diff --git a/modules/flann/include/opencv2/flann/kmeans_index.h b/modules/flann/include/opencv2/flann/kmeans_index.h index 3fea956a7..3bf12047c 100644 --- a/modules/flann/include/opencv2/flann/kmeans_index.h +++ b/modules/flann/include/opencv2/flann/kmeans_index.h @@ -211,6 +211,7 @@ public: for (int i = 0; i < n; i++) { closestDistSq[i] = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols); + closestDistSq[i] *= closestDistSq[i]; currentPot += closestDistSq[i]; } @@ -236,7 +237,10 @@ public: // Compute the new potential double newPot = 0; - for (int i = 0; i < n; i++) newPot += std::min( distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols), closestDistSq[i] ); + for (int i = 0; i < n; i++) { + DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols); + newPot += std::min( dist*dist, closestDistSq[i] ); + } // Store the best result if ((bestNewPot < 0)||(newPot < bestNewPot)) { @@ -248,7 +252,10 @@ public: // Add the appropriate center centers[centerCount] = indices[bestNewIndex]; currentPot = bestNewPot; - for (int i = 0; i < n; i++) closestDistSq[i] = std::min( distance_(dataset_[indices[i]], dataset_[indices[bestNewIndex]], dataset_.cols), closestDistSq[i] ); + for (int i = 0; i < n; i++) { + DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[bestNewIndex]], dataset_.cols); + closestDistSq[i] = std::min( dist*dist, closestDistSq[i] ); + } } centers_length = centerCount;