added gpu belief propagation stereo matching
This commit is contained in:
179
modules/gpu/src/beliefpropagation_gpu.cpp
Normal file
179
modules/gpu/src/beliefpropagation_gpu.cpp
Normal file
@@ -0,0 +1,179 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other GpuMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::gpu;
|
||||
using namespace std;
|
||||
|
||||
const float cv::gpu::StereoBeliefPropagation_GPU::DEFAULT_DISC_COST = 1.7f;
|
||||
const float cv::gpu::StereoBeliefPropagation_GPU::DEFAULT_DATA_COST = 10.0f;
|
||||
const float cv::gpu::StereoBeliefPropagation_GPU::DEFAULT_LAMBDA_COST = 0.07f;
|
||||
|
||||
#if !defined (HAVE_CUDA)
|
||||
|
||||
cv::gpu::StereoBeliefPropagation_GPU::StereoBeliefPropagation_GPU(int, int, int, float, float, float) { throw_nogpu(); }
|
||||
|
||||
void cv::gpu::StereoBeliefPropagation_GPU::operator() (const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
|
||||
|
||||
#else /* !defined (HAVE_CUDA) */
|
||||
|
||||
typedef DevMem2D_<float> DevMem2Df;
|
||||
|
||||
namespace cv { namespace gpu { namespace impl {
|
||||
extern "C" void load_constants(int ndisp, float disc_cost, float data_cost, float lambda);
|
||||
extern "C" void comp_data_caller(const DevMem2D& l, const DevMem2D& r, DevMem2Df mdata);
|
||||
extern "C" void data_down_kernel_caller(int dst_cols, int dst_rows, int src_rows, const DevMem2Df& src, DevMem2Df dst);
|
||||
extern "C" void level_up(int dst_idx, int dst_cols, int dst_rows, int src_rows, DevMem2Df* mu, DevMem2Df* md, DevMem2Df* ml, DevMem2Df* mr);
|
||||
extern "C" void call_all_iterations(int cols, int rows, int iters, DevMem2Df& u, DevMem2Df& d, DevMem2Df& l, DevMem2Df& r, const DevMem2Df& data);
|
||||
extern "C" void output_caller(const DevMem2Df& u, const DevMem2Df& d, const DevMem2Df& l, const DevMem2Df& r, const DevMem2Df& data, DevMem2D disp);
|
||||
}}}
|
||||
|
||||
cv::gpu::StereoBeliefPropagation_GPU::StereoBeliefPropagation_GPU(int ndisp_, int iters_, int levels_, float disc_cost_, float data_cost_, float lambda_)
|
||||
: ndisp(ndisp_), iters(iters_), levels(levels_), disc_cost(disc_cost_), data_cost(data_cost_), lambda(lambda_), datas(levels_)
|
||||
{
|
||||
const int max_supported_ndisp = 1 << (sizeof(unsigned char) * 8);
|
||||
|
||||
CV_Assert(0 < ndisp && ndisp <= max_supported_ndisp);
|
||||
CV_Assert(ndisp % 8 == 0);
|
||||
}
|
||||
|
||||
void cv::gpu::StereoBeliefPropagation_GPU::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp)
|
||||
{
|
||||
CV_DbgAssert(left.cols == right.cols && left.rows == right.rows && left.type() == right.type() && left.type() == CV_8U);
|
||||
|
||||
const Scalar zero = Scalar::all(0);
|
||||
|
||||
int rows = left.rows;
|
||||
int cols = left.cols;
|
||||
|
||||
int divisor = (int)pow(2.f, levels - 1.0f);
|
||||
int lowest_cols = cols / divisor;
|
||||
int lowest_rows = rows / divisor;
|
||||
const int min_image_dim_size = 20;
|
||||
CV_Assert(min(lowest_cols, lowest_rows) > min_image_dim_size);
|
||||
|
||||
disp.create(rows, cols, CV_8U);
|
||||
|
||||
u.create(rows * ndisp, cols, CV_32F);
|
||||
d.create(rows * ndisp, cols, CV_32F);
|
||||
l.create(rows * ndisp, cols, CV_32F);
|
||||
r.create(rows * ndisp, cols, CV_32F);
|
||||
|
||||
if (levels & 1)
|
||||
{
|
||||
u = zero; //can clear less area
|
||||
d = zero;
|
||||
l = zero;
|
||||
r = zero;
|
||||
}
|
||||
|
||||
if (levels > 1)
|
||||
{
|
||||
int less_rows = (rows + 1) / 2;
|
||||
int less_cols = (cols + 1) / 2;
|
||||
|
||||
u2.create(less_rows * ndisp, less_cols, CV_32F);
|
||||
d2.create(less_rows * ndisp, less_cols, CV_32F);
|
||||
l2.create(less_rows * ndisp, less_cols, CV_32F);
|
||||
r2.create(less_rows * ndisp, less_cols, CV_32F);
|
||||
|
||||
if ((levels & 1) == 0)
|
||||
{
|
||||
u2 = zero;
|
||||
d2 = zero;
|
||||
l2 = zero;
|
||||
r2 = zero;
|
||||
}
|
||||
}
|
||||
|
||||
impl::load_constants(ndisp, disc_cost, data_cost, lambda);
|
||||
|
||||
vector<int> cols_all(levels);
|
||||
vector<int> rows_all(levels);
|
||||
vector<int> iters_all(levels);
|
||||
|
||||
cols_all[0] = cols;
|
||||
rows_all[0] = rows;
|
||||
iters_all[0] = iters;
|
||||
|
||||
datas[0].create(rows * ndisp, cols, CV_32F);
|
||||
//datas[0] = Scalar(data_cost); //DOTO did in kernel, but not sure if correct
|
||||
|
||||
impl::comp_data_caller(left, right, datas.front());
|
||||
|
||||
for (int i = 1; i < levels; i++)
|
||||
{
|
||||
cols_all[i] = (cols_all[i-1] + 1)/2;
|
||||
rows_all[i] = (rows_all[i-1] + 1)/2;
|
||||
|
||||
// this is difference from Felzenszwalb algorithm
|
||||
// we reduce iters num for each next level
|
||||
iters_all[i] = max(2 * iters_all[i-1] / 3, 1);
|
||||
|
||||
datas[i].create(rows_all[i] * ndisp, cols_all[i], CV_32F);
|
||||
|
||||
impl::data_down_kernel_caller(cols_all[i], rows_all[i], rows_all[i-1], datas[i-1], datas[i]);
|
||||
}
|
||||
|
||||
DevMem2D_<float> mus[] = {u, u2};
|
||||
DevMem2D_<float> mds[] = {d, d2};
|
||||
DevMem2D_<float> mrs[] = {r, r2};
|
||||
DevMem2D_<float> mls[] = {l, l2};
|
||||
|
||||
int mem_idx = (levels & 1) ? 0 : 1;
|
||||
|
||||
for (int i = levels - 1; i >= 0; i--) // for lower level we have already computed messages by setting to zero
|
||||
{
|
||||
if (i != levels - 1)
|
||||
impl::level_up(mem_idx, cols_all[i], rows_all[i], rows_all[i+1], mus, mds, mls, mrs);
|
||||
|
||||
impl::call_all_iterations(cols_all[i], rows_all[i], iters_all[i], mus[mem_idx], mds[mem_idx], mls[mem_idx], mrs[mem_idx], datas[i]);
|
||||
|
||||
mem_idx = (mem_idx + 1) & 1;
|
||||
}
|
||||
|
||||
impl::output_caller(u, d, l, r, datas.front(), disp);
|
||||
}
|
||||
|
||||
#endif /* !defined (HAVE_CUDA) */
|
||||
Reference in New Issue
Block a user