*/,
-3,-7, -3,4/*mean (0.0140913), correlation (0.554774)*/,
-8,-2, -8,3/*mean (0.017049), correlation (0.55461)*/,
4,2, 12,12/*mean (0.01778), correlation (0.546921)*/,
2,-5, 3,11/*mean (0.0224022), correlation (0.549667)*/,
6,-9, 11,-13/*mean (0.029161), correlation (0.546295)*/,
3,-1, 7,12/*mean (0.0303081), correlation (0.548599)*/,
11,-1, 12,4/*mean (0.0355151), correlation (0.523943)*/,
-3,0, -3,6/*mean (0.0417904), correlation (0.543395)*/,
4,-11, 4,12/*mean (0.0487292), correlation (0.542818)*/,
2,-4, 2,1/*mean (0.0575124), correlation (0.554888)*/,
-10,-6, -8,1/*mean (0.0594242), correlation (0.544026)*/,
-13,7, -11,1/*mean (0.0597391), correlation (0.550524)*/,
-13,12, -11,-13/*mean (0.0608974), correlation (0.55383)*/,
6,0, 11,-13/*mean (0.065126), correlation (0.552006)*/,
0,-1, 1,4/*mean (0.074224), correlation (0.546372)*/,
-13,3, -9,-2/*mean (0.0808592), correlation (0.554875)*/,
-9,8, -6,-3/*mean (0.0883378), correlation (0.551178)*/,
-13,-6, -8,-2/*mean (0.0901035), correlation (0.548446)*/,
5,-9, 8,10/*mean (0.0949843), correlation (0.554694)*/,
2,7, 3,-9/*mean (0.0994152), correlation (0.550979)*/,
-1,-6, -1,-1/*mean (0.10045), correlation (0.552714)*/,
9,5, 11,-2/*mean (0.100686), correlation (0.552594)*/,
11,-3, 12,-8/*mean (0.101091), correlation (0.532394)*/,
3,0, 3,5/*mean (0.101147), correlation (0.525576)*/,
-1,4, 0,10/*mean (0.105263), correlation (0.531498)*/,
3,-6, 4,5/*mean (0.110785), correlation (0.540491)*/,
-13,0, -10,5/*mean (0.112798), correlation (0.536582)*/,
5,8, 12,11/*mean (0.114181), correlation (0.555793)*/,
8,9, 9,-6/*mean (0.117431), correlation (0.553763)*/,
7,-4, 8,-12/*mean (0.118522), correlation (0.553452)*/,
-10,4, -10,9/*mean (0.12094), correlation (0.554785)*/,
7,3, 12,4/*mean (0.122582), correlation (0.555825)*/,
9,-7, 10,-2/*mean (0.124978), correlation (0.549846)*/,
7,0, 12,-2/*mean (0.127002), correlation (0.537452)*/,
-1,-6, 0,-11/*mean (0.127148), correlation (0.547401)*/
};
void initializeOrbPattern(const Point* pattern0, Mat& pattern, int ntuples, int tupleSize, int poolSize)
{
RNG rng(0x12345678);
pattern.create(2, ntuples * tupleSize, CV_32SC1);
pattern.setTo(Scalar::all(0));
int* pattern_x_ptr = pattern.ptr<int>(0);
int* pattern_y_ptr = pattern.ptr<int>(1);
for (int i = 0; i < ntuples; i++)
{
for (int k = 0; k < tupleSize; k++)
{
for(;;)
{
int idx = rng.uniform(0, poolSize);
Point pt = pattern0[idx];
int k1;
for (k1 = 0; k1 < k; k1++)
if (pattern_x_ptr[tupleSize * i + k1] == pt.x && pattern_y_ptr[tupleSize * i + k1] == pt.y)
break;
if (k1 == k)
{
pattern_x_ptr[tupleSize * i + k] = pt.x;
pattern_y_ptr[tupleSize * i + k] = pt.y;
break;
}
}
}
}
}
void makeRandomPattern(int patchSize, Point* pattern, int npoints)
{
// we always start with a fixed seed,
// to make patterns the same on each run
RNG rng(0x34985739);
for (int i = 0; i < npoints; i++)
{
pattern[i].x = rng.uniform(-patchSize / 2, patchSize / 2 + 1);
pattern[i].y = rng.uniform(-patchSize / 2, patchSize / 2 + 1);
}
}
}
void cv::gpu::ORB_GPU::setParams(size_t n_features, const ORB::CommonParams& detector_params)
{
params_ = detector_params;
// fill the extractors and descriptors for the corresponding scales
int n_levels = static_cast<int>(params_.n_levels_);
float factor = 1.0f / params_.scale_factor_;
float n_desired_features_per_scale = n_features * (1.0f - factor) / (1.0f - std::pow(factor, n_levels));
n_features_per_level_.resize(n_levels);
int sum_n_features = 0;
for (int level = 0; level < n_levels - 1; ++level)
{
n_features_per_level_[level] = cvRound(n_desired_features_per_scale);
sum_n_features += n_features_per_level_[level];
n_desired_features_per_scale *= factor;
}
n_features_per_level_[n_levels - 1] = n_features - sum_n_features;
// pre-compute the end of a row in a circular patch
int half_patch_size = params_.patch_size_ / 2;
vector<int> u_max(half_patch_size + 1);
for (int v = 0; v <= half_patch_size * sqrt(2.f) / 2 + 1; ++v)
u_max[v] = cvRound(sqrt(static_cast<float>(half_patch_size * half_patch_size - v * v)));
// Make sure we are symmetric
for (int v = half_patch_size, v_0 = 0; v >= half_patch_size * sqrt(2.f) / 2; --v)
{
while (u_max[v_0] == u_max[v_0 + 1])
++v_0;
u_max[v] = v_0;
++v_0;
}
CV_Assert(u_max.size() < 32);
cv::gpu::device::orb::loadUMax(&u_max[0], u_max.size());
// Calc pattern
const int npoints = 512;
Point pattern_buf[npoints];
const Point* pattern0 = (const Point*)bit_pattern_31_;
if (params_.patch_size_ != 31)
{
pattern0 = pattern_buf;
makeRandomPattern(params_.patch_size_, pattern_buf, npoints);
}
CV_Assert(params_.WTA_K_ == 2 || params_.WTA_K_ == 3 || params_.WTA_K_ == 4);
Mat h_pattern;
if (params_.WTA_K_ == 2)
{
h_pattern.create(2, npoints, CV_32SC1);
int* pattern_x_ptr = h_pattern.ptr<int>(0);
int* pattern_y_ptr = h_pattern.ptr<int>(1);
for (int i = 0; i < npoints; ++i)
{
pattern_x_ptr[i] = pattern0[i].x;
pattern_y_ptr[i] = pattern0[i].y;
}
}
else
{
int ntuples = descriptorSize() * 4;
initializeOrbPattern(pattern0, h_pattern, ntuples, params_.WTA_K_, npoints);
}
pattern_.upload(h_pattern);
}
namespace
{
inline float getScale(const ORB::CommonParams& params, int level)
{
return pow(params.scale_factor_, level - static_cast<int>(params.first_level_));
}
}
void cv::gpu::ORB_GPU::buildScalePyramids(const GpuMat& image, const GpuMat& mask)
{
CV_Assert(image.type() == CV_8UC1);
CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.size() == image.size()));
imagePyr_.resize(params_.n_levels_);
maskPyr_.resize(params_.n_levels_);
for (int level = 0; level < static_cast<int>(params_.n_levels_); ++level)
{
float scale = 1.0f / getScale(params_, level);
Size sz(cvRound(image.cols * scale), cvRound(image.rows * scale));
ensureSizeIsEnough(sz, image.type(), imagePyr_[level]);
ensureSizeIsEnough(sz, CV_8UC1, maskPyr_[level]);
maskPyr_[level].setTo(Scalar::all(255));
// Compute the resized image
if (level != static_cast<int>(params_.first_level_))
{
if (level < static_cast<int>(params_.first_level_))
{
resize(image, imagePyr_[level], sz, 0, 0, INTER_LINEAR);
if (!mask.empty())
resize(mask, maskPyr_[level], sz, 0, 0, INTER_LINEAR);
}
else
{
resize(imagePyr_[level - 1], imagePyr_[level], sz, 0, 0, INTER_LINEAR);
if (!mask.empty())
resize(maskPyr_[level - 1], maskPyr_[level], sz, 0, 0, INTER_LINEAR);
}
}
else
{
image.copyTo(imagePyr_[level]);
if (!mask.empty())
mask.copyTo(maskPyr_[level]);
}
// Filter keypoints by image border
ensureSizeIsEnough(sz, CV_8UC1, buf_);
buf_.setTo(Scalar::all(0));
Rect inner(params_.edge_threshold_, params_.edge_threshold_, sz.width - 2 * params_.edge_threshold_, sz.height - 2 * params_.edge_threshold_);
buf_(inner).setTo(Scalar::all(255));
bitwise_and(maskPyr_[level], buf_, maskPyr_[level]);
}
}
namespace
{
//takes keypoints and culls them by the response
void cull(GpuMat& keypoints, int& count, int n_points)
{
using namespace cv::gpu::device::orb;
//this is only necessary if the keypoints size is greater than the number of desired points.
if (count > n_points)
{
if (n_points == 0)
{
keypoints.release();
return;
}
count = cull_gpu(keypoints.ptr<int>(FAST_GPU::LOCATION_ROW), keypoints.ptr<float>(FAST_GPU::RESPONSE_ROW), count, n_points);
}
}
}
void cv::gpu::ORB_GPU::computeKeyPointsPyramid()
{
using namespace cv::gpu::device::orb;
int half_patch_size = params_.patch_size_ / 2;
keyPointsPyr_.resize(params_.n_levels_);
keyPointsCount_.resize(params_.n_levels_);
for (int level = 0; level < static_cast<int>(params_.n_levels_); ++level)
{
keyPointsCount_[level] = fastDetector_.calcKeyPointsLocation(imagePyr_[level], maskPyr_[level]);
ensureSizeIsEnough(3, keyPointsCount_[level], CV_32FC1, keyPointsPyr_[level]);
keyPointsCount_[level] = fastDetector_.getKeyPoints(keyPointsPyr_[level].rowRange(0, 2));
int n_features = n_features_per_level_[level];
if (params_.score_type_ == ORB::CommonParams::HARRIS_SCORE)
{
// Keep more points than necessary as FAST does not give amazing corners
cull(keyPointsPyr_[level], keyPointsCount_[level], 2 * n_features);
// Compute the Harris cornerness (better scoring than FAST)
HarrisResponses_gpu(imagePyr_[level], keyPointsPyr_[level].ptr<short2>(0), keyPointsPyr_[level].ptr<float>(1), keyPointsCount_[level], 7, HARRIS_K, 0);
}
//cull to the final desired level, using the new Harris scores or the original FAST scores.
cull(keyPointsPyr_[level], keyPointsCount_[level], n_features);
// Compute orientation
IC_Angle_gpu(imagePyr_[level], keyPointsPyr_[level].ptr<short2>(0), keyPointsPyr_[level].ptr<float>(2), keyPointsCount_[level], half_patch_size, 0);
}
}
void cv::gpu::ORB_GPU::computeDescriptors(GpuMat& descriptors)
{
using namespace cv::gpu::device::orb;
int nAllkeypoints = 0;
for (size_t level = 0; level < params_.n_levels_; ++level)
nAllkeypoints += keyPointsCount_[level];
if (nAllkeypoints == 0)
{
descriptors.release();
return;
}
ensureSizeIsEnough(nAllkeypoints, descriptorSize(), CV_8UC1, descriptors);
int offset = 0;
for (size_t level = 0; level < params_.n_levels_; ++level)
{
GpuMat descRange = descriptors.rowRange(offset, offset + keyPointsCount_[level]);
if (blurForDescriptor)
{
// preprocess the resized image
ensureSizeIsEnough(imagePyr_[level].size(), imagePyr_[level].type(), buf_);
blurFilter->apply(imagePyr_[level], buf_, Rect(0, 0, imagePyr_[level].cols, imagePyr_[level].rows));
}
computeOrbDescriptor_gpu(blurForDescriptor ? buf_ : imagePyr_[level], keyPointsPyr_[level].ptr<short2>(0), keyPointsPyr_[level].ptr<float>(2),
keyPointsCount_[level], pattern_.ptr<int>(0), pattern_.ptr<int>(1), descRange, descriptorSize(), params_.WTA_K_, 0);
offset += keyPointsCount_[level];
}
}
void cv::gpu::ORB_GPU::mergeKeyPoints(GpuMat& keypoints)
{
using namespace cv::gpu::device::orb;
int nAllkeypoints = 0;
for (size_t level = 0; level < params_.n_levels_; ++level)
nAllkeypoints += keyPointsCount_[level];
if (nAllkeypoints == 0)
{
keypoints.release();
return;
}
ensureSizeIsEnough(ROWS_COUNT, nAllkeypoints, CV_32FC1, keypoints);
int offset = 0;
for (int level = 0; level < static_cast<int>(params_.n_levels_); ++level)
{
float sf = getScale(params_, level);
GpuMat keyPointsRange = keypoints.colRange(offset, offset + keyPointsCount_[level]);
float locScale = level != static_cast<int>(params_.first_level_) ? sf : 1.0f;
mergeLocation_gpu(keyPointsPyr_[level].ptr<short2>(0), keyPointsRange.ptr<float>(0), keyPointsRange.ptr<float>(1), keyPointsCount_[level], locScale, 0);
keyPointsPyr_[level].rowRange(1, 3).copyTo(keyPointsRange.rowRange(2, 4));
keyPointsRange.row(4).setTo(Scalar::all(level));
keyPointsRange.row(5).setTo(Scalar::all(params_.patch_size_ * sf));
offset += keyPointsCount_[level];
}
}
void cv::gpu::ORB_GPU::downloadKeyPoints(GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints)
{
if (d_keypoints.empty())
{
keypoints.clear();
return;
}
Mat h_keypoints(d_keypoints);
convertKeyPoints(h_keypoints, keypoints);
}
void cv::gpu::ORB_GPU::convertKeyPoints(Mat& d_keypoints, std::vector<KeyPoint>& keypoints)
{
if (d_keypoints.empty())
{
keypoints.clear();
return;
}
CV_Assert(d_keypoints.type() == CV_32FC1 && d_keypoints.rows == ROWS_COUNT);
float* x_ptr = d_keypoints.ptr<float>(X_ROW);
float* y_ptr = d_keypoints.ptr<float>(Y_ROW);
float* response_ptr = d_keypoints.ptr<float>(RESPONSE_ROW);
float* angle_ptr = d_keypoints.ptr<float>(ANGLE_ROW);
float* octave_ptr = d_keypoints.ptr<float>(OCTAVE_ROW);
float* size_ptr = d_keypoints.ptr<float>(SIZE_ROW);
keypoints.resize(d_keypoints.cols);
for (int i = 0; i < d_keypoints.cols; ++i)
{
KeyPoint kp;
kp.pt.x = x_ptr[i];
kp.pt.y = y_ptr[i];
kp.response = response_ptr[i];
kp.angle = angle_ptr[i];
kp.octave = static_cast<int>(octave_ptr[i]);
kp.size = size_ptr[i];
keypoints[i] = kp;
}
}
void cv::gpu::ORB_GPU::operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints)
{
buildScalePyramids(image, mask);
computeKeyPointsPyramid();
mergeKeyPoints(keypoints);
}
void cv::gpu::ORB_GPU::operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints, GpuMat& descriptors)
{
buildScalePyramids(image, mask);
computeKeyPointsPyramid();
computeDescriptors(descriptors);
mergeKeyPoints(keypoints);
}
void cv::gpu::ORB_GPU::operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints)
{
(*this)(image, mask, d_keypoints_);
downloadKeyPoints(d_keypoints_, keypoints);
}
void cv::gpu::ORB_GPU::operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints, GpuMat& descriptors)
{
(*this)(image, mask, d_keypoints_, descriptors);
downloadKeyPoints(d_keypoints_, keypoints);
}
void cv::gpu::ORB_GPU::release()
{
imagePyr_.clear();
maskPyr_.clear();
buf_.release();
keyPointsPyr_.clear();
fastDetector_.release();
d_keypoints_.release();
}
#endif /* !defined (HAVE_CUDA) */

View File

@ -70,22 +70,6 @@ struct SURF : testing::TestWithParam<cv::gpu::DeviceInfo>
cv::SURF fdetector_gold; fdetector_gold.extended = false;
fdetector_gold(image, mask, keypoints_gold, descriptors_gold);
}
bool isSimilarKeypoints(const cv::KeyPoint& p1, const cv::KeyPoint& p2)
{
const float maxPtDif = 1.f;
const float maxSizeDif = 1.f;
const float maxAngleDif = 2.f;
const float maxResponseDif = 0.1f;
float dist = (float)cv::norm(p1.pt - p2.pt);
return (dist < maxPtDif &&
fabs(p1.size - p2.size) < maxSizeDif &&
abs(p1.angle - p2.angle) < maxAngleDif &&
abs(p1.response - p2.response) < maxResponseDif &&
p1.octave == p2.octave &&
p1.class_id == p2.class_id );
}
};
TEST_P(SURF, EmptyDataTest)
@ -652,4 +636,169 @@ INSTANTIATE_TEST_CASE_P(Features2D, BruteForceMatcher, testing::Combine(
testing::Values(cv::gpu::BruteForceMatcher_GPU_base::L1Dist, cv::gpu::BruteForceMatcher_GPU_base::L2Dist),
testing::Values(57, 64, 83, 128, 179, 256, 304)));
/////////////////////////////////////////////////////////////////////////////////////////////////
// FAST
struct FAST : testing::TestWithParam<cv::gpu::DeviceInfo>
{
cv::gpu::DeviceInfo devInfo;
cv::Mat image;
int threshold;
std::vector<cv::KeyPoint> keypoints_gold;
virtual void SetUp()
{
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
image = readImage("features2d/aloe.png", CV_LOAD_IMAGE_GRAYSCALE);
ASSERT_FALSE(image.empty());
cv::RNG& rng = cvtest::TS::ptr()->get_rng();
threshold = rng.uniform(15, 80);
cv::FAST(image, keypoints_gold, threshold);
}
};
struct HashEq
{
size_t hash;
inline HashEq(size_t hash_) : hash(hash_) {}
inline bool operator ()(const cv::KeyPoint& kp) const
{
return kp.hash() == hash;
}
};
struct KeyPointCompare
{
inline bool operator ()(const cv::KeyPoint& kp1, const cv::KeyPoint& kp2) const
{
return kp1.pt.y < kp2.pt.y || (kp1.pt.y == kp2.pt.y && kp1.pt.x < kp2.pt.x);
}
};
TEST_P(FAST, Accuracy)
{
std::vector<cv::KeyPoint> keypoints;
ASSERT_NO_THROW(
cv::gpu::FAST_GPU fastGPU(threshold);
fastGPU(cv::gpu::GpuMat(image), cv::gpu::GpuMat(), keypoints);
);
ASSERT_EQ(keypoints.size(), keypoints_gold.size());
std::sort(keypoints.begin(), keypoints.end(), KeyPointCompare());
for (size_t i = 0; i < keypoints_gold.size(); ++i)
{
const cv::KeyPoint& kp1 = keypoints[i];
const cv::KeyPoint& kp2 = keypoints_gold[i];
size_t h1 = kp1.hash();
size_t h2 = kp2.hash();
ASSERT_EQ(h1, h2);
}
}
INSTANTIATE_TEST_CASE_P(Features2D, FAST, testing::ValuesIn(devices()));
/////////////////////////////////////////////////////////////////////////////////////////////////
// ORB
struct ORB : testing::TestWithParam<cv::gpu::DeviceInfo>
{
cv::gpu::DeviceInfo devInfo;
cv::Mat image;
cv::Mat mask;
int npoints;
std::vector<cv::KeyPoint> keypoints_gold;
cv::Mat descriptors_gold;
virtual void SetUp()
{
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
image = readImage("features2d/aloe.png", CV_LOAD_IMAGE_GRAYSCALE);
ASSERT_FALSE(image.empty());
mask = cv::Mat(image.size(), CV_8UC1, cv::Scalar::all(1));
mask(cv::Range(0, image.rows / 2), cv::Range(0, image.cols / 2)).setTo(cv::Scalar::all(0));
npoints = 4000;
cv::ORB orbCPU(npoints);
orbCPU(image, mask, keypoints_gold, descriptors_gold);
}
};
int getValidMatchesCount(const std::vector<cv::KeyPoint>& keypoints1, const std::vector<cv::KeyPoint>& keypoints2, const std::vector<cv::DMatch>& matches)
{
int count = 0;
for (size_t i = 0; i < matches.size(); ++i)
{
const cv::DMatch& m = matches[i];
const cv::KeyPoint& kp1 = keypoints1[m.queryIdx];
const cv::KeyPoint& kp2 = keypoints2[m.trainIdx];
bool isEq =
fabs(kp1.pt.x - kp2.pt.x) <= 1 &&
fabs(kp1.pt.y - kp2.pt.y) <= 1 &&
//fabs(kp1.size - kp2.size) < 1 &&
//fabs(kp1.angle - kp2.angle) <= 1 &&
//fabs(kp1.response - kp2.response) < 1 &&
//kp1.octave == kp2.octave &&
//kp1.class_id == kp2.class_id
true;
if (isEq)
++count;
}
return count;
}
TEST_P(ORB, Accuracy)
{
std::vector<cv::KeyPoint> keypoints;
cv::Mat descriptors;
ASSERT_NO_THROW(
cv::gpu::ORB_GPU orbGPU(npoints);
cv::gpu::GpuMat d_descriptors;
orbGPU(cv::gpu::GpuMat(image), cv::gpu::GpuMat(mask), keypoints, d_descriptors);
d_descriptors.download(descriptors);
);
cv::BruteForceMatcher<cv::Hamming> matcher;
std::vector<cv::DMatch> matches;
matcher.match(descriptors_gold, descriptors, matches);
int count = getValidMatchesCount(keypoints_gold, keypoints, matches);
double ratio = 100.0 * count / matches.size();
ASSERT_GE(ratio, 70.0);
}
INSTANTIATE_TEST_CASE_P(Features2D, ORB, testing::ValuesIn(devices()));
#endif // HAVE_CUDA

View File

@ -362,30 +362,81 @@ TEST(meanShift)
TEST(SURF)
{
Mat src1 = imread(abspath("aloeL.jpg"), CV_LOAD_IMAGE_GRAYSCALE);
Mat src2 = imread(abspath("aloeR.jpg"), CV_LOAD_IMAGE_GRAYSCALE);
if (src1.empty()) throw runtime_error("can't open aloeL.jpg");
if (src2.empty()) throw runtime_error("can't open aloeR.jpg");
gpu::GpuMat d_src1(src1);
gpu::GpuMat d_src2(src2);
Mat src = imread(abspath("aloeL.jpg"), CV_LOAD_IMAGE_GRAYSCALE);
if (src.empty()) throw runtime_error("can't open aloeL.jpg");
SURF surf;
vector<KeyPoint> keypoints1, keypoints2;
vector<float> descriptors1, descriptors2;
vector<KeyPoint> keypoints;
vector<float> descriptors;
surf(src, Mat(), keypoints, descriptors);
CPU_ON;
surf(src1, Mat(), keypoints1, descriptors1);
surf(src2, Mat(), keypoints2, descriptors2);
surf(src, Mat(), keypoints, descriptors);
CPU_OFF;
gpu::SURF_GPU d_surf;
gpu::GpuMat d_keypoints1, d_keypoints2;
gpu::GpuMat d_descriptors1, d_descriptors2;
gpu::GpuMat d_src(src);
gpu::GpuMat d_keypoints;
gpu::GpuMat d_descriptors;
d_surf(d_src, gpu::GpuMat(), d_keypoints, d_descriptors);
GPU_ON;
d_surf(d_src1, gpu::GpuMat(), d_keypoints1, d_descriptors1);
d_surf(d_src2, gpu::GpuMat(), d_keypoints2, d_descriptors2);
d_surf(d_src, gpu::GpuMat(), d_keypoints, d_descriptors);
GPU_OFF;
}
TEST(FAST)
{
Mat src = imread(abspath("aloeL.jpg"), CV_LOAD_IMAGE_GRAYSCALE);
if (src.empty()) throw runtime_error("can't open aloeL.jpg");
vector<KeyPoint> keypoints;
FAST(src, keypoints, 20);
CPU_ON;
FAST(src, keypoints, 20);
CPU_OFF;
gpu::FAST_GPU d_FAST(20);
gpu::GpuMat d_src(src);
gpu::GpuMat d_keypoints;
d_FAST(d_src, gpu::GpuMat(), d_keypoints);
GPU_ON;
d_FAST(d_src, gpu::GpuMat(), d_keypoints);
GPU_OFF;
}
TEST(ORB)
{
Mat src = imread(abspath("aloeL.jpg"), CV_LOAD_IMAGE_GRAYSCALE);
if (src.empty()) throw runtime_error("can't open aloeL.jpg");
ORB orb(4000);
vector<KeyPoint> keypoints;
Mat descriptors;
orb(src, Mat(), keypoints, descriptors);
CPU_ON;
orb(src, Mat(), keypoints, descriptors);
CPU_OFF;
gpu::ORB_GPU d_orb;
gpu::GpuMat d_src(src);
gpu::GpuMat d_keypoints;
gpu::GpuMat d_descriptors;
d_orb(d_src, gpu::GpuMat(), d_keypoints, d_descriptors);
GPU_ON;
d_orb(d_src, gpu::GpuMat(), d_keypoints, d_descriptors);
GPU_OFF;
}