fixed SURF_GPU (fails on empty data)

added test for SURF_GPU and reprojectImageTo3D
This commit is contained in:
Vladislav Vinogradov
2011-02-07 10:12:04 +00:00
parent f42a449df9
commit 5cd06d6a36
6 changed files with 356 additions and 55 deletions

View File

@@ -315,8 +315,8 @@ namespace cv
{
namespace gpu
{
template <bool UseSmart> struct TransformChooser;
template<> struct TransformChooser<false>
template <bool UseSmart> struct TransformDispatcher;
template<> struct TransformDispatcher<false>
{
template <typename T, typename D, typename UnOp, typename Mask>
static void call(const DevMem2D_<T>& src, const DevMem2D_<D>& dst, UnOp op, const Mask& mask,
@@ -350,7 +350,7 @@ namespace cv
cudaSafeCall( cudaThreadSynchronize() );
}
};
template<> struct TransformChooser<true>
template<> struct TransformDispatcher<true>
{
template <typename T, typename D, typename UnOp, typename Mask>
static void call(const DevMem2D_<T>& src, const DevMem2D_<D>& dst, UnOp op, const Mask& mask,
@@ -393,7 +393,7 @@ namespace cv
static void transform_caller(const DevMem2D_<T>& src, const DevMem2D_<D>& dst, UnOp op, const Mask& mask,
cudaStream_t stream = 0)
{
TransformChooser<device::VecTraits<T>::cn == 1 && device::VecTraits<D>::cn == 1 && device::UnReadWriteTraits<T, D>::shift != 1>::call(src, dst, op, mask, stream);
TransformDispatcher<device::VecTraits<T>::cn == 1 && device::VecTraits<D>::cn == 1 && device::UnReadWriteTraits<T, D>::shift != 1>::call(src, dst, op, mask, stream);
}
template <typename T, typename D, typename UnOp>
@@ -412,7 +412,7 @@ namespace cv
static void transform_caller(const DevMem2D_<T1>& src1, const DevMem2D_<T2>& src2, const DevMem2D_<D>& dst,
BinOp op, const Mask& mask, cudaStream_t stream = 0)
{
TransformChooser<device::VecTraits<T1>::cn == 1 && device::VecTraits<T2>::cn == 1 && device::VecTraits<D>::cn == 1 && device::BinReadWriteTraits<T1, T2, D>::shift != 1>::call(src1, src2, dst, op, mask, stream);
TransformDispatcher<device::VecTraits<T1>::cn == 1 && device::VecTraits<T2>::cn == 1 && device::VecTraits<D>::cn == 1 && device::BinReadWriteTraits<T1, T2, D>::shift != 1>::call(src1, src2, dst, op, mask, stream);
}
template <typename T1, typename T2, typename D, typename BinOp>

View File

@@ -101,7 +101,7 @@ namespace
featureCounter(0), maxCounter(0)
{
CV_Assert(img.type() == CV_8UC1);
CV_Assert(!img.empty() && img.type() == CV_8UC1);
CV_Assert(mask.empty() || (mask.size() == img.size() && mask.type() == CV_8UC1));
CV_Assert(nOctaves > 0 && nIntervals > 2);
CV_Assert(DeviceInfo().has(ATOMICS));
@@ -109,6 +109,8 @@ namespace
max_features = static_cast<int>(img.size().area() * featuresRatio);
max_candidates = static_cast<int>(1.5 * max_features);
CV_Assert(max_features > 0);
featuresBuffer.create(1, max_features, CV_32FC(6));
maxPosBuffer.create(1, max_candidates, CV_32SC4);
@@ -202,7 +204,10 @@ namespace
featureCounter = std::min(featureCounter, static_cast<unsigned int>(max_features));
}
featuresBuffer.colRange(0, featureCounter).copyTo(keypoints);
if (featureCounter > 0)
featuresBuffer.colRange(0, featureCounter).copyTo(keypoints);
else
keypoints.release();
}
void findOrientation(GpuMat& keypoints)
@@ -252,83 +257,104 @@ int cv::gpu::SURF_GPU::descriptorSize() const
void cv::gpu::SURF_GPU::uploadKeypoints(const vector<KeyPoint>& keypoints, GpuMat& keypointsGPU)
{
Mat keypointsCPU(1, keypoints.size(), CV_32FC(6));
const KeyPoint* keypoints_ptr = &keypoints[0];
KeyPoint_GPU* keypointsCPU_ptr = keypointsCPU.ptr<KeyPoint_GPU>();
for (size_t i = 0; i < keypoints.size(); ++i, ++keypoints_ptr, ++keypointsCPU_ptr)
if (keypoints.empty())
keypointsGPU.release();
else
{
const KeyPoint& kp = *keypoints_ptr;
KeyPoint_GPU& gkp = *keypointsCPU_ptr;
Mat keypointsCPU(1, keypoints.size(), CV_32FC(6));
gkp.x = kp.pt.x;
gkp.y = kp.pt.y;
const KeyPoint* keypoints_ptr = &keypoints[0];
KeyPoint_GPU* keypointsCPU_ptr = keypointsCPU.ptr<KeyPoint_GPU>();
for (size_t i = 0; i < keypoints.size(); ++i, ++keypoints_ptr, ++keypointsCPU_ptr)
{
const KeyPoint& kp = *keypoints_ptr;
KeyPoint_GPU& gkp = *keypointsCPU_ptr;
gkp.size = kp.size;
gkp.x = kp.pt.x;
gkp.y = kp.pt.y;
gkp.octave = static_cast<float>(kp.octave);
gkp.angle = kp.angle;
gkp.response = kp.response;
gkp.size = kp.size;
gkp.octave = static_cast<float>(kp.octave);
gkp.angle = kp.angle;
gkp.response = kp.response;
}
keypointsGPU.upload(keypointsCPU);
}
keypointsGPU.upload(keypointsCPU);
}
void cv::gpu::SURF_GPU::downloadKeypoints(const GpuMat& keypointsGPU, vector<KeyPoint>& keypoints)
{
CV_Assert(keypointsGPU.type() == CV_32FC(6) && keypointsGPU.rows == 1);
Mat keypointsCPU = keypointsGPU;
keypoints.resize(keypointsGPU.cols);
KeyPoint* keypoints_ptr = &keypoints[0];
const KeyPoint_GPU* keypointsCPU_ptr = keypointsCPU.ptr<KeyPoint_GPU>();
for (int i = 0; i < keypointsGPU.cols; ++i, ++keypoints_ptr, ++keypointsCPU_ptr)
if (keypointsGPU.empty())
keypoints.clear();
else
{
KeyPoint& kp = *keypoints_ptr;
const KeyPoint_GPU& gkp = *keypointsCPU_ptr;
CV_Assert(keypointsGPU.type() == CV_32FC(6) && keypointsGPU.isContinuous());
kp.pt.x = gkp.x;
kp.pt.y = gkp.y;
Mat keypointsCPU = keypointsGPU;
keypoints.resize(keypointsGPU.cols);
kp.size = gkp.size;
KeyPoint* keypoints_ptr = &keypoints[0];
const KeyPoint_GPU* keypointsCPU_ptr = keypointsCPU.ptr<KeyPoint_GPU>();
for (int i = 0; i < keypointsGPU.cols; ++i, ++keypoints_ptr, ++keypointsCPU_ptr)
{
KeyPoint& kp = *keypoints_ptr;
const KeyPoint_GPU& gkp = *keypointsCPU_ptr;
kp.octave = static_cast<int>(gkp.octave);
kp.angle = gkp.angle;
kp.response = gkp.response;
kp.pt.x = gkp.x;
kp.pt.y = gkp.y;
kp.size = gkp.size;
kp.octave = static_cast<int>(gkp.octave);
kp.angle = gkp.angle;
kp.response = gkp.response;
}
}
}
void cv::gpu::SURF_GPU::downloadDescriptors(const GpuMat& descriptorsGPU, vector<float>& descriptors)
{
CV_Assert(descriptorsGPU.type() == CV_32F);
if (descriptorsGPU.empty())
descriptors.clear();
else
{
CV_Assert(descriptorsGPU.type() == CV_32F);
descriptors.resize(descriptorsGPU.rows * descriptorsGPU.cols);
Mat descriptorsCPU(descriptorsGPU.size(), CV_32F, &descriptors[0]);
descriptorsGPU.download(descriptorsCPU);
descriptors.resize(descriptorsGPU.rows * descriptorsGPU.cols);
Mat descriptorsCPU(descriptorsGPU.size(), CV_32F, &descriptors[0]);
descriptorsGPU.download(descriptorsCPU);
}
}
void cv::gpu::SURF_GPU::operator()(const GpuMat& img, const GpuMat& mask, GpuMat& keypoints)
{
SURF_GPU_Invoker surf(*this, img, mask);
if (!img.empty())
{
SURF_GPU_Invoker surf(*this, img, mask);
surf.detectKeypoints(keypoints);
surf.detectKeypoints(keypoints);
surf.findOrientation(keypoints);
surf.findOrientation(keypoints);
}
}
void cv::gpu::SURF_GPU::operator()(const GpuMat& img, const GpuMat& mask, GpuMat& keypoints, GpuMat& descriptors,
bool useProvidedKeypoints, bool calcOrientation)
{
SURF_GPU_Invoker surf(*this, img, mask);
if (!useProvidedKeypoints)
surf.detectKeypoints(keypoints);
if (calcOrientation)
surf.findOrientation(keypoints);
if (!img.empty())
{
SURF_GPU_Invoker surf(*this, img, mask);
if (!useProvidedKeypoints)
surf.detectKeypoints(keypoints);
if (calcOrientation)
surf.findOrientation(keypoints);
surf.computeDescriptors(keypoints, descriptors, descriptorSize());
surf.computeDescriptors(keypoints, descriptors, descriptorSize());
}
}
void cv::gpu::SURF_GPU::operator()(const GpuMat& img, const GpuMat& mask, vector<KeyPoint>& keypoints)