Merging in master

This commit is contained in:
Erik Karlsson
2015-03-09 22:00:58 +01:00
554 changed files with 372881 additions and 5741 deletions

View File

@@ -1,11 +1,12 @@
set(the_description "The Core Functionality")
ocv_add_module(core PRIVATE_REQUIRED ${ZLIB_LIBRARIES} "${OPENCL_LIBRARIES}" OPTIONAL opencv_cudev)
ocv_add_module(core PRIVATE_REQUIRED ${ZLIB_LIBRARIES} "${OPENCL_LIBRARIES}"
OPTIONAL opencv_cudev
WRAP java python)
if(HAVE_WINRT_CX)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /ZW")
endif()
if(HAVE_WINRT)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /GS /Gm- /AI\"${WINDOWS_SDK_PATH}/References/CommonConfiguration/Neutral\" /AI\"${VISUAL_STUDIO_PATH}/vcpackages\"")
set(extra_libs "")
if(WINRT AND CMAKE_SYSTEM_NAME MATCHES WindowsStore AND CMAKE_SYSTEM_VERSION MATCHES "8.0")
list(APPEND extra_libs ole32.lib)
endif()
if(HAVE_CUDA)
@@ -22,7 +23,7 @@ ocv_glob_module_sources(SOURCES "${OPENCV_MODULE_opencv_core_BINARY_DIR}/version
HEADERS ${lib_cuda_hdrs} ${lib_cuda_hdrs_detail})
ocv_module_include_directories(${the_module} ${ZLIB_INCLUDE_DIRS})
ocv_create_module()
ocv_create_module(${extra_libs})
ocv_add_accuracy_tests()
ocv_add_perf_tests()

View File

@@ -545,8 +545,31 @@ The function returns the number of non-zero elements in src :
*/
CV_EXPORTS_W int countNonZero( InputArray src );
/** @brief returns the list of locations of non-zero pixels
@todo document
/** @brief Returns the list of locations of non-zero pixels
Given a binary matrix (likely returned from an operation such
as threshold(), compare(), >, ==, etc, return all of
the non-zero indices as a cv::Mat or std::vector<cv::Point> (x,y)
For example:
@code{.cpp}
cv::Mat binaryImage; // input, binary image
cv::Mat locations; // output, locations of non-zero pixels
cv::findNonZero(binaryImage, locations);
// access pixel coordinates
Point pnt = locations.at<Point>(i);
@endcode
or
@code{.cpp}
cv::Mat binaryImage; // input, binary image
vector<Point> locations; // output, locations of non-zero pixels
cv::findNonZero(binaryImage, locations);
// access pixel coordinates
Point pnt = locations[i];
@endcode
@param src single-channel array (type CV_8UC1)
@param idx the output array, type of cv::Mat or std::vector<Point>, corresponding to non-zero indices in the input
*/
CV_EXPORTS_W void findNonZero( InputArray src, OutputArray idx );
@@ -2745,8 +2768,6 @@ public:
//////////////////////////////////////// Algorithm ////////////////////////////////////
class CV_EXPORTS Algorithm;
class CV_EXPORTS AlgorithmInfo;
struct CV_EXPORTS AlgorithmInfoData;
template<typename _Tp> struct ParamType {};
@@ -2759,32 +2780,13 @@ matching, graph-cut etc.), background subtraction (which can be done using mixtu
models, codebook-based algorithm etc.), optical flow (block matching, Lucas-Kanade, Horn-Schunck
etc.).
The class provides the following features for all derived classes:
- so called "virtual constructor". That is, each Algorithm derivative is registered at program
start and you can get the list of registered algorithms and create instance of a particular
algorithm by its name (see Algorithm::create). If you plan to add your own algorithms, it is
good practice to add a unique prefix to your algorithms to distinguish them from other
algorithms.
- setting/retrieving algorithm parameters by name. If you used video capturing functionality
from OpenCV videoio module, you are probably familar with cvSetCaptureProperty(),
cvGetCaptureProperty(), VideoCapture::set() and VideoCapture::get(). Algorithm provides
similar method where instead of integer id's you specify the parameter names as text strings.
See Algorithm::set and Algorithm::get for details.
- reading and writing parameters from/to XML or YAML files. Every Algorithm derivative can store
all its parameters and then read them back. There is no need to re-implement it each time.
Here is example of SIFT use in your application via Algorithm interface:
@code
#include "opencv2/opencv.hpp"
#include "opencv2/xfeatures2d.hpp"
using namespace cv::xfeatures2d;
...
Ptr<Feature2D> sift = SIFT::create();
FileStorage fs("sift_params.xml", FileStorage::READ);
if( fs.isOpened() ) // if we have file with parameters, read them
{
@@ -2794,323 +2796,73 @@ Here is example of SIFT use in your application via Algorithm interface:
else // else modify the parameters and store them; user can later edit the file to use different parameters
{
sift->setContrastThreshold(0.01f); // lower the contrast threshold, compared to the default value
{
WriteStructContext ws(fs, "sift_params", CV_NODE_MAP);
sift->write(fs);
WriteStructContext ws(fs, "sift_params", CV_NODE_MAP);
sift->write(fs);
}
}
Mat image = imread("myimage.png", 0), descriptors;
vector<KeyPoint> keypoints;
sift->detectAndCompute(image, noArray(), keypoints, descriptors);
@endcode
Creating Own Algorithms
-----------------------
If you want to make your own algorithm, derived from Algorithm, you should basically follow a few
conventions and add a little semi-standard piece of code to your class:
- Make a class and specify Algorithm as its base class.
- The algorithm parameters should be the class members. See Algorithm::get() for the list of
possible types of the parameters.
- Add public virtual method `AlgorithmInfo* info() const;` to your class.
- Add constructor function, AlgorithmInfo instance and implement the info() method. The simplest
way is to take <https://github.com/Itseez/opencv/tree/master/modules/ml/src/ml_init.cpp> as
the reference and modify it according to the list of your parameters.
- Add some public function (e.g. `initModule_<mymodule>()`) that calls info() of your algorithm
and put it into the same source file as info() implementation. This is to force C++ linker to
include this object file into the target application. See Algorithm::create() for details.
*/
class CV_EXPORTS_W Algorithm
{
public:
Algorithm();
virtual ~Algorithm();
/**Returns the algorithm name*/
String name() const;
/** @brief returns the algorithm parameter
The method returns value of the particular parameter. Since the compiler can not deduce the
type of the returned parameter, you should specify it explicitly in angle brackets. Here are
the allowed forms of get:
- myalgo.get\<int\>("param_name")
- myalgo.get\<double\>("param_name")
- myalgo.get\<bool\>("param_name")
- myalgo.get\<String\>("param_name")
- myalgo.get\<Mat\>("param_name")
- myalgo.get\<vector\<Mat\> \>("param_name")
- myalgo.get\<Algorithm\>("param_name") (it returns Ptr\<Algorithm\>).
In some cases the actual type of the parameter can be cast to the specified type, e.g. integer
parameter can be cast to double, bool can be cast to int. But "dangerous" transformations
(string\<-\>number, double-\>int, 1x1 Mat\<-\>number, ...) are not performed and the method
will throw an exception. In the case of Mat or vector\<Mat\> parameters the method does not
clone the matrix data, so do not modify the matrices. Use Algorithm::set instead - slower, but
more safe.
@param name The parameter name.
*/
template<typename _Tp> typename ParamType<_Tp>::member_type get(const String& name) const;
/** @overload */
template<typename _Tp> typename ParamType<_Tp>::member_type get(const char* name) const;
CV_WRAP int getInt(const String& name) const;
CV_WRAP double getDouble(const String& name) const;
CV_WRAP bool getBool(const String& name) const;
CV_WRAP String getString(const String& name) const;
CV_WRAP Mat getMat(const String& name) const;
CV_WRAP std::vector<Mat> getMatVector(const String& name) const;
CV_WRAP Ptr<Algorithm> getAlgorithm(const String& name) const;
/** @brief Sets the algorithm parameter
The method sets value of the particular parameter. Some of the algorithm
parameters may be declared as read-only. If you try to set such a
parameter, you will get exception with the corresponding error message.
@param name The parameter name.
@param value The parameter value.
*/
void set(const String& name, int value);
void set(const String& name, double value);
void set(const String& name, bool value);
void set(const String& name, const String& value);
void set(const String& name, const Mat& value);
void set(const String& name, const std::vector<Mat>& value);
void set(const String& name, const Ptr<Algorithm>& value);
template<typename _Tp> void set(const String& name, const Ptr<_Tp>& value);
CV_WRAP void setInt(const String& name, int value);
CV_WRAP void setDouble(const String& name, double value);
CV_WRAP void setBool(const String& name, bool value);
CV_WRAP void setString(const String& name, const String& value);
CV_WRAP void setMat(const String& name, const Mat& value);
CV_WRAP void setMatVector(const String& name, const std::vector<Mat>& value);
CV_WRAP void setAlgorithm(const String& name, const Ptr<Algorithm>& value);
template<typename _Tp> void setAlgorithm(const String& name, const Ptr<_Tp>& value);
void set(const char* name, int value);
void set(const char* name, double value);
void set(const char* name, bool value);
void set(const char* name, const String& value);
void set(const char* name, const Mat& value);
void set(const char* name, const std::vector<Mat>& value);
void set(const char* name, const Ptr<Algorithm>& value);
template<typename _Tp> void set(const char* name, const Ptr<_Tp>& value);
void setInt(const char* name, int value);
void setDouble(const char* name, double value);
void setBool(const char* name, bool value);
void setString(const char* name, const String& value);
void setMat(const char* name, const Mat& value);
void setMatVector(const char* name, const std::vector<Mat>& value);
void setAlgorithm(const char* name, const Ptr<Algorithm>& value);
template<typename _Tp> void setAlgorithm(const char* name, const Ptr<_Tp>& value);
CV_WRAP String paramHelp(const String& name) const;
int paramType(const char* name) const;
CV_WRAP int paramType(const String& name) const;
CV_WRAP void getParams(CV_OUT std::vector<String>& names) const;
/** @brief Stores algorithm parameters in a file storage
The method stores all the algorithm parameters (in alphabetic order) to
the file storage. The method is virtual. If you define your own
Algorithm derivative, your can override the method and store some extra
information. However, it's rarely needed. Here are some examples:
- SIFT feature detector (from xfeatures2d module). The class only
stores algorithm parameters and no keypoints or their descriptors.
Therefore, it's enough to store the algorithm parameters, which is
what Algorithm::write() does. Therefore, there is no dedicated
SIFT::write().
- Background subtractor (from video module). It has the algorithm
parameters and also it has the current background model. However,
the background model is not stored. First, it's rather big. Then,
if you have stored the background model, it would likely become
irrelevant on the next run (because of shifted camera, changed
background, different lighting etc.). Therefore,
BackgroundSubtractorMOG and BackgroundSubtractorMOG2 also rely on
the standard Algorithm::write() to store just the algorithm
parameters.
- Expectation Maximization (from ml module). The algorithm finds
mixture of gaussians that approximates user data best of all. In
this case the model may be re-used on the next run to test new
data against the trained statistical model. So EM needs to store
the model. However, since the model is described by a few
parameters that are available as read-only algorithm parameters
(i.e. they are available via EM::get()), EM also relies on
Algorithm::write() to store both EM parameters and the model
(represented by read-only algorithm parameters).
@param fs File storage.
*/
virtual void write(FileStorage& fs) const;
/** @brief Reads algorithm parameters from a file storage
The method reads all the algorithm parameters from the specified node of
a file storage. Similarly to Algorithm::write(), if you implement an
algorithm that needs to read some extra data and/or re-compute some
internal data, you may override the method.
@param fn File node of the file storage.
*/
virtual void read(const FileNode& fn);
typedef Algorithm* (*Constructor)(void);
typedef int (Algorithm::*Getter)() const;
typedef void (Algorithm::*Setter)(int);
/** @brief Returns the list of registered algorithms
This static method returns the list of registered algorithms in
alphabetical order. Here is how to use it :
@code{.cpp}
vector<String> algorithms;
Algorithm::getList(algorithms);
cout << "Algorithms: " << algorithms.size() << endl;
for (size_t i=0; i < algorithms.size(); i++)
cout << algorithms[i] << endl;
@endcode
@param algorithms The output vector of algorithm names.
*/
CV_WRAP static void getList(CV_OUT std::vector<String>& algorithms);
CV_WRAP static Ptr<Algorithm> _create(const String& name);
/** @brief Creates algorithm instance by name
This static method creates a new instance of the specified algorithm. If
there is no such algorithm, the method will silently return a null
pointer. Also, you should specify the particular Algorithm subclass as
_Tp (or simply Algorithm if you do not know it at that point). :
@code{.cpp}
Ptr<BackgroundSubtractor> bgfg = Algorithm::create<BackgroundSubtractor>("BackgroundSubtractor.MOG2");
@endcode
@note This is important note about seemingly mysterious behavior of
Algorithm::create() when it returns NULL while it should not. The reason
is simple - Algorithm::create() resides in OpenCV's core module and the
algorithms are implemented in other modules. If you create algorithms
dynamically, C++ linker may decide to throw away the modules where the
actual algorithms are implemented, since you do not call any functions
from the modules. To avoid this problem, you need to call
initModule_\<modulename\>(); somewhere in the beginning of the program
before Algorithm::create(). For example, call initModule_xfeatures2d()
in order to use SURF/SIFT, call initModule_ml() to use expectation
maximization etc.
@param name The algorithm name, one of the names returned by Algorithm::getList().
*/
template<typename _Tp> static Ptr<_Tp> create(const String& name);
virtual AlgorithmInfo* info() const /* TODO: make it = 0;*/ { return 0; }
};
/** @todo document */
class CV_EXPORTS AlgorithmInfo
{
public:
friend class Algorithm;
AlgorithmInfo(const String& name, Algorithm::Constructor create);
~AlgorithmInfo();
void get(const Algorithm* algo, const char* name, int argType, void* value) const;
void addParam_(Algorithm& algo, const char* name, int argType,
void* value, bool readOnly,
Algorithm::Getter getter, Algorithm::Setter setter,
const String& help=String());
String paramHelp(const char* name) const;
int paramType(const char* name) const;
void getParams(std::vector<String>& names) const;
Algorithm();
virtual ~Algorithm();
void write(const Algorithm* algo, FileStorage& fs) const;
void read(Algorithm* algo, const FileNode& fn) const;
String name() const;
/** @brief Stores algorithm parameters in a file storage
*/
virtual void write(FileStorage& fs) const { (void)fs; }
void addParam(Algorithm& algo, const char* name,
int& value, bool readOnly=false,
int (Algorithm::*getter)()=0,
void (Algorithm::*setter)(int)=0,
const String& help=String());
void addParam(Algorithm& algo, const char* name,
bool& value, bool readOnly=false,
int (Algorithm::*getter)()=0,
void (Algorithm::*setter)(int)=0,
const String& help=String());
void addParam(Algorithm& algo, const char* name,
double& value, bool readOnly=false,
double (Algorithm::*getter)()=0,
void (Algorithm::*setter)(double)=0,
const String& help=String());
void addParam(Algorithm& algo, const char* name,
String& value, bool readOnly=false,
String (Algorithm::*getter)()=0,
void (Algorithm::*setter)(const String&)=0,
const String& help=String());
void addParam(Algorithm& algo, const char* name,
Mat& value, bool readOnly=false,
Mat (Algorithm::*getter)()=0,
void (Algorithm::*setter)(const Mat&)=0,
const String& help=String());
void addParam(Algorithm& algo, const char* name,
std::vector<Mat>& value, bool readOnly=false,
std::vector<Mat> (Algorithm::*getter)()=0,
void (Algorithm::*setter)(const std::vector<Mat>&)=0,
const String& help=String());
void addParam(Algorithm& algo, const char* name,
Ptr<Algorithm>& value, bool readOnly=false,
Ptr<Algorithm> (Algorithm::*getter)()=0,
void (Algorithm::*setter)(const Ptr<Algorithm>&)=0,
const String& help=String());
void addParam(Algorithm& algo, const char* name,
float& value, bool readOnly=false,
float (Algorithm::*getter)()=0,
void (Algorithm::*setter)(float)=0,
const String& help=String());
void addParam(Algorithm& algo, const char* name,
unsigned int& value, bool readOnly=false,
unsigned int (Algorithm::*getter)()=0,
void (Algorithm::*setter)(unsigned int)=0,
const String& help=String());
void addParam(Algorithm& algo, const char* name,
uint64& value, bool readOnly=false,
uint64 (Algorithm::*getter)()=0,
void (Algorithm::*setter)(uint64)=0,
const String& help=String());
void addParam(Algorithm& algo, const char* name,
uchar& value, bool readOnly=false,
uchar (Algorithm::*getter)()=0,
void (Algorithm::*setter)(uchar)=0,
const String& help=String());
template<typename _Tp, typename _Base> void addParam(Algorithm& algo, const char* name,
Ptr<_Tp>& value, bool readOnly=false,
Ptr<_Tp> (Algorithm::*getter)()=0,
void (Algorithm::*setter)(const Ptr<_Tp>&)=0,
const String& help=String());
template<typename _Tp> void addParam(Algorithm& algo, const char* name,
Ptr<_Tp>& value, bool readOnly=false,
Ptr<_Tp> (Algorithm::*getter)()=0,
void (Algorithm::*setter)(const Ptr<_Tp>&)=0,
const String& help=String());
protected:
AlgorithmInfoData* data;
void set(Algorithm* algo, const char* name, int argType,
const void* value, bool force=false) const;
/** @brief Reads algorithm parameters from a file storage
*/
virtual void read(const FileNode& fn) { (void)fn; }
};
/** @todo document */
struct CV_EXPORTS Param
{
enum { INT=0, BOOLEAN=1, REAL=2, STRING=3, MAT=4, MAT_VECTOR=5, ALGORITHM=6, FLOAT=7, UNSIGNED_INT=8, UINT64=9, UCHAR=11 };
// define properties
Param();
Param(int _type, bool _readonly, int _offset,
Algorithm::Getter _getter=0,
Algorithm::Setter _setter=0,
const String& _help=String());
int type;
int offset;
bool readonly;
Algorithm::Getter getter;
Algorithm::Setter setter;
String help;
#define CV_PURE_PROPERTY(type, name) \
CV_WRAP virtual type get##name() const = 0; \
CV_WRAP virtual void set##name(type val) = 0;
#define CV_PURE_PROPERTY_S(type, name) \
CV_WRAP virtual type get##name() const = 0; \
CV_WRAP virtual void set##name(const type & val) = 0;
#define CV_PURE_PROPERTY_RO(type, name) \
CV_WRAP virtual type get##name() const = 0;
// basic property implementation
#define CV_IMPL_PROPERTY_RO(type, name, member) \
inline type get##name() const { return member; }
#define CV_HELP_IMPL_PROPERTY(r_type, w_type, name, member) \
CV_IMPL_PROPERTY_RO(r_type, name, member) \
inline void set##name(w_type val) { member = val; }
#define CV_HELP_WRAP_PROPERTY(r_type, w_type, name, internal_name, internal_obj) \
r_type get##name() const { return internal_obj.get##internal_name(); } \
void set##name(w_type val) { internal_obj.set##internal_name(val); }
#define CV_IMPL_PROPERTY(type, name, member) CV_HELP_IMPL_PROPERTY(type, type, name, member)
#define CV_IMPL_PROPERTY_S(type, name, member) CV_HELP_IMPL_PROPERTY(type, const type &, name, member)
#define CV_WRAP_PROPERTY(type, name, internal_name, internal_obj) CV_HELP_WRAP_PROPERTY(type, type, name, internal_name, internal_obj)
#define CV_WRAP_PROPERTY_S(type, name, internal_name, internal_obj) CV_HELP_WRAP_PROPERTY(type, const type &, name, internal_name, internal_obj)
#define CV_WRAP_SAME_PROPERTY(type, name, internal_obj) CV_WRAP_PROPERTY(type, name, name, internal_obj)
#define CV_WRAP_SAME_PROPERTY_S(type, name, internal_obj) CV_WRAP_PROPERTY_S(type, name, name, internal_obj)
struct Param {
enum { INT=0, BOOLEAN=1, REAL=2, STRING=3, MAT=4, MAT_VECTOR=5, ALGORITHM=6, FLOAT=7,
UNSIGNED_INT=8, UINT64=9, UCHAR=11 };
};
template<> struct ParamType<bool>
{
typedef bool const_param_type;

View File

@@ -191,7 +191,7 @@
# include "arm_neon.h"
# define CV_NEON 1
# define CPU_HAS_NEON_FEATURE (true)
#elif defined(__ARM_NEON__)
#elif defined(__ARM_NEON__) || (defined (__ARM_NEON) && defined(__aarch64__))
# include <arm_neon.h>
# define CV_NEON 1
#endif

View File

@@ -817,7 +817,7 @@ Vec<_Tp, n> Matx<_Tp, m, n>::solve(const Vec<_Tp, m>& rhs, int method) const
template<typename _Tp, int m> static inline
double determinant(const Matx<_Tp, m, m>& a)
{
return internal::Matx_DetOp<_Tp, m>()(a);
return cv::internal::Matx_DetOp<_Tp, m>()(a);
}
template<typename _Tp, int m, int n> static inline
@@ -960,25 +960,25 @@ Vec<_Tp, cn> Vec<_Tp, cn>::mul(const Vec<_Tp, cn>& v) const
template<> inline
Vec<float, 2> Vec<float, 2>::conj() const
{
return internal::conjugate(*this);
return cv::internal::conjugate(*this);
}
template<> inline
Vec<double, 2> Vec<double, 2>::conj() const
{
return internal::conjugate(*this);
return cv::internal::conjugate(*this);
}
template<> inline
Vec<float, 4> Vec<float, 4>::conj() const
{
return internal::conjugate(*this);
return cv::internal::conjugate(*this);
}
template<> inline
Vec<double, 4> Vec<double, 4>::conj() const
{
return internal::conjugate(*this);
return cv::internal::conjugate(*this);
}
template<typename _Tp, int cn> inline

View File

@@ -184,6 +184,7 @@ public:
// After fix restore code in arithm.cpp: ocl_compare()
inline bool isAMD() const { return vendorID() == VENDOR_AMD; }
inline bool isIntel() const { return vendorID() == VENDOR_INTEL; }
inline bool isNVidia() const { return vendorID() == VENDOR_NVIDIA; }
int maxClockFrequency() const;
int maxComputeUnits() const;

View File

@@ -193,7 +193,7 @@ Matx<_Tp, n, m> Matx<_Tp, m, n>::inv(int method, bool *p_is_ok /*= NULL*/) const
Matx<_Tp, n, m> b;
bool ok;
if( method == DECOMP_LU || method == DECOMP_CHOLESKY )
ok = internal::Matx_FastInvOp<_Tp, m>()(*this, b, method);
ok = cv::internal::Matx_FastInvOp<_Tp, m>()(*this, b, method);
else
{
Mat A(*this, false), B(b, false);
@@ -209,7 +209,7 @@ Matx<_Tp, n, l> Matx<_Tp, m, n>::solve(const Matx<_Tp, m, l>& rhs, int method) c
Matx<_Tp, n, l> x;
bool ok;
if( method == DECOMP_LU || method == DECOMP_CHOLESKY )
ok = internal::Matx_FastSolveOp<_Tp, m, l>()(*this, rhs, x, method);
ok = cv::internal::Matx_FastSolveOp<_Tp, m, l>()(*this, rhs, x, method);
else
{
Mat A(*this, false), B(rhs, false), X(x, false);
@@ -412,84 +412,6 @@ int print(const Matx<_Tp, m, n>& matx, FILE* stream = stdout)
return print(Formatter::get()->format(cv::Mat(matx)), stream);
}
////////////////////////////////////////// Algorithm //////////////////////////////////////////
template<typename _Tp> inline
Ptr<_Tp> Algorithm::create(const String& name)
{
return _create(name).dynamicCast<_Tp>();
}
template<typename _Tp> inline
void Algorithm::set(const char* _name, const Ptr<_Tp>& value)
{
Ptr<Algorithm> algo_ptr = value. template dynamicCast<cv::Algorithm>();
if (!algo_ptr) {
CV_Error( Error::StsUnsupportedFormat, "unknown/unsupported Ptr type of the second parameter of the method Algorithm::set");
}
info()->set(this, _name, ParamType<Algorithm>::type, &algo_ptr);
}
template<typename _Tp> inline
void Algorithm::set(const String& _name, const Ptr<_Tp>& value)
{
this->set<_Tp>(_name.c_str(), value);
}
template<typename _Tp> inline
void Algorithm::setAlgorithm(const char* _name, const Ptr<_Tp>& value)
{
Ptr<Algorithm> algo_ptr = value. template ptr<cv::Algorithm>();
if (!algo_ptr) {
CV_Error( Error::StsUnsupportedFormat, "unknown/unsupported Ptr type of the second parameter of the method Algorithm::set");
}
info()->set(this, _name, ParamType<Algorithm>::type, &algo_ptr);
}
template<typename _Tp> inline
void Algorithm::setAlgorithm(const String& _name, const Ptr<_Tp>& value)
{
this->set<_Tp>(_name.c_str(), value);
}
template<typename _Tp> inline
typename ParamType<_Tp>::member_type Algorithm::get(const String& _name) const
{
typename ParamType<_Tp>::member_type value;
info()->get(this, _name.c_str(), ParamType<_Tp>::type, &value);
return value;
}
template<typename _Tp> inline
typename ParamType<_Tp>::member_type Algorithm::get(const char* _name) const
{
typename ParamType<_Tp>::member_type value;
info()->get(this, _name, ParamType<_Tp>::type, &value);
return value;
}
template<typename _Tp, typename _Base> inline
void AlgorithmInfo::addParam(Algorithm& algo, const char* parameter, Ptr<_Tp>& value, bool readOnly,
Ptr<_Tp> (Algorithm::*getter)(), void (Algorithm::*setter)(const Ptr<_Tp>&),
const String& help)
{
//TODO: static assert: _Tp inherits from _Base
addParam_(algo, parameter, ParamType<_Base>::type, &value, readOnly,
(Algorithm::Getter)getter, (Algorithm::Setter)setter, help);
}
template<typename _Tp> inline
void AlgorithmInfo::addParam(Algorithm& algo, const char* parameter, Ptr<_Tp>& value, bool readOnly,
Ptr<_Tp> (Algorithm::*getter)(), void (Algorithm::*setter)(const Ptr<_Tp>&),
const String& help)
{
//TODO: static assert: _Tp inherits from Algorithm
addParam_(algo, parameter, ParamType<Algorithm>::type, &value, readOnly,
(Algorithm::Getter)getter, (Algorithm::Setter)setter, help);
}
//! @endcond
/****************************************************************************************\

View File

@@ -914,7 +914,7 @@ void write(FileStorage& fs, const Range& r )
template<typename _Tp> static inline
void write( FileStorage& fs, const std::vector<_Tp>& vec )
{
internal::VecWriterProxy<_Tp, DataType<_Tp>::fmt != 0> w(&fs);
cv::internal::VecWriterProxy<_Tp, DataType<_Tp>::fmt != 0> w(&fs);
w(vec);
}
@@ -922,63 +922,63 @@ void write( FileStorage& fs, const std::vector<_Tp>& vec )
template<typename _Tp> static inline
void write(FileStorage& fs, const String& name, const Point_<_Tp>& pt )
{
internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW);
cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW);
write(fs, pt);
}
template<typename _Tp> static inline
void write(FileStorage& fs, const String& name, const Point3_<_Tp>& pt )
{
internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW);
cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW);
write(fs, pt);
}
template<typename _Tp> static inline
void write(FileStorage& fs, const String& name, const Size_<_Tp>& sz )
{
internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW);
cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW);
write(fs, sz);
}
template<typename _Tp> static inline
void write(FileStorage& fs, const String& name, const Complex<_Tp>& c )
{
internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW);
cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW);
write(fs, c);
}
template<typename _Tp> static inline
void write(FileStorage& fs, const String& name, const Rect_<_Tp>& r )
{
internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW);
cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW);
write(fs, r);
}
template<typename _Tp, int cn> static inline
void write(FileStorage& fs, const String& name, const Vec<_Tp, cn>& v )
{
internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW);
cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW);
write(fs, v);
}
template<typename _Tp> static inline
void write(FileStorage& fs, const String& name, const Scalar_<_Tp>& s )
{
internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW);
cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW);
write(fs, s);
}
static inline
void write(FileStorage& fs, const String& name, const Range& r )
{
internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW);
cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW);
write(fs, r);
}
template<typename _Tp> static inline
void write( FileStorage& fs, const String& name, const std::vector<_Tp>& vec )
{
internal::WriteStructContext ws(fs, name, FileNode::SEQ+(DataType<_Tp>::fmt != 0 ? FileNode::FLOW : 0));
cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+(DataType<_Tp>::fmt != 0 ? FileNode::FLOW : 0));
write(fs, vec);
}
@@ -1030,7 +1030,7 @@ void read(const FileNode& node, short& value, short default_value)
template<typename _Tp> static inline
void read( FileNodeIterator& it, std::vector<_Tp>& vec, size_t maxCount = (size_t)INT_MAX )
{
internal::VecReaderProxy<_Tp, DataType<_Tp>::fmt != 0> r(&it);
cv::internal::VecReaderProxy<_Tp, DataType<_Tp>::fmt != 0> r(&it);
r(vec, maxCount);
}
@@ -1101,7 +1101,7 @@ FileNodeIterator& operator >> (FileNodeIterator& it, _Tp& value)
template<typename _Tp> static inline
FileNodeIterator& operator >> (FileNodeIterator& it, std::vector<_Tp>& vec)
{
internal::VecReaderProxy<_Tp, DataType<_Tp>::fmt != 0> r(&it);
cv::internal::VecReaderProxy<_Tp, DataType<_Tp>::fmt != 0> r(&it);
r(vec, (size_t)INT_MAX);
return it;
}

View File

@@ -129,40 +129,6 @@ namespace cv
CV_EXPORTS const char* currentParallelFramework();
} //namespace cv
#define CV_INIT_ALGORITHM(classname, algname, memberinit) \
static inline ::cv::Algorithm* create##classname##_hidden() \
{ \
return new classname; \
} \
\
static inline ::cv::Ptr< ::cv::Algorithm> create##classname##_ptr_hidden() \
{ \
return ::cv::makePtr<classname>(); \
} \
\
static inline ::cv::AlgorithmInfo& classname##_info() \
{ \
static ::cv::AlgorithmInfo classname##_info_var(algname, create##classname##_hidden); \
return classname##_info_var; \
} \
\
static ::cv::AlgorithmInfo& classname##_info_auto = classname##_info(); \
\
::cv::AlgorithmInfo* classname::info() const \
{ \
static volatile bool initialized = false; \
\
if( !initialized ) \
{ \
initialized = true; \
classname obj; \
memberinit; \
} \
return &classname##_info(); \
}
/****************************************************************************************\
* Common declarations *
\****************************************************************************************/
@@ -303,6 +269,15 @@ typedef enum CvStatus
}
CvStatus;
#ifdef HAVE_TEGRA_OPTIMIZATION
namespace tegra {
CV_EXPORTS bool useTegra();
CV_EXPORTS void setUseTegra(bool flag);
}
#endif
//! @endcond
#endif // __OPENCV_CORE_PRIVATE_HPP__

View File

@@ -0,0 +1,4 @@
include/opencv2/core/base.hpp
include/opencv2/core.hpp
include/opencv2/core/utility.hpp
misc/java/src/cpp/core_manual.hpp

View File

@@ -0,0 +1,21 @@
#define LOG_TAG "org.opencv.core.Core"
#include "common.h"
#include "core_manual.hpp"
#include "opencv2/core/utility.hpp"
static int quietCallback( int, const char*, const char*, const char*, int, void* )
{
return 0;
}
namespace cv {
void setErrorVerbosity(bool verbose)
{
if(verbose)
cv::redirectError(0);
else
cv::redirectError((cv::ErrorCallback)quietCallback);
}
}

View File

@@ -0,0 +1,33 @@
#pragma once
#include "opencv2/core.hpp"
namespace cv
{
CV_EXPORTS_W void setErrorVerbosity(bool verbose);
}
#if 0
namespace cv
{
CV_EXPORTS_W void add(InputArray src1, Scalar src2, OutputArray dst, InputArray mask=noArray(), int dtype=-1);
CV_EXPORTS_W void subtract(InputArray src1, Scalar src2, OutputArray dst, InputArray mask=noArray(), int dtype=-1);
CV_EXPORTS_W void multiply(InputArray src1, Scalar src2, OutputArray dst, double scale=1, int dtype=-1);
CV_EXPORTS_W void divide(InputArray src1, Scalar src2, OutputArray dst, double scale=1, int dtype=-1);
CV_EXPORTS_W void absdiff(InputArray src1, Scalar src2, OutputArray dst);
CV_EXPORTS_W void compare(InputArray src1, Scalar src2, OutputArray dst, int cmpop);
CV_EXPORTS_W void min(InputArray src1, Scalar src2, OutputArray dst);
CV_EXPORTS_W void max(InputArray src1, Scalar src2, OutputArray dst);
}
#endif //0

View File

@@ -0,0 +1,15 @@
package org.opencv.core;
public class CvException extends RuntimeException {
private static final long serialVersionUID = 1L;
public CvException(String msg) {
super(msg);
}
@Override
public String toString() {
return "CvException [" + super.toString() + "]";
}
}

View File

@@ -0,0 +1,136 @@
package org.opencv.core;
public final class CvType {
// type depth constants
public static final int
CV_8U = 0, CV_8S = 1,
CV_16U = 2, CV_16S = 3,
CV_32S = 4,
CV_32F = 5,
CV_64F = 6,
CV_USRTYPE1 = 7;
// predefined type constants
public static final int
CV_8UC1 = CV_8UC(1), CV_8UC2 = CV_8UC(2), CV_8UC3 = CV_8UC(3), CV_8UC4 = CV_8UC(4),
CV_8SC1 = CV_8SC(1), CV_8SC2 = CV_8SC(2), CV_8SC3 = CV_8SC(3), CV_8SC4 = CV_8SC(4),
CV_16UC1 = CV_16UC(1), CV_16UC2 = CV_16UC(2), CV_16UC3 = CV_16UC(3), CV_16UC4 = CV_16UC(4),
CV_16SC1 = CV_16SC(1), CV_16SC2 = CV_16SC(2), CV_16SC3 = CV_16SC(3), CV_16SC4 = CV_16SC(4),
CV_32SC1 = CV_32SC(1), CV_32SC2 = CV_32SC(2), CV_32SC3 = CV_32SC(3), CV_32SC4 = CV_32SC(4),
CV_32FC1 = CV_32FC(1), CV_32FC2 = CV_32FC(2), CV_32FC3 = CV_32FC(3), CV_32FC4 = CV_32FC(4),
CV_64FC1 = CV_64FC(1), CV_64FC2 = CV_64FC(2), CV_64FC3 = CV_64FC(3), CV_64FC4 = CV_64FC(4);
private static final int CV_CN_MAX = 512, CV_CN_SHIFT = 3, CV_DEPTH_MAX = (1 << CV_CN_SHIFT);
public static final int makeType(int depth, int channels) {
if (channels <= 0 || channels >= CV_CN_MAX) {
throw new java.lang.UnsupportedOperationException(
"Channels count should be 1.." + (CV_CN_MAX - 1));
}
if (depth < 0 || depth >= CV_DEPTH_MAX) {
throw new java.lang.UnsupportedOperationException(
"Data type depth should be 0.." + (CV_DEPTH_MAX - 1));
}
return (depth & (CV_DEPTH_MAX - 1)) + ((channels - 1) << CV_CN_SHIFT);
}
public static final int CV_8UC(int ch) {
return makeType(CV_8U, ch);
}
public static final int CV_8SC(int ch) {
return makeType(CV_8S, ch);
}
public static final int CV_16UC(int ch) {
return makeType(CV_16U, ch);
}
public static final int CV_16SC(int ch) {
return makeType(CV_16S, ch);
}
public static final int CV_32SC(int ch) {
return makeType(CV_32S, ch);
}
public static final int CV_32FC(int ch) {
return makeType(CV_32F, ch);
}
public static final int CV_64FC(int ch) {
return makeType(CV_64F, ch);
}
public static final int channels(int type) {
return (type >> CV_CN_SHIFT) + 1;
}
public static final int depth(int type) {
return type & (CV_DEPTH_MAX - 1);
}
public static final boolean isInteger(int type) {
return depth(type) < CV_32F;
}
public static final int ELEM_SIZE(int type) {
switch (depth(type)) {
case CV_8U:
case CV_8S:
return channels(type);
case CV_16U:
case CV_16S:
return 2 * channels(type);
case CV_32S:
case CV_32F:
return 4 * channels(type);
case CV_64F:
return 8 * channels(type);
default:
throw new java.lang.UnsupportedOperationException(
"Unsupported CvType value: " + type);
}
}
public static final String typeToString(int type) {
String s;
switch (depth(type)) {
case CV_8U:
s = "CV_8U";
break;
case CV_8S:
s = "CV_8S";
break;
case CV_16U:
s = "CV_16U";
break;
case CV_16S:
s = "CV_16S";
break;
case CV_32S:
s = "CV_32S";
break;
case CV_32F:
s = "CV_32F";
break;
case CV_64F:
s = "CV_64F";
break;
case CV_USRTYPE1:
s = "CV_USRTYPE1";
break;
default:
throw new java.lang.UnsupportedOperationException(
"Unsupported CvType value: " + type);
}
int ch = channels(type);
if (ch <= 4)
return s + "C" + ch;
else
return s + "C(" + ch + ")";
}
}

View File

@@ -0,0 +1,61 @@
package org.opencv.core;
//C++: class DMatch
/**
* Structure for matching: query descriptor index, train descriptor index, train
* image index and distance between descriptors.
*/
public class DMatch {
/**
* Query descriptor index.
*/
public int queryIdx;
/**
* Train descriptor index.
*/
public int trainIdx;
/**
* Train image index.
*/
public int imgIdx;
// javadoc: DMatch::distance
public float distance;
// javadoc: DMatch::DMatch()
public DMatch() {
this(-1, -1, Float.MAX_VALUE);
}
// javadoc: DMatch::DMatch(_queryIdx, _trainIdx, _distance)
public DMatch(int _queryIdx, int _trainIdx, float _distance) {
queryIdx = _queryIdx;
trainIdx = _trainIdx;
imgIdx = -1;
distance = _distance;
}
// javadoc: DMatch::DMatch(_queryIdx, _trainIdx, _imgIdx, _distance)
public DMatch(int _queryIdx, int _trainIdx, int _imgIdx, float _distance) {
queryIdx = _queryIdx;
trainIdx = _trainIdx;
imgIdx = _imgIdx;
distance = _distance;
}
/**
* Less is better.
*/
public boolean lessThan(DMatch it) {
return distance < it.distance;
}
@Override
public String toString() {
return "DMatch [queryIdx=" + queryIdx + ", trainIdx=" + trainIdx
+ ", imgIdx=" + imgIdx + ", distance=" + distance + "]";
}
}

View File

@@ -0,0 +1,83 @@
package org.opencv.core;
import org.opencv.core.Point;
//javadoc: KeyPoint
public class KeyPoint {
/**
* Coordinates of the keypoint.
*/
public Point pt;
/**
* Diameter of the useful keypoint adjacent area.
*/
public float size;
/**
* Computed orientation of the keypoint (-1 if not applicable).
*/
public float angle;
/**
* The response, by which the strongest keypoints have been selected. Can
* be used for further sorting or subsampling.
*/
public float response;
/**
* Octave (pyramid layer), from which the keypoint has been extracted.
*/
public int octave;
/**
* Object ID, that can be used to cluster keypoints by an object they
* belong to.
*/
public int class_id;
// javadoc:KeyPoint::KeyPoint(x,y,_size,_angle,_response,_octave,_class_id)
public KeyPoint(float x, float y, float _size, float _angle, float _response, int _octave, int _class_id)
{
pt = new Point(x, y);
size = _size;
angle = _angle;
response = _response;
octave = _octave;
class_id = _class_id;
}
// javadoc: KeyPoint::KeyPoint()
public KeyPoint()
{
this(0, 0, 0, -1, 0, 0, -1);
}
// javadoc: KeyPoint::KeyPoint(x, y, _size, _angle, _response, _octave)
public KeyPoint(float x, float y, float _size, float _angle, float _response, int _octave)
{
this(x, y, _size, _angle, _response, _octave, -1);
}
// javadoc: KeyPoint::KeyPoint(x, y, _size, _angle, _response)
public KeyPoint(float x, float y, float _size, float _angle, float _response)
{
this(x, y, _size, _angle, _response, 0, -1);
}
// javadoc: KeyPoint::KeyPoint(x, y, _size, _angle)
public KeyPoint(float x, float y, float _size, float _angle)
{
this(x, y, _size, _angle, 0, 0, -1);
}
// javadoc: KeyPoint::KeyPoint(x, y, _size)
public KeyPoint(float x, float y, float _size)
{
this(x, y, _size, -1, 0, 0, -1);
}
@Override
public String toString() {
return "KeyPoint [pt=" + pt + ", size=" + size + ", angle=" + angle
+ ", response=" + response + ", octave=" + octave
+ ", class_id=" + class_id + "]";
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,79 @@
package org.opencv.core;
import java.util.Arrays;
import java.util.List;
public class MatOfByte extends Mat {
// 8UC(x)
private static final int _depth = CvType.CV_8U;
private static final int _channels = 1;
public MatOfByte() {
super();
}
protected MatOfByte(long addr) {
super(addr);
if( !empty() && checkVector(_channels, _depth) < 0 )
throw new IllegalArgumentException("Incompatible Mat");
//FIXME: do we need release() here?
}
public static MatOfByte fromNativeAddr(long addr) {
return new MatOfByte(addr);
}
public MatOfByte(Mat m) {
super(m, Range.all());
if( !empty() && checkVector(_channels, _depth) < 0 )
throw new IllegalArgumentException("Incompatible Mat");
//FIXME: do we need release() here?
}
public MatOfByte(byte...a) {
super();
fromArray(a);
}
public void alloc(int elemNumber) {
if(elemNumber>0)
super.create(elemNumber, 1, CvType.makeType(_depth, _channels));
}
public void fromArray(byte...a) {
if(a==null || a.length==0)
return;
int num = a.length / _channels;
alloc(num);
put(0, 0, a); //TODO: check ret val!
}
public byte[] toArray() {
int num = checkVector(_channels, _depth);
if(num < 0)
throw new RuntimeException("Native Mat has unexpected type or size: " + toString());
byte[] a = new byte[num * _channels];
if(num == 0)
return a;
get(0, 0, a); //TODO: check ret val!
return a;
}
public void fromList(List<Byte> lb) {
if(lb==null || lb.size()==0)
return;
Byte ab[] = lb.toArray(new Byte[0]);
byte a[] = new byte[ab.length];
for(int i=0; i<ab.length; i++)
a[i] = ab[i];
fromArray(a);
}
public List<Byte> toList() {
byte[] a = toArray();
Byte ab[] = new Byte[a.length];
for(int i=0; i<a.length; i++)
ab[i] = a[i];
return Arrays.asList(ab);
}
}

View File

@@ -0,0 +1,83 @@
package org.opencv.core;
import java.util.Arrays;
import java.util.List;
import org.opencv.core.DMatch;
public class MatOfDMatch extends Mat {
// 32FC4
private static final int _depth = CvType.CV_32F;
private static final int _channels = 4;
public MatOfDMatch() {
super();
}
protected MatOfDMatch(long addr) {
super(addr);
if( !empty() && checkVector(_channels, _depth) < 0 )
throw new IllegalArgumentException("Incompatible Mat: " + toString());
//FIXME: do we need release() here?
}
public static MatOfDMatch fromNativeAddr(long addr) {
return new MatOfDMatch(addr);
}
public MatOfDMatch(Mat m) {
super(m, Range.all());
if( !empty() && checkVector(_channels, _depth) < 0 )
throw new IllegalArgumentException("Incompatible Mat: " + toString());
//FIXME: do we need release() here?
}
public MatOfDMatch(DMatch...ap) {
super();
fromArray(ap);
}
public void alloc(int elemNumber) {
if(elemNumber>0)
super.create(elemNumber, 1, CvType.makeType(_depth, _channels));
}
public void fromArray(DMatch...a) {
if(a==null || a.length==0)
return;
int num = a.length;
alloc(num);
float buff[] = new float[num * _channels];
for(int i=0; i<num; i++) {
DMatch m = a[i];
buff[_channels*i+0] = m.queryIdx;
buff[_channels*i+1] = m.trainIdx;
buff[_channels*i+2] = m.imgIdx;
buff[_channels*i+3] = m.distance;
}
put(0, 0, buff); //TODO: check ret val!
}
public DMatch[] toArray() {
int num = (int) total();
DMatch[] a = new DMatch[num];
if(num == 0)
return a;
float buff[] = new float[num * _channels];
get(0, 0, buff); //TODO: check ret val!
for(int i=0; i<num; i++)
a[i] = new DMatch((int) buff[_channels*i+0], (int) buff[_channels*i+1], (int) buff[_channels*i+2], buff[_channels*i+3]);
return a;
}
public void fromList(List<DMatch> ldm) {
DMatch adm[] = ldm.toArray(new DMatch[0]);
fromArray(adm);
}
public List<DMatch> toList() {
DMatch[] adm = toArray();
return Arrays.asList(adm);
}
}

View File

@@ -0,0 +1,79 @@
package org.opencv.core;
import java.util.Arrays;
import java.util.List;
public class MatOfDouble extends Mat {
// 64FC(x)
private static final int _depth = CvType.CV_64F;
private static final int _channels = 1;
public MatOfDouble() {
super();
}
protected MatOfDouble(long addr) {
super(addr);
if( !empty() && checkVector(_channels, _depth) < 0 )
throw new IllegalArgumentException("Incompatible Mat");
//FIXME: do we need release() here?
}
public static MatOfDouble fromNativeAddr(long addr) {
return new MatOfDouble(addr);
}
public MatOfDouble(Mat m) {
super(m, Range.all());
if( !empty() && checkVector(_channels, _depth) < 0 )
throw new IllegalArgumentException("Incompatible Mat");
//FIXME: do we need release() here?
}
public MatOfDouble(double...a) {
super();
fromArray(a);
}
public void alloc(int elemNumber) {
if(elemNumber>0)
super.create(elemNumber, 1, CvType.makeType(_depth, _channels));
}
public void fromArray(double...a) {
if(a==null || a.length==0)
return;
int num = a.length / _channels;
alloc(num);
put(0, 0, a); //TODO: check ret val!
}
public double[] toArray() {
int num = checkVector(_channels, _depth);
if(num < 0)
throw new RuntimeException("Native Mat has unexpected type or size: " + toString());
double[] a = new double[num * _channels];
if(num == 0)
return a;
get(0, 0, a); //TODO: check ret val!
return a;
}
public void fromList(List<Double> lb) {
if(lb==null || lb.size()==0)
return;
Double ab[] = lb.toArray(new Double[0]);
double a[] = new double[ab.length];
for(int i=0; i<ab.length; i++)
a[i] = ab[i];
fromArray(a);
}
public List<Double> toList() {
double[] a = toArray();
Double ab[] = new Double[a.length];
for(int i=0; i<a.length; i++)
ab[i] = a[i];
return Arrays.asList(ab);
}
}

View File

@@ -0,0 +1,79 @@
package org.opencv.core;
import java.util.Arrays;
import java.util.List;
public class MatOfFloat extends Mat {
// 32FC1
private static final int _depth = CvType.CV_32F;
private static final int _channels = 1;
public MatOfFloat() {
super();
}
protected MatOfFloat(long addr) {
super(addr);
if( !empty() && checkVector(_channels, _depth) < 0 )
throw new IllegalArgumentException("Incompatible Mat");
//FIXME: do we need release() here?
}
public static MatOfFloat fromNativeAddr(long addr) {
return new MatOfFloat(addr);
}
public MatOfFloat(Mat m) {
super(m, Range.all());
if( !empty() && checkVector(_channels, _depth) < 0 )
throw new IllegalArgumentException("Incompatible Mat");
//FIXME: do we need release() here?
}
public MatOfFloat(float...a) {
super();
fromArray(a);
}
public void alloc(int elemNumber) {
if(elemNumber>0)
super.create(elemNumber, 1, CvType.makeType(_depth, _channels));
}
public void fromArray(float...a) {
if(a==null || a.length==0)
return;
int num = a.length / _channels;
alloc(num);
put(0, 0, a); //TODO: check ret val!
}
public float[] toArray() {
int num = checkVector(_channels, _depth);
if(num < 0)
throw new RuntimeException("Native Mat has unexpected type or size: " + toString());
float[] a = new float[num * _channels];
if(num == 0)
return a;
get(0, 0, a); //TODO: check ret val!
return a;
}
public void fromList(List<Float> lb) {
if(lb==null || lb.size()==0)
return;
Float ab[] = lb.toArray(new Float[0]);
float a[] = new float[ab.length];
for(int i=0; i<ab.length; i++)
a[i] = ab[i];
fromArray(a);
}
public List<Float> toList() {
float[] a = toArray();
Float ab[] = new Float[a.length];
for(int i=0; i<a.length; i++)
ab[i] = a[i];
return Arrays.asList(ab);
}
}

View File

@@ -0,0 +1,79 @@
package org.opencv.core;
import java.util.Arrays;
import java.util.List;
public class MatOfFloat4 extends Mat {
// 32FC4
private static final int _depth = CvType.CV_32F;
private static final int _channels = 4;
public MatOfFloat4() {
super();
}
protected MatOfFloat4(long addr) {
super(addr);
if( !empty() && checkVector(_channels, _depth) < 0 )
throw new IllegalArgumentException("Incompatible Mat");
//FIXME: do we need release() here?
}
public static MatOfFloat4 fromNativeAddr(long addr) {
return new MatOfFloat4(addr);
}
public MatOfFloat4(Mat m) {
super(m, Range.all());
if( !empty() && checkVector(_channels, _depth) < 0 )
throw new IllegalArgumentException("Incompatible Mat");
//FIXME: do we need release() here?
}
public MatOfFloat4(float...a) {
super();
fromArray(a);
}
public void alloc(int elemNumber) {
if(elemNumber>0)
super.create(elemNumber, 1, CvType.makeType(_depth, _channels));
}
public void fromArray(float...a) {
if(a==null || a.length==0)
return;
int num = a.length / _channels;
alloc(num);
put(0, 0, a); //TODO: check ret val!
}
public float[] toArray() {
int num = checkVector(_channels, _depth);
if(num < 0)
throw new RuntimeException("Native Mat has unexpected type or size: " + toString());
float[] a = new float[num * _channels];
if(num == 0)
return a;
get(0, 0, a); //TODO: check ret val!
return a;
}
public void fromList(List<Float> lb) {
if(lb==null || lb.size()==0)
return;
Float ab[] = lb.toArray(new Float[0]);
float a[] = new float[ab.length];
for(int i=0; i<ab.length; i++)
a[i] = ab[i];
fromArray(a);
}
public List<Float> toList() {
float[] a = toArray();
Float ab[] = new Float[a.length];
for(int i=0; i<a.length; i++)
ab[i] = a[i];
return Arrays.asList(ab);
}
}

View File

@@ -0,0 +1,79 @@
package org.opencv.core;
import java.util.Arrays;
import java.util.List;
public class MatOfFloat6 extends Mat {
// 32FC6
private static final int _depth = CvType.CV_32F;
private static final int _channels = 6;
public MatOfFloat6() {
super();
}
protected MatOfFloat6(long addr) {
super(addr);
if( !empty() && checkVector(_channels, _depth) < 0 )
throw new IllegalArgumentException("Incompatible Mat");
//FIXME: do we need release() here?
}
public static MatOfFloat6 fromNativeAddr(long addr) {
return new MatOfFloat6(addr);
}
public MatOfFloat6(Mat m) {
super(m, Range.all());
if( !empty() && checkVector(_channels, _depth) < 0 )
throw new IllegalArgumentException("Incompatible Mat");
//FIXME: do we need release() here?
}
public MatOfFloat6(float...a) {
super();
fromArray(a);
}
public void alloc(int elemNumber) {
if(elemNumber>0)
super.create(elemNumber, 1, CvType.makeType(_depth, _channels));
}
public void fromArray(float...a) {
if(a==null || a.length==0)
return;
int num = a.length / _channels;
alloc(num);
put(0, 0, a); //TODO: check ret val!
}
public float[] toArray() {
int num = checkVector(_channels, _depth);
if(num < 0)
throw new RuntimeException("Native Mat has unexpected type or size: " + toString());
float[] a = new float[num * _channels];
if(num == 0)
return a;
get(0, 0, a); //TODO: check ret val!
return a;
}
public void fromList(List<Float> lb) {
if(lb==null || lb.size()==0)
return;
Float ab[] = lb.toArray(new Float[0]);
float a[] = new float[ab.length];
for(int i=0; i<ab.length; i++)
a[i] = ab[i];
fromArray(a);
}
public List<Float> toList() {
float[] a = toArray();
Float ab[] = new Float[a.length];
for(int i=0; i<a.length; i++)
ab[i] = a[i];
return Arrays.asList(ab);
}
}

View File

@@ -0,0 +1,80 @@
package org.opencv.core;
import java.util.Arrays;
import java.util.List;
public class MatOfInt extends Mat {
// 32SC1
private static final int _depth = CvType.CV_32S;
private static final int _channels = 1;
public MatOfInt() {
super();
}
protected MatOfInt(long addr) {
super(addr);
if( !empty() && checkVector(_channels, _depth) < 0 )
throw new IllegalArgumentException("Incompatible Mat");
//FIXME: do we need release() here?
}
public static MatOfInt fromNativeAddr(long addr) {
return new MatOfInt(addr);
}
public MatOfInt(Mat m) {
super(m, Range.all());
if( !empty() && checkVector(_channels, _depth) < 0 )
throw new IllegalArgumentException("Incompatible Mat");
//FIXME: do we need release() here?
}
public MatOfInt(int...a) {
super();
fromArray(a);
}
public void alloc(int elemNumber) {
if(elemNumber>0)
super.create(elemNumber, 1, CvType.makeType(_depth, _channels));
}
public void fromArray(int...a) {
if(a==null || a.length==0)
return;
int num = a.length / _channels;
alloc(num);
put(0, 0, a); //TODO: check ret val!
}
public int[] toArray() {
int num = checkVector(_channels, _depth);
if(num < 0)
throw new RuntimeException("Native Mat has unexpected type or size: " + toString());
int[] a = new int[num * _channels];
if(num == 0)
return a;
get(0, 0, a); //TODO: check ret val!
return a;
}
public void fromList(List<Integer> lb) {
if(lb==null || lb.size()==0)
return;
Integer ab[] = lb.toArray(new Integer[0]);
int a[] = new int[ab.length];
for(int i=0; i<ab.length; i++)
a[i] = ab[i];
fromArray(a);
}
public List<Integer> toList() {
int[] a = toArray();
Integer ab[] = new Integer[a.length];
for(int i=0; i<a.length; i++)
ab[i] = a[i];
return Arrays.asList(ab);
}
}

View File

@@ -0,0 +1,80 @@
package org.opencv.core;
import java.util.Arrays;
import java.util.List;
public class MatOfInt4 extends Mat {
// 32SC4
private static final int _depth = CvType.CV_32S;
private static final int _channels = 4;
public MatOfInt4() {
super();
}
protected MatOfInt4(long addr) {
super(addr);
if( !empty() && checkVector(_channels, _depth) < 0 )
throw new IllegalArgumentException("Incompatible Mat");
//FIXME: do we need release() here?
}
public static MatOfInt4 fromNativeAddr(long addr) {
return new MatOfInt4(addr);
}
public MatOfInt4(Mat m) {
super(m, Range.all());
if( !empty() && checkVector(_channels, _depth) < 0 )
throw new IllegalArgumentException("Incompatible Mat");
//FIXME: do we need release() here?
}
public MatOfInt4(int...a) {
super();
fromArray(a);
}
public void alloc(int elemNumber) {
if(elemNumber>0)
super.create(elemNumber, 1, CvType.makeType(_depth, _channels));
}
public void fromArray(int...a) {
if(a==null || a.length==0)
return;
int num = a.length / _channels;
alloc(num);
put(0, 0, a); //TODO: check ret val!
}
public int[] toArray() {
int num = checkVector(_channels, _depth);
if(num < 0)
throw new RuntimeException("Native Mat has unexpected type or size: " + toString());
int[] a = new int[num * _channels];
if(num == 0)
return a;
get(0, 0, a); //TODO: check ret val!
return a;
}
public void fromList(List<Integer> lb) {
if(lb==null || lb.size()==0)
return;
Integer ab[] = lb.toArray(new Integer[0]);
int a[] = new int[ab.length];
for(int i=0; i<ab.length; i++)
a[i] = ab[i];
fromArray(a);
}
public List<Integer> toList() {
int[] a = toArray();
Integer ab[] = new Integer[a.length];
for(int i=0; i<a.length; i++)
ab[i] = a[i];
return Arrays.asList(ab);
}
}

View File

@@ -0,0 +1,86 @@
package org.opencv.core;
import java.util.Arrays;
import java.util.List;
import org.opencv.core.KeyPoint;
public class MatOfKeyPoint extends Mat {
// 32FC7
private static final int _depth = CvType.CV_32F;
private static final int _channels = 7;
public MatOfKeyPoint() {
super();
}
protected MatOfKeyPoint(long addr) {
super(addr);
if( !empty() && checkVector(_channels, _depth) < 0 )
throw new IllegalArgumentException("Incompatible Mat");
//FIXME: do we need release() here?
}
public static MatOfKeyPoint fromNativeAddr(long addr) {
return new MatOfKeyPoint(addr);
}
public MatOfKeyPoint(Mat m) {
super(m, Range.all());
if( !empty() && checkVector(_channels, _depth) < 0 )
throw new IllegalArgumentException("Incompatible Mat");
//FIXME: do we need release() here?
}
public MatOfKeyPoint(KeyPoint...a) {
super();
fromArray(a);
}
public void alloc(int elemNumber) {
if(elemNumber>0)
super.create(elemNumber, 1, CvType.makeType(_depth, _channels));
}
public void fromArray(KeyPoint...a) {
if(a==null || a.length==0)
return;
int num = a.length;
alloc(num);
float buff[] = new float[num * _channels];
for(int i=0; i<num; i++) {
KeyPoint kp = a[i];
buff[_channels*i+0] = (float) kp.pt.x;
buff[_channels*i+1] = (float) kp.pt.y;
buff[_channels*i+2] = kp.size;
buff[_channels*i+3] = kp.angle;
buff[_channels*i+4] = kp.response;
buff[_channels*i+5] = kp.octave;
buff[_channels*i+6] = kp.class_id;
}
put(0, 0, buff); //TODO: check ret val!
}
public KeyPoint[] toArray() {
int num = (int) total();
KeyPoint[] a = new KeyPoint[num];
if(num == 0)
return a;
float buff[] = new float[num * _channels];
get(0, 0, buff); //TODO: check ret val!
for(int i=0; i<num; i++)
a[i] = new KeyPoint( buff[_channels*i+0], buff[_channels*i+1], buff[_channels*i+2], buff[_channels*i+3],
buff[_channels*i+4], (int) buff[_channels*i+5], (int) buff[_channels*i+6] );
return a;
}
public void fromList(List<KeyPoint> lkp) {
KeyPoint akp[] = lkp.toArray(new KeyPoint[0]);
fromArray(akp);
}
public List<KeyPoint> toList() {
KeyPoint[] akp = toArray();
return Arrays.asList(akp);
}
}

View File

@@ -0,0 +1,78 @@
package org.opencv.core;
import java.util.Arrays;
import java.util.List;
public class MatOfPoint extends Mat {
// 32SC2
private static final int _depth = CvType.CV_32S;
private static final int _channels = 2;
public MatOfPoint() {
super();
}
protected MatOfPoint(long addr) {
super(addr);
if( !empty() && checkVector(_channels, _depth) < 0 )
throw new IllegalArgumentException("Incompatible Mat");
//FIXME: do we need release() here?
}
public static MatOfPoint fromNativeAddr(long addr) {
return new MatOfPoint(addr);
}
public MatOfPoint(Mat m) {
super(m, Range.all());
if( !empty() && checkVector(_channels, _depth) < 0 )
throw new IllegalArgumentException("Incompatible Mat");
//FIXME: do we need release() here?
}
public MatOfPoint(Point...a) {
super();
fromArray(a);
}
public void alloc(int elemNumber) {
if(elemNumber>0)
super.create(elemNumber, 1, CvType.makeType(_depth, _channels));
}
public void fromArray(Point...a) {
if(a==null || a.length==0)
return;
int num = a.length;
alloc(num);
int buff[] = new int[num * _channels];
for(int i=0; i<num; i++) {
Point p = a[i];
buff[_channels*i+0] = (int) p.x;
buff[_channels*i+1] = (int) p.y;
}
put(0, 0, buff); //TODO: check ret val!
}
public Point[] toArray() {
int num = (int) total();
Point[] ap = new Point[num];
if(num == 0)
return ap;
int buff[] = new int[num * _channels];
get(0, 0, buff); //TODO: check ret val!
for(int i=0; i<num; i++)
ap[i] = new Point(buff[i*_channels], buff[i*_channels+1]);
return ap;
}
public void fromList(List<Point> lp) {
Point ap[] = lp.toArray(new Point[0]);
fromArray(ap);
}
public List<Point> toList() {
Point[] ap = toArray();
return Arrays.asList(ap);
}
}

View File

@@ -0,0 +1,78 @@
package org.opencv.core;
import java.util.Arrays;
import java.util.List;
public class MatOfPoint2f extends Mat {
// 32FC2
private static final int _depth = CvType.CV_32F;
private static final int _channels = 2;
public MatOfPoint2f() {
super();
}
protected MatOfPoint2f(long addr) {
super(addr);
if( !empty() && checkVector(_channels, _depth) < 0 )
throw new IllegalArgumentException("Incompatible Mat");
//FIXME: do we need release() here?
}
public static MatOfPoint2f fromNativeAddr(long addr) {
return new MatOfPoint2f(addr);
}
public MatOfPoint2f(Mat m) {
super(m, Range.all());
if( !empty() && checkVector(_channels, _depth) < 0 )
throw new IllegalArgumentException("Incompatible Mat");
//FIXME: do we need release() here?
}
public MatOfPoint2f(Point...a) {
super();
fromArray(a);
}
public void alloc(int elemNumber) {
if(elemNumber>0)
super.create(elemNumber, 1, CvType.makeType(_depth, _channels));
}
public void fromArray(Point...a) {
if(a==null || a.length==0)
return;
int num = a.length;
alloc(num);
float buff[] = new float[num * _channels];
for(int i=0; i<num; i++) {
Point p = a[i];
buff[_channels*i+0] = (float) p.x;
buff[_channels*i+1] = (float) p.y;
}
put(0, 0, buff); //TODO: check ret val!
}
public Point[] toArray() {
int num = (int) total();
Point[] ap = new Point[num];
if(num == 0)
return ap;
float buff[] = new float[num * _channels];
get(0, 0, buff); //TODO: check ret val!
for(int i=0; i<num; i++)
ap[i] = new Point(buff[i*_channels], buff[i*_channels+1]);
return ap;
}
public void fromList(List<Point> lp) {
Point ap[] = lp.toArray(new Point[0]);
fromArray(ap);
}
public List<Point> toList() {
Point[] ap = toArray();
return Arrays.asList(ap);
}
}

View File

@@ -0,0 +1,79 @@
package org.opencv.core;
import java.util.Arrays;
import java.util.List;
public class MatOfPoint3 extends Mat {
// 32SC3
private static final int _depth = CvType.CV_32S;
private static final int _channels = 3;
public MatOfPoint3() {
super();
}
protected MatOfPoint3(long addr) {
super(addr);
if( !empty() && checkVector(_channels, _depth) < 0 )
throw new IllegalArgumentException("Incompatible Mat");
//FIXME: do we need release() here?
}
public static MatOfPoint3 fromNativeAddr(long addr) {
return new MatOfPoint3(addr);
}
public MatOfPoint3(Mat m) {
super(m, Range.all());
if( !empty() && checkVector(_channels, _depth) < 0 )
throw new IllegalArgumentException("Incompatible Mat");
//FIXME: do we need release() here?
}
public MatOfPoint3(Point3...a) {
super();
fromArray(a);
}
public void alloc(int elemNumber) {
if(elemNumber>0)
super.create(elemNumber, 1, CvType.makeType(_depth, _channels));
}
public void fromArray(Point3...a) {
if(a==null || a.length==0)
return;
int num = a.length;
alloc(num);
int buff[] = new int[num * _channels];
for(int i=0; i<num; i++) {
Point3 p = a[i];
buff[_channels*i+0] = (int) p.x;
buff[_channels*i+1] = (int) p.y;
buff[_channels*i+2] = (int) p.z;
}
put(0, 0, buff); //TODO: check ret val!
}
public Point3[] toArray() {
int num = (int) total();
Point3[] ap = new Point3[num];
if(num == 0)
return ap;
int buff[] = new int[num * _channels];
get(0, 0, buff); //TODO: check ret val!
for(int i=0; i<num; i++)
ap[i] = new Point3(buff[i*_channels], buff[i*_channels+1], buff[i*_channels+2]);
return ap;
}
public void fromList(List<Point3> lp) {
Point3 ap[] = lp.toArray(new Point3[0]);
fromArray(ap);
}
public List<Point3> toList() {
Point3[] ap = toArray();
return Arrays.asList(ap);
}
}

View File

@@ -0,0 +1,79 @@
package org.opencv.core;
import java.util.Arrays;
import java.util.List;
public class MatOfPoint3f extends Mat {
// 32FC3
private static final int _depth = CvType.CV_32F;
private static final int _channels = 3;
public MatOfPoint3f() {
super();
}
protected MatOfPoint3f(long addr) {
super(addr);
if( !empty() && checkVector(_channels, _depth) < 0 )
throw new IllegalArgumentException("Incompatible Mat");
//FIXME: do we need release() here?
}
public static MatOfPoint3f fromNativeAddr(long addr) {
return new MatOfPoint3f(addr);
}
public MatOfPoint3f(Mat m) {
super(m, Range.all());
if( !empty() && checkVector(_channels, _depth) < 0 )
throw new IllegalArgumentException("Incompatible Mat");
//FIXME: do we need release() here?
}
public MatOfPoint3f(Point3...a) {
super();
fromArray(a);
}
public void alloc(int elemNumber) {
if(elemNumber>0)
super.create(elemNumber, 1, CvType.makeType(_depth, _channels));
}
public void fromArray(Point3...a) {
if(a==null || a.length==0)
return;
int num = a.length;
alloc(num);
float buff[] = new float[num * _channels];
for(int i=0; i<num; i++) {
Point3 p = a[i];
buff[_channels*i+0] = (float) p.x;
buff[_channels*i+1] = (float) p.y;
buff[_channels*i+2] = (float) p.z;
}
put(0, 0, buff); //TODO: check ret val!
}
public Point3[] toArray() {
int num = (int) total();
Point3[] ap = new Point3[num];
if(num == 0)
return ap;
float buff[] = new float[num * _channels];
get(0, 0, buff); //TODO: check ret val!
for(int i=0; i<num; i++)
ap[i] = new Point3(buff[i*_channels], buff[i*_channels+1], buff[i*_channels+2]);
return ap;
}
public void fromList(List<Point3> lp) {
Point3 ap[] = lp.toArray(new Point3[0]);
fromArray(ap);
}
public List<Point3> toList() {
Point3[] ap = toArray();
return Arrays.asList(ap);
}
}

View File

@@ -0,0 +1,81 @@
package org.opencv.core;
import java.util.Arrays;
import java.util.List;
public class MatOfRect extends Mat {
// 32SC4
private static final int _depth = CvType.CV_32S;
private static final int _channels = 4;
public MatOfRect() {
super();
}
protected MatOfRect(long addr) {
super(addr);
if( !empty() && checkVector(_channels, _depth) < 0 )
throw new IllegalArgumentException("Incompatible Mat");
//FIXME: do we need release() here?
}
public static MatOfRect fromNativeAddr(long addr) {
return new MatOfRect(addr);
}
public MatOfRect(Mat m) {
super(m, Range.all());
if( !empty() && checkVector(_channels, _depth) < 0 )
throw new IllegalArgumentException("Incompatible Mat");
//FIXME: do we need release() here?
}
public MatOfRect(Rect...a) {
super();
fromArray(a);
}
public void alloc(int elemNumber) {
if(elemNumber>0)
super.create(elemNumber, 1, CvType.makeType(_depth, _channels));
}
public void fromArray(Rect...a) {
if(a==null || a.length==0)
return;
int num = a.length;
alloc(num);
int buff[] = new int[num * _channels];
for(int i=0; i<num; i++) {
Rect r = a[i];
buff[_channels*i+0] = (int) r.x;
buff[_channels*i+1] = (int) r.y;
buff[_channels*i+2] = (int) r.width;
buff[_channels*i+3] = (int) r.height;
}
put(0, 0, buff); //TODO: check ret val!
}
public Rect[] toArray() {
int num = (int) total();
Rect[] a = new Rect[num];
if(num == 0)
return a;
int buff[] = new int[num * _channels];
get(0, 0, buff); //TODO: check ret val!
for(int i=0; i<num; i++)
a[i] = new Rect(buff[i*_channels], buff[i*_channels+1], buff[i*_channels+2], buff[i*_channels+3]);
return a;
}
public void fromList(List<Rect> lr) {
Rect ap[] = lr.toArray(new Rect[0]);
fromArray(ap);
}
public List<Rect> toList() {
Rect[] ar = toArray();
return Arrays.asList(ar);
}
}

View File

@@ -0,0 +1,68 @@
package org.opencv.core;
//javadoc:Point_
public class Point {
public double x, y;
public Point(double x, double y) {
this.x = x;
this.y = y;
}
public Point() {
this(0, 0);
}
public Point(double[] vals) {
this();
set(vals);
}
public void set(double[] vals) {
if (vals != null) {
x = vals.length > 0 ? vals[0] : 0;
y = vals.length > 1 ? vals[1] : 0;
} else {
x = 0;
y = 0;
}
}
public Point clone() {
return new Point(x, y);
}
public double dot(Point p) {
return x * p.x + y * p.y;
}
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
long temp;
temp = Double.doubleToLongBits(x);
result = prime * result + (int) (temp ^ (temp >>> 32));
temp = Double.doubleToLongBits(y);
result = prime * result + (int) (temp ^ (temp >>> 32));
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj) return true;
if (!(obj instanceof Point)) return false;
Point it = (Point) obj;
return x == it.x && y == it.y;
}
public boolean inside(Rect r) {
return r.contains(this);
}
@Override
public String toString() {
return "{" + x + ", " + y + "}";
}
}

View File

@@ -0,0 +1,79 @@
package org.opencv.core;
//javadoc:Point3_
public class Point3 {
public double x, y, z;
public Point3(double x, double y, double z) {
this.x = x;
this.y = y;
this.z = z;
}
public Point3() {
this(0, 0, 0);
}
public Point3(Point p) {
x = p.x;
y = p.y;
z = 0;
}
public Point3(double[] vals) {
this();
set(vals);
}
public void set(double[] vals) {
if (vals != null) {
x = vals.length > 0 ? vals[0] : 0;
y = vals.length > 1 ? vals[1] : 0;
z = vals.length > 2 ? vals[2] : 0;
} else {
x = 0;
y = 0;
z = 0;
}
}
public Point3 clone() {
return new Point3(x, y, z);
}
public double dot(Point3 p) {
return x * p.x + y * p.y + z * p.z;
}
public Point3 cross(Point3 p) {
return new Point3(y * p.z - z * p.y, z * p.x - x * p.z, x * p.y - y * p.x);
}
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
long temp;
temp = Double.doubleToLongBits(x);
result = prime * result + (int) (temp ^ (temp >>> 32));
temp = Double.doubleToLongBits(y);
result = prime * result + (int) (temp ^ (temp >>> 32));
temp = Double.doubleToLongBits(z);
result = prime * result + (int) (temp ^ (temp >>> 32));
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj) return true;
if (!(obj instanceof Point3)) return false;
Point3 it = (Point3) obj;
return x == it.x && y == it.y && z == it.z;
}
@Override
public String toString() {
return "{" + x + ", " + y + ", " + z + "}";
}
}

View File

@@ -0,0 +1,82 @@
package org.opencv.core;
//javadoc:Range
public class Range {
public int start, end;
public Range(int s, int e) {
this.start = s;
this.end = e;
}
public Range() {
this(0, 0);
}
public Range(double[] vals) {
set(vals);
}
public void set(double[] vals) {
if (vals != null) {
start = vals.length > 0 ? (int) vals[0] : 0;
end = vals.length > 1 ? (int) vals[1] : 0;
} else {
start = 0;
end = 0;
}
}
public int size() {
return empty() ? 0 : end - start;
}
public boolean empty() {
return end <= start;
}
public static Range all() {
return new Range(Integer.MIN_VALUE, Integer.MAX_VALUE);
}
public Range intersection(Range r1) {
Range r = new Range(Math.max(r1.start, this.start), Math.min(r1.end, this.end));
r.end = Math.max(r.end, r.start);
return r;
}
public Range shift(int delta) {
return new Range(start + delta, end + delta);
}
public Range clone() {
return new Range(start, end);
}
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
long temp;
temp = Double.doubleToLongBits(start);
result = prime * result + (int) (temp ^ (temp >>> 32));
temp = Double.doubleToLongBits(end);
result = prime * result + (int) (temp ^ (temp >>> 32));
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj) return true;
if (!(obj instanceof Range)) return false;
Range it = (Range) obj;
return start == it.start && end == it.end;
}
@Override
public String toString() {
return "[" + start + ", " + end + ")";
}
}

View File

@@ -0,0 +1,100 @@
package org.opencv.core;
//javadoc:Rect_
public class Rect {
public int x, y, width, height;
public Rect(int x, int y, int width, int height) {
this.x = x;
this.y = y;
this.width = width;
this.height = height;
}
public Rect() {
this(0, 0, 0, 0);
}
public Rect(Point p1, Point p2) {
x = (int) (p1.x < p2.x ? p1.x : p2.x);
y = (int) (p1.y < p2.y ? p1.y : p2.y);
width = (int) (p1.x > p2.x ? p1.x : p2.x) - x;
height = (int) (p1.y > p2.y ? p1.y : p2.y) - y;
}
public Rect(Point p, Size s) {
this((int) p.x, (int) p.y, (int) s.width, (int) s.height);
}
public Rect(double[] vals) {
set(vals);
}
public void set(double[] vals) {
if (vals != null) {
x = vals.length > 0 ? (int) vals[0] : 0;
y = vals.length > 1 ? (int) vals[1] : 0;
width = vals.length > 2 ? (int) vals[2] : 0;
height = vals.length > 3 ? (int) vals[3] : 0;
} else {
x = 0;
y = 0;
width = 0;
height = 0;
}
}
public Rect clone() {
return new Rect(x, y, width, height);
}
public Point tl() {
return new Point(x, y);
}
public Point br() {
return new Point(x + width, y + height);
}
public Size size() {
return new Size(width, height);
}
public double area() {
return width * height;
}
public boolean contains(Point p) {
return x <= p.x && p.x < x + width && y <= p.y && p.y < y + height;
}
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
long temp;
temp = Double.doubleToLongBits(height);
result = prime * result + (int) (temp ^ (temp >>> 32));
temp = Double.doubleToLongBits(width);
result = prime * result + (int) (temp ^ (temp >>> 32));
temp = Double.doubleToLongBits(x);
result = prime * result + (int) (temp ^ (temp >>> 32));
temp = Double.doubleToLongBits(y);
result = prime * result + (int) (temp ^ (temp >>> 32));
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj) return true;
if (!(obj instanceof Rect)) return false;
Rect it = (Rect) obj;
return x == it.x && y == it.y && width == it.width && height == it.height;
}
@Override
public String toString() {
return "{" + x + ", " + y + ", " + width + "x" + height + "}";
}
}

View File

@@ -0,0 +1,113 @@
package org.opencv.core;
//javadoc:RotatedRect_
public class RotatedRect {
public Point center;
public Size size;
public double angle;
public RotatedRect() {
this.center = new Point();
this.size = new Size();
this.angle = 0;
}
public RotatedRect(Point c, Size s, double a) {
this.center = c.clone();
this.size = s.clone();
this.angle = a;
}
public RotatedRect(double[] vals) {
this();
set(vals);
}
public void set(double[] vals) {
if (vals != null) {
center.x = vals.length > 0 ? (double) vals[0] : 0;
center.y = vals.length > 1 ? (double) vals[1] : 0;
size.width = vals.length > 2 ? (double) vals[2] : 0;
size.height = vals.length > 3 ? (double) vals[3] : 0;
angle = vals.length > 4 ? (double) vals[4] : 0;
} else {
center.x = 0;
center.x = 0;
size.width = 0;
size.height = 0;
angle = 0;
}
}
public void points(Point pt[])
{
double _angle = angle * Math.PI / 180.0;
double b = (double) Math.cos(_angle) * 0.5f;
double a = (double) Math.sin(_angle) * 0.5f;
pt[0] = new Point(
center.x - a * size.height - b * size.width,
center.y + b * size.height - a * size.width);
pt[1] = new Point(
center.x + a * size.height - b * size.width,
center.y - b * size.height - a * size.width);
pt[2] = new Point(
2 * center.x - pt[0].x,
2 * center.y - pt[0].y);
pt[3] = new Point(
2 * center.x - pt[1].x,
2 * center.y - pt[1].y);
}
public Rect boundingRect()
{
Point pt[] = new Point[4];
points(pt);
Rect r = new Rect((int) Math.floor(Math.min(Math.min(Math.min(pt[0].x, pt[1].x), pt[2].x), pt[3].x)),
(int) Math.floor(Math.min(Math.min(Math.min(pt[0].y, pt[1].y), pt[2].y), pt[3].y)),
(int) Math.ceil(Math.max(Math.max(Math.max(pt[0].x, pt[1].x), pt[2].x), pt[3].x)),
(int) Math.ceil(Math.max(Math.max(Math.max(pt[0].y, pt[1].y), pt[2].y), pt[3].y)));
r.width -= r.x - 1;
r.height -= r.y - 1;
return r;
}
public RotatedRect clone() {
return new RotatedRect(center, size, angle);
}
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
long temp;
temp = Double.doubleToLongBits(center.x);
result = prime * result + (int) (temp ^ (temp >>> 32));
temp = Double.doubleToLongBits(center.y);
result = prime * result + (int) (temp ^ (temp >>> 32));
temp = Double.doubleToLongBits(size.width);
result = prime * result + (int) (temp ^ (temp >>> 32));
temp = Double.doubleToLongBits(size.height);
result = prime * result + (int) (temp ^ (temp >>> 32));
temp = Double.doubleToLongBits(angle);
result = prime * result + (int) (temp ^ (temp >>> 32));
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj) return true;
if (!(obj instanceof RotatedRect)) return false;
RotatedRect it = (RotatedRect) obj;
return center.equals(it.center) && size.equals(it.size) && angle == it.angle;
}
@Override
public String toString() {
return "{ " + center + " " + size + " * " + angle + " }";
}
}

View File

@@ -0,0 +1,90 @@
package org.opencv.core;
//javadoc:Scalar_
public class Scalar {
public double val[];
public Scalar(double v0, double v1, double v2, double v3) {
val = new double[] { v0, v1, v2, v3 };
}
public Scalar(double v0, double v1, double v2) {
val = new double[] { v0, v1, v2, 0 };
}
public Scalar(double v0, double v1) {
val = new double[] { v0, v1, 0, 0 };
}
public Scalar(double v0) {
val = new double[] { v0, 0, 0, 0 };
}
public Scalar(double[] vals) {
if (vals != null && vals.length == 4)
val = vals.clone();
else {
val = new double[4];
set(vals);
}
}
public void set(double[] vals) {
if (vals != null) {
val[0] = vals.length > 0 ? vals[0] : 0;
val[1] = vals.length > 1 ? vals[1] : 0;
val[2] = vals.length > 2 ? vals[2] : 0;
val[3] = vals.length > 3 ? vals[3] : 0;
} else
val[0] = val[1] = val[2] = val[3] = 0;
}
public static Scalar all(double v) {
return new Scalar(v, v, v, v);
}
public Scalar clone() {
return new Scalar(val);
}
public Scalar mul(Scalar it, double scale) {
return new Scalar(val[0] * it.val[0] * scale, val[1] * it.val[1] * scale,
val[2] * it.val[2] * scale, val[3] * it.val[3] * scale);
}
public Scalar mul(Scalar it) {
return mul(it, 1);
}
public Scalar conj() {
return new Scalar(val[0], -val[1], -val[2], -val[3]);
}
public boolean isReal() {
return val[1] == 0 && val[2] == 0 && val[3] == 0;
}
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + java.util.Arrays.hashCode(val);
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj) return true;
if (!(obj instanceof Scalar)) return false;
Scalar it = (Scalar) obj;
if (!java.util.Arrays.equals(val, it.val)) return false;
return true;
}
@Override
public String toString() {
return "[" + val[0] + ", " + val[1] + ", " + val[2] + ", " + val[3] + "]";
}
}

View File

@@ -0,0 +1,69 @@
package org.opencv.core;
//javadoc:Size_
public class Size {
public double width, height;
public Size(double width, double height) {
this.width = width;
this.height = height;
}
public Size() {
this(0, 0);
}
public Size(Point p) {
width = p.x;
height = p.y;
}
public Size(double[] vals) {
set(vals);
}
public void set(double[] vals) {
if (vals != null) {
width = vals.length > 0 ? vals[0] : 0;
height = vals.length > 1 ? vals[1] : 0;
} else {
width = 0;
height = 0;
}
}
public double area() {
return width * height;
}
public Size clone() {
return new Size(width, height);
}
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
long temp;
temp = Double.doubleToLongBits(height);
result = prime * result + (int) (temp ^ (temp >>> 32));
temp = Double.doubleToLongBits(width);
result = prime * result + (int) (temp ^ (temp >>> 32));
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj) return true;
if (!(obj instanceof Size)) return false;
Size it = (Size) obj;
return width == it.width && height == it.height;
}
@Override
public String toString() {
return (int)width + "x" + (int)height;
}
}

View File

@@ -0,0 +1,92 @@
package org.opencv.core;
//javadoc:TermCriteria
public class TermCriteria {
/**
* The maximum number of iterations or elements to compute
*/
public static final int COUNT = 1;
/**
* The maximum number of iterations or elements to compute
*/
public static final int MAX_ITER = COUNT;
/**
* The desired accuracy threshold or change in parameters at which the iterative algorithm is terminated.
*/
public static final int EPS = 2;
public int type;
public int maxCount;
public double epsilon;
/**
* Termination criteria for iterative algorithms.
*
* @param type
* the type of termination criteria: COUNT, EPS or COUNT + EPS.
* @param maxCount
* the maximum number of iterations/elements.
* @param epsilon
* the desired accuracy.
*/
public TermCriteria(int type, int maxCount, double epsilon) {
this.type = type;
this.maxCount = maxCount;
this.epsilon = epsilon;
}
/**
* Termination criteria for iterative algorithms.
*/
public TermCriteria() {
this(0, 0, 0.0);
}
public TermCriteria(double[] vals) {
set(vals);
}
public void set(double[] vals) {
if (vals != null) {
type = vals.length > 0 ? (int) vals[0] : 0;
maxCount = vals.length > 1 ? (int) vals[1] : 0;
epsilon = vals.length > 2 ? (double) vals[2] : 0;
} else {
type = 0;
maxCount = 0;
epsilon = 0;
}
}
public TermCriteria clone() {
return new TermCriteria(type, maxCount, epsilon);
}
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
long temp;
temp = Double.doubleToLongBits(type);
result = prime * result + (int) (temp ^ (temp >>> 32));
temp = Double.doubleToLongBits(maxCount);
result = prime * result + (int) (temp ^ (temp >>> 32));
temp = Double.doubleToLongBits(epsilon);
result = prime * result + (int) (temp ^ (temp >>> 32));
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj) return true;
if (!(obj instanceof TermCriteria)) return false;
TermCriteria it = (TermCriteria) obj;
return type == it.type && maxCount == it.maxCount && epsilon == it.epsilon;
}
@Override
public String toString() {
return "{ type: " + type + ", maxCount: " + maxCount + ", epsilon: " + epsilon + "}";
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,63 @@
package org.opencv.test.core;
import org.opencv.core.CvType;
import org.opencv.test.OpenCVTestCase;
public class CvTypeTest extends OpenCVTestCase {
public void testMakeType() {
assertEquals(CvType.CV_8UC4, CvType.makeType(CvType.CV_8U, 4));
}
public void testCV_8UC() {
assertEquals(CvType.CV_8UC4, CvType.CV_8UC(4));
}
public void testCV_8SC() {
assertEquals(CvType.CV_8SC4, CvType.CV_8SC(4));
}
public void testCV_16UC() {
assertEquals(CvType.CV_16UC4, CvType.CV_16UC(4));
}
public void testCV_16SC() {
assertEquals(CvType.CV_16SC4, CvType.CV_16SC(4));
}
public void testCV_32SC() {
assertEquals(CvType.CV_32SC4, CvType.CV_32SC(4));
}
public void testCV_32FC() {
assertEquals(CvType.CV_32FC4, CvType.CV_32FC(4));
}
public void testCV_64FC() {
assertEquals(CvType.CV_64FC4, CvType.CV_64FC(4));
}
public void testChannels() {
assertEquals(1, CvType.channels(CvType.CV_64F));
}
public void testDepth() {
assertEquals(CvType.CV_64F, CvType.depth(CvType.CV_64FC3));
}
public void testIsInteger() {
assertFalse(CvType.isInteger(CvType.CV_32FC3));
assertTrue(CvType.isInteger(CvType.CV_16S));
}
public void testELEM_SIZE() {
assertEquals(3 * 8, CvType.ELEM_SIZE(CvType.CV_64FC3));
}
public void testTypeToString() {
assertEquals("CV_32FC1", CvType.typeToString(CvType.CV_32F));
assertEquals("CV_32FC3", CvType.typeToString(CvType.CV_32FC3));
assertEquals("CV_32FC(128)", CvType.typeToString(CvType.CV_32FC(128)));
}
}

View File

@@ -0,0 +1,44 @@
package org.opencv.test.core;
import org.opencv.core.DMatch;
import junit.framework.TestCase;
public class DMatchTest extends TestCase {
public void testDMatch() {
new DMatch();
}
public void testDMatchIntIntFloat() {
DMatch dm1 = new DMatch(1, 4, 4.0f);
assertEquals(1, dm1.queryIdx);
assertEquals(4, dm1.trainIdx);
assertEquals(4.0f, dm1.distance);
}
public void testDMatchIntIntIntFloat() {
DMatch dm2 = new DMatch(2, 6, -1, 8.0f);
assertEquals(2, dm2.queryIdx);
assertEquals(6, dm2.trainIdx);
assertEquals(-1, dm2.imgIdx);
assertEquals(8.0f, dm2.distance);
}
public void testLessThan() {
DMatch dm1 = new DMatch(1, 4, 4.0f);
DMatch dm2 = new DMatch(2, 6, -1, 8.0f);
assertTrue(dm1.lessThan(dm2));
}
public void testToString() {
DMatch dm2 = new DMatch(2, 6, -1, 8.0f);
String actual = dm2.toString();
String expected = "DMatch [queryIdx=2, trainIdx=6, imgIdx=-1, distance=8.0]";
assertEquals(expected, actual);
}
}

View File

@@ -0,0 +1,71 @@
package org.opencv.test.core;
import org.opencv.core.Point;
import org.opencv.core.KeyPoint;
import org.opencv.test.OpenCVTestCase;
public class KeyPointTest extends OpenCVTestCase {
private float angle;
private int classId;
private KeyPoint keyPoint;
private int octave;
private float response;
private float size;
private float x;
private float y;
@Override
protected void setUp() throws Exception {
super.setUp();
keyPoint = null;
x = 1.0f;
y = 2.0f;
size = 3.0f;
angle = 30.0f;
response = 2.0f;
octave = 1;
classId = 1;
}
public void testKeyPoint() {
keyPoint = new KeyPoint();
assertPointEquals(new Point(0, 0), keyPoint.pt, EPS);
}
public void testKeyPointFloatFloatFloat() {
keyPoint = new KeyPoint(x, y, size);
assertPointEquals(new Point(1, 2), keyPoint.pt, EPS);
}
public void testKeyPointFloatFloatFloatFloat() {
keyPoint = new KeyPoint(x, y, size, 10.0f);
assertEquals(10.0f, keyPoint.angle);
}
public void testKeyPointFloatFloatFloatFloatFloat() {
keyPoint = new KeyPoint(x, y, size, 1.0f, 1.0f);
assertEquals(1.0f, keyPoint.response);
}
public void testKeyPointFloatFloatFloatFloatFloatInt() {
keyPoint = new KeyPoint(x, y, size, 1.0f, 1.0f, 1);
assertEquals(1, keyPoint.octave);
}
public void testKeyPointFloatFloatFloatFloatFloatIntInt() {
keyPoint = new KeyPoint(x, y, size, 1.0f, 1.0f, 1, 1);
assertEquals(1, keyPoint.class_id);
}
public void testToString() {
keyPoint = new KeyPoint(x, y, size, angle, response, octave, classId);
String actual = keyPoint.toString();
String expected = "KeyPoint [pt={1.0, 2.0}, size=3.0, angle=30.0, response=2.0, octave=1, class_id=1]";
assertEquals(expected, actual);
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,107 @@
package org.opencv.test.core;
import org.opencv.core.Point;
import org.opencv.core.Point3;
import org.opencv.test.OpenCVTestCase;
public class Point3Test extends OpenCVTestCase {
private Point3 p1;
private Point3 p2;
@Override
protected void setUp() throws Exception {
super.setUp();
p1 = new Point3(2, 2, 2);
p2 = new Point3(1, 1, 1);
}
public void testClone() {
Point3 truth = new Point3(1, 1, 1);
p1 = truth.clone();
assertEquals(truth, p1);
}
public void testCross() {
Point3 dstPoint = p1.cross(p2);
Point3 truth = new Point3(0, 0, 0);
assertEquals(truth, dstPoint);
}
public void testDot() {
double result = p1.dot(p2);
assertEquals(6.0, result);
}
public void testEqualsObject() {
boolean flag = p1.equals(p1);
assertTrue(flag);
flag = p1.equals(p2);
assertFalse(flag);
}
public void testHashCode() {
assertEquals(p1.hashCode(), p1.hashCode());
}
public void testPoint3() {
p1 = new Point3();
assertNotNull(p1);
assertTrue(0 == p1.x);
assertTrue(0 == p1.y);
assertTrue(0 == p1.z);
}
public void testPoint3DoubleArray() {
double[] vals = { 1, 2, 3 };
p1 = new Point3(vals);
assertTrue(1 == p1.x);
assertTrue(2 == p1.y);
assertTrue(3 == p1.z);
}
public void testPoint3DoubleDoubleDouble() {
p1 = new Point3(1, 2, 3);
assertEquals(1., p1.x);
assertEquals(2., p1.y);
assertEquals(3., p1.z);
}
public void testPoint3Point() {
Point p = new Point(2, 3);
p1 = new Point3(p);
assertEquals(2., p1.x);
assertEquals(3., p1.y);
assertEquals(0., p1.z);
}
public void testSet() {
double[] vals1 = {};
p1.set(vals1);
assertEquals(0., p1.x);
assertEquals(0., p1.y);
assertEquals(0., p1.z);
double[] vals2 = { 3, 6, 10 };
p1.set(vals2);
assertEquals(3., p1.x);
assertEquals(6., p1.y);
assertEquals(10., p1.z);
}
public void testToString() {
String actual = p1.toString();
String expected = "{2.0, 2.0, 2.0}";
assertEquals(expected, actual);
}
}

View File

@@ -0,0 +1,93 @@
package org.opencv.test.core;
import org.opencv.core.Point;
import org.opencv.core.Rect;
import org.opencv.test.OpenCVTestCase;
public class PointTest extends OpenCVTestCase {
private Point p1;
private Point p2;
@Override
protected void setUp() throws Exception {
super.setUp();
p1 = new Point(2, 2);
p2 = new Point(1, 1);
}
public void testClone() {
Point truth = new Point(1, 1);
Point dstPoint = truth.clone();
assertEquals(truth, dstPoint);
}
public void testDot() {
double result = p1.dot(p2);
assertEquals(4.0, result);
}
public void testEqualsObject() {
boolean flag = p1.equals(p1);
assertTrue(flag);
flag = p1.equals(p2);
assertFalse(flag);
}
public void testHashCode() {
assertEquals(p1.hashCode(), p1.hashCode());
}
public void testInside() {
Rect rect = new Rect(0, 0, 5, 3);
assertTrue(p1.inside(rect));
Point p2 = new Point(3, 3);
assertFalse(p2.inside(rect));
}
public void testPoint() {
Point p = new Point();
assertNotNull(p);
assertEquals(0.0, p.x);
assertEquals(0.0, p.y);
}
public void testPointDoubleArray() {
double[] vals = { 2, 4 };
Point p = new Point(vals);
assertEquals(2.0, p.x);
assertEquals(4.0, p.y);
}
public void testPointDoubleDouble() {
p1 = new Point(7, 5);
assertNotNull(p1);
assertEquals(7.0, p1.x);
assertEquals(5.0, p1.y);
}
public void testSet() {
double[] vals1 = {};
p1.set(vals1);
assertEquals(0.0, p1.x);
assertEquals(0.0, p1.y);
double[] vals2 = { 6, 10 };
p2.set(vals2);
assertEquals(6.0, p2.x);
assertEquals(10.0, p2.y);
}
public void testToString() {
String actual = p1.toString();
String expected = "{2.0, 2.0}";
assertEquals(expected, actual);
}
}

View File

@@ -0,0 +1,113 @@
package org.opencv.test.core;
import org.opencv.core.Range;
import org.opencv.test.OpenCVTestCase;
public class RangeTest extends OpenCVTestCase {
Range r1;
Range r2;
Range range;
@Override
protected void setUp() throws Exception {
super.setUp();
range = new Range();
r1 = new Range(1, 11);
r2 = new Range(1, 1);
}
public void testAll() {
range = Range.all();
assertEquals(Integer.MIN_VALUE, range.start);
assertEquals(Integer.MAX_VALUE, range.end);
}
public void testClone() {
Range dstRange = new Range();
dstRange = r1.clone();
assertEquals(r1, dstRange);
}
public void testEmpty() {
boolean flag;
flag = r1.empty();
assertFalse(flag);
flag = r2.empty();
assertTrue(flag);
}
public void testEqualsObject() {
assertFalse(r2.equals(r1));
range = r1.clone();
assertTrue(r1.equals(range));
}
public void testHashCode() {
assertEquals(r1.hashCode(), r1.hashCode());
}
public void testIntersection() {
range = r1.intersection(r2);
assertEquals(r2, range);
}
public void testRange() {
range = new Range();
assertNotNull(range);
assertEquals(0, range.start);
assertEquals(0, range.end);
}
public void testRangeDoubleArray() {
double[] vals = { 2, 4 };
Range r = new Range(vals);
assertTrue(2 == r.start);
assertTrue(4 == r.end);
}
public void testRangeIntInt() {
r1 = new Range(12, 13);
assertNotNull(r1);
assertEquals(12, r1.start);
assertEquals(13, r1.end);
}
public void testSet() {
double[] vals1 = {};
r1.set(vals1);
assertEquals(0, r1.start);
assertEquals(0, r1.end);
double[] vals2 = { 6, 10 };
r2.set(vals2);
assertEquals(6, r2.start);
assertEquals(10, r2.end);
}
public void testShift() {
int delta = 1;
range = range.shift(delta);
assertEquals(r2, range);
}
public void testSize() {
assertEquals(10, r1.size());
assertEquals(0, r2.size());
}
public void testToString() {
String actual = r1.toString();
String expected = "[1, 11)";
assertEquals(expected, actual);
}
}

View File

@@ -0,0 +1,163 @@
package org.opencv.test.core;
import org.opencv.core.Point;
import org.opencv.core.Rect;
import org.opencv.core.Size;
import org.opencv.test.OpenCVTestCase;
public class RectTest extends OpenCVTestCase {
private Rect r;
private Rect rect;
@Override
protected void setUp() throws Exception {
super.setUp();
r = new Rect();
rect = new Rect(0, 0, 10, 10);
}
public void testArea() {
double area;
area = rect.area();
assertEquals(100.0, area);
}
public void testBr() {
Point p_br = new Point();
p_br = rect.br();
Point truth = new Point(10, 10);
assertEquals(truth, p_br);
}
public void testClone() {
r = rect.clone();
assertEquals(rect, r);
}
public void testContains() {
Rect rect = new Rect(0, 0, 10, 10);
Point p_inner = new Point(5, 5);
Point p_outer = new Point(5, 55);
Point p_bl = new Point(0, 0);
Point p_br = new Point(10, 0);
Point p_tl = new Point(0, 10);
Point p_tr = new Point(10, 10);
assertTrue(rect.contains(p_inner));
assertTrue(rect.contains(p_bl));
assertFalse(rect.contains(p_outer));
assertFalse(rect.contains(p_br));
assertFalse(rect.contains(p_tl));
assertFalse(rect.contains(p_tr));
}
public void testEqualsObject() {
boolean flag;
flag = rect.equals(r);
assertFalse(flag);
r = rect.clone();
flag = rect.equals(r);
assertTrue(flag);
}
public void testHashCode() {
assertEquals(rect.hashCode(), rect.hashCode());
}
public void testRect() {
r = new Rect();
assertEquals(0, r.x);
assertEquals(0, r.y);
assertEquals(0, r.width);
assertEquals(0, r.height);
}
public void testRectDoubleArray() {
double[] vals = { 1, 3, 5, 2 };
r = new Rect(vals);
assertEquals(1, r.x);
assertEquals(3, r.y);
assertEquals(5, r.width);
assertEquals(2, r.height);
}
public void testRectIntIntIntInt() {
r = new Rect(1, 3, 5, 2);
assertNotNull(rect);
assertEquals(0, rect.x);
assertEquals(0, rect.y);
assertEquals(10, rect.width);
assertEquals(10, rect.height);
}
public void testRectPointPoint() {
Point p1 = new Point(4, 4);
Point p2 = new Point(2, 3);
r = new Rect(p1, p2);
assertNotNull(r);
assertEquals(2, r.x);
assertEquals(3, r.y);
assertEquals(2, r.width);
assertEquals(1, r.height);
}
public void testRectPointSize() {
Point p1 = new Point(4, 4);
Size sz = new Size(3, 1);
r = new Rect(p1, sz);
assertEquals(4, r.x);
assertEquals(4, r.y);
assertEquals(3, r.width);
assertEquals(1, r.height);
}
public void testSet() {
double[] vals1 = {};
Rect r1 = new Rect(vals1);
assertEquals(0, r1.x);
assertEquals(0, r1.y);
assertEquals(0, r1.width);
assertEquals(0, r1.height);
double[] vals2 = { 2, 2, 10, 5 };
r = new Rect(vals2);
assertEquals(2, r.x);
assertEquals(2, r.y);
assertEquals(10, r.width);
assertEquals(5, r.height);
}
public void testSize() {
Size s1 = new Size(0, 0);
assertEquals(s1, r.size());
Size s2 = new Size(10, 10);
assertEquals(s2, rect.size());
}
public void testTl() {
Point p_tl = new Point();
p_tl = rect.tl();
Point truth = new Point(0, 0);
assertEquals(truth, p_tl);
}
public void testToString() {
String actual = rect.toString();
String expected = "{0, 0, 10x10}";
assertEquals(expected, actual);
}
}

View File

@@ -0,0 +1,191 @@
package org.opencv.test.core;
import org.opencv.core.Point;
import org.opencv.core.Rect;
import org.opencv.core.RotatedRect;
import org.opencv.core.Size;
import org.opencv.test.OpenCVTestCase;
public class RotatedRectTest extends OpenCVTestCase {
private double angle;
private Point center;
private Size size;
@Override
protected void setUp() throws Exception {
super.setUp();
center = new Point(matSize / 2, matSize / 2);
size = new Size(matSize / 4, matSize / 2);
angle = 40;
}
public void testBoundingRect() {
size = new Size(matSize / 2, matSize / 2);
assertEquals(size.height, size.width);
double length = size.height;
angle = 45;
RotatedRect rr = new RotatedRect(center, size, angle);
Rect r = rr.boundingRect();
double halfDiagonal = length * Math.sqrt(2) / 2;
assertTrue((r.x == Math.floor(center.x - halfDiagonal)) && (r.y == Math.floor(center.y - halfDiagonal)));
assertTrue((r.br().x >= Math.ceil(center.x + halfDiagonal)) && (r.br().y >= Math.ceil(center.y + halfDiagonal)));
assertTrue((r.br().x - Math.ceil(center.x + halfDiagonal)) <= 1 && (r.br().y - Math.ceil(center.y + halfDiagonal)) <= 1);
}
public void testClone() {
RotatedRect rrect = new RotatedRect(center, size, angle);
RotatedRect clone = rrect.clone();
assertTrue(clone != null);
assertTrue(rrect.center.equals(clone.center));
assertTrue(rrect.size.equals(clone.size));
assertTrue(rrect.angle == clone.angle);
}
public void testEqualsObject() {
Point center2 = new Point(matSize / 3, matSize / 1.5);
Size size2 = new Size(matSize / 2, matSize / 4);
double angle2 = 0;
RotatedRect rrect1 = new RotatedRect(center, size, angle);
RotatedRect rrect2 = new RotatedRect(center2, size2, angle2);
RotatedRect rrect3 = rrect1;
RotatedRect clone1 = rrect1.clone();
RotatedRect clone2 = rrect2.clone();
assertTrue(rrect1.equals(rrect3));
assertTrue(!rrect1.equals(rrect2));
assertTrue(rrect2.equals(clone2));
clone2.angle = 10;
assertTrue(!rrect2.equals(clone2));
assertTrue(rrect1.equals(clone1));
clone1.center.x += 1;
assertTrue(!rrect1.equals(clone1));
clone1.center.x -= 1;
assertTrue(rrect1.equals(clone1));
clone1.size.width += 1;
assertTrue(!rrect1.equals(clone1));
assertTrue(!rrect1.equals(size));
}
public void testHashCode() {
RotatedRect rr = new RotatedRect(center, size, angle);
assertEquals(rr.hashCode(), rr.hashCode());
}
public void testPoints() {
RotatedRect rrect = new RotatedRect(center, size, angle);
Point p[] = new Point[4];
rrect.points(p);
boolean is_p0_irrational = (100 * p[0].x != (int) (100 * p[0].x)) && (100 * p[0].y != (int) (100 * p[0].y));
boolean is_p1_irrational = (100 * p[1].x != (int) (100 * p[1].x)) && (100 * p[1].y != (int) (100 * p[1].y));
boolean is_p2_irrational = (100 * p[2].x != (int) (100 * p[2].x)) && (100 * p[2].y != (int) (100 * p[2].y));
boolean is_p3_irrational = (100 * p[3].x != (int) (100 * p[3].x)) && (100 * p[3].y != (int) (100 * p[3].y));
assertTrue(is_p0_irrational && is_p1_irrational && is_p2_irrational && is_p3_irrational);
assertTrue("Symmetric points 0 and 2",
Math.abs((p[0].x + p[2].x) / 2 - center.x) + Math.abs((p[0].y + p[2].y) / 2 - center.y) < EPS);
assertTrue("Symmetric points 1 and 3",
Math.abs((p[1].x + p[3].x) / 2 - center.x) + Math.abs((p[1].y + p[3].y) / 2 - center.y) < EPS);
assertTrue("Orthogonal vectors 01 and 12",
Math.abs((p[1].x - p[0].x) * (p[2].x - p[1].x) +
(p[1].y - p[0].y) * (p[2].y - p[1].y)) < EPS);
assertTrue("Orthogonal vectors 12 and 23",
Math.abs((p[2].x - p[1].x) * (p[3].x - p[2].x) +
(p[2].y - p[1].y) * (p[3].y - p[2].y)) < EPS);
assertTrue("Orthogonal vectors 23 and 30",
Math.abs((p[3].x - p[2].x) * (p[0].x - p[3].x) +
(p[3].y - p[2].y) * (p[0].y - p[3].y)) < EPS);
assertTrue("Orthogonal vectors 30 and 01",
Math.abs((p[0].x - p[3].x) * (p[1].x - p[0].x) +
(p[0].y - p[3].y) * (p[1].y - p[0].y)) < EPS);
assertTrue("Length of the vector 01",
Math.abs((p[1].x - p[0].x) * (p[1].x - p[0].x) +
(p[1].y - p[0].y) * (p[1].y - p[0].y) - size.height * size.height) < EPS);
assertTrue("Length of the vector 21",
Math.abs((p[1].x - p[2].x) * (p[1].x - p[2].x) +
(p[1].y - p[2].y) * (p[1].y - p[2].y) - size.width * size.width) < EPS);
assertTrue("Angle of the vector 21 with the axes", Math.abs((p[2].x - p[1].x) / size.width - Math.cos(angle * Math.PI / 180)) < EPS);
}
public void testRotatedRect() {
RotatedRect rr = new RotatedRect();
assertTrue(rr != null);
assertTrue(rr.center != null);
assertTrue(rr.size != null);
assertTrue(rr.angle == 0.0);
}
public void testRotatedRectDoubleArray() {
double[] vals = { 1.5, 2.6, 3.7, 4.2, 5.1 };
RotatedRect rr = new RotatedRect(vals);
assertNotNull(rr);
assertEquals(1.5, rr.center.x);
assertEquals(2.6, rr.center.y);
assertEquals(3.7, rr.size.width);
assertEquals(4.2, rr.size.height);
assertEquals(5.1, rr.angle);
}
public void testRotatedRectPointSizeDouble() {
RotatedRect rr = new RotatedRect(center, size, 40);
assertTrue(rr != null);
assertTrue(rr.center != null);
assertTrue(rr.size != null);
assertTrue(rr.angle == 40.0);
}
public void testSet() {
double[] vals1 = {};
RotatedRect r1 = new RotatedRect(center, size, 40);
r1.set(vals1);
assertEquals(0., r1.angle);
assertPointEquals(new Point(0, 0), r1.center, EPS);
assertSizeEquals(new Size(0, 0), r1.size, EPS);
double[] vals2 = { 1, 2, 3, 4, 5 };
RotatedRect r2 = new RotatedRect(center, size, 40);
r2.set(vals2);
assertEquals(5., r2.angle);
assertPointEquals(new Point(1, 2), r2.center, EPS);
assertSizeEquals(new Size(3, 4), r2.size, EPS);
}
public void testToString() {
String actual = new RotatedRect(new Point(1, 2), new Size(10, 12), 4.5).toString();
String expected = "{ {1.0, 2.0} 10x12 * 4.5 }";
assertEquals(expected, actual);
}
}

View File

@@ -0,0 +1,110 @@
package org.opencv.test.core;
import org.opencv.core.Scalar;
import org.opencv.test.OpenCVTestCase;
public class ScalarTest extends OpenCVTestCase {
private Scalar dstScalar;
private Scalar s1;
private Scalar s2;
@Override
protected void setUp() throws Exception {
super.setUp();
s1 = new Scalar(1.0);
s2 = Scalar.all(1.0);
dstScalar = null;
}
public void testAll() {
dstScalar = Scalar.all(2.0);
Scalar truth = new Scalar(2.0, 2.0, 2.0, 2.0);
assertEquals(truth, dstScalar);
}
public void testClone() {
dstScalar = s2.clone();
assertEquals(s2, dstScalar);
}
public void testConj() {
dstScalar = s2.conj();
Scalar truth = new Scalar(1, -1, -1, -1);
assertEquals(truth, dstScalar);
}
public void testEqualsObject() {
dstScalar = s2.clone();
assertTrue(s2.equals(dstScalar));
assertFalse(s2.equals(s1));
}
public void testHashCode() {
assertEquals(s2.hashCode(), s2.hashCode());
}
public void testIsReal() {
assertTrue(s1.isReal());
assertFalse(s2.isReal());
}
public void testMulScalar() {
dstScalar = s2.mul(s1);
assertEquals(s1, dstScalar);
}
public void testMulScalarDouble() {
double multiplier = 2.0;
dstScalar = s2.mul(s1, multiplier);
Scalar truth = new Scalar(2);
assertEquals(truth, dstScalar);
}
public void testScalarDouble() {
Scalar truth = new Scalar(1);
assertEquals(truth, s1);
}
public void testScalarDoubleArray() {
double[] vals = { 2.0, 4.0, 5.0, 3.0 };
dstScalar = new Scalar(vals);
Scalar truth = new Scalar(2.0, 4.0, 5.0, 3.0);
assertEquals(truth, dstScalar);
}
public void testScalarDoubleDouble() {
dstScalar = new Scalar(2, 5);
Scalar truth = new Scalar(2.0, 5.0, 0.0, 0.0);
assertEquals(truth, dstScalar);
}
public void testScalarDoubleDoubleDouble() {
dstScalar = new Scalar(2.0, 5.0, 5.0);
Scalar truth = new Scalar(2.0, 5.0, 5.0, 0.0);
assertEquals(truth, dstScalar);
}
public void testScalarDoubleDoubleDoubleDouble() {
dstScalar = new Scalar(2.0, 5.0, 5.0, 9.0);
Scalar truth = new Scalar(2.0, 5.0, 5.0, 9.0);
assertEquals(truth, dstScalar);
}
public void testSet() {
double[] vals = { 1.0, 1.0, 1.0, 1.0 };
s1.set(vals);
assertEquals(s2, s1);
}
public void testToString() {
String actual = s2.toString();
String expected = "[1.0, 1.0, 1.0, 1.0]";
assertEquals(expected, actual);
}
}

View File

@@ -0,0 +1,93 @@
package org.opencv.test.core;
import org.opencv.core.Point;
import org.opencv.core.Size;
import org.opencv.test.OpenCVTestCase;
public class SizeTest extends OpenCVTestCase {
Size dstSize;
Size sz1;
Size sz2;
@Override
protected void setUp() throws Exception {
super.setUp();
sz1 = new Size(10.0, 10.0);
sz2 = new Size(-1, -1);
dstSize = null;
}
public void testArea() {
double area = sz1.area();
assertEquals(100.0, area);
}
public void testClone() {
dstSize = sz1.clone();
assertEquals(sz1, dstSize);
}
public void testEqualsObject() {
assertFalse(sz1.equals(sz2));
sz2 = sz1.clone();
assertTrue(sz1.equals(sz2));
}
public void testHashCode() {
assertEquals(sz1.hashCode(), sz1.hashCode());
}
public void testSet() {
double[] vals1 = {};
sz2.set(vals1);
assertEquals(0., sz2.width);
assertEquals(0., sz2.height);
double[] vals2 = { 9, 12 };
sz1.set(vals2);
assertEquals(9., sz1.width);
assertEquals(12., sz1.height);
}
public void testSize() {
dstSize = new Size();
assertNotNull(dstSize);
assertEquals(0., dstSize.width);
assertEquals(0., dstSize.height);
}
public void testSizeDoubleArray() {
double[] vals = { 10, 20 };
sz2 = new Size(vals);
assertEquals(10., sz2.width);
assertEquals(20., sz2.height);
}
public void testSizeDoubleDouble() {
assertNotNull(sz1);
assertEquals(10.0, sz1.width);
assertEquals(10.0, sz1.height);
}
public void testSizePoint() {
Point p = new Point(2, 4);
sz1 = new Size(p);
assertNotNull(sz1);
assertEquals(2.0, sz1.width);
assertEquals(4.0, sz1.height);
}
public void testToString() {
String actual = sz1.toString();
String expected = "10x10";
assertEquals(expected, actual);
}
}

View File

@@ -0,0 +1,86 @@
package org.opencv.test.core;
import org.opencv.core.TermCriteria;
import org.opencv.test.OpenCVTestCase;
public class TermCriteriaTest extends OpenCVTestCase {
private TermCriteria tc1;
private TermCriteria tc2;
@Override
protected void setUp() throws Exception {
super.setUp();
tc1 = new TermCriteria();
tc2 = new TermCriteria(2, 4, EPS);
}
public void testClone() {
tc1 = tc2.clone();
assertEquals(tc2, tc1);
}
public void testEqualsObject() {
assertFalse(tc2.equals(tc1));
tc1 = tc2.clone();
assertTrue(tc2.equals(tc1));
}
public void testHashCode() {
assertEquals(tc2.hashCode(), tc2.hashCode());
}
public void testSet() {
double[] vals1 = {};
tc1.set(vals1);
assertEquals(0, tc1.type);
assertEquals(0, tc1.maxCount);
assertEquals(0.0, tc1.epsilon);
double[] vals2 = { 9, 8, 0.002 };
tc2.set(vals2);
assertEquals(9, tc2.type);
assertEquals(8, tc2.maxCount);
assertEquals(0.002, tc2.epsilon);
}
public void testTermCriteria() {
tc1 = new TermCriteria();
assertNotNull(tc1);
assertEquals(0, tc1.type);
assertEquals(0, tc1.maxCount);
assertEquals(0.0, tc1.epsilon);
}
public void testTermCriteriaDoubleArray() {
double[] vals = { 3, 2, 0.007 };
tc1 = new TermCriteria(vals);
assertEquals(3, tc1.type);
assertEquals(2, tc1.maxCount);
assertEquals(0.007, tc1.epsilon);
}
public void testTermCriteriaIntIntDouble() {
tc1 = new TermCriteria(2, 4, EPS);
assertNotNull(tc2);
assertEquals(2, tc2.type);
assertEquals(4, tc2.maxCount);
assertEquals(EPS, tc2.epsilon);
}
public void testToString() {
String actual = tc2.toString();
double eps = EPS;
String expected = "{ type: 2, maxCount: 4, epsilon: " + eps + "}";
assertEquals(expected, actual);
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -2256,51 +2256,54 @@ void cv::subtract( InputArray _src1, InputArray _src2, OutputArray _dst,
InputArray mask, int dtype )
{
#ifdef HAVE_TEGRA_OPTIMIZATION
int kind1 = _src1.kind(), kind2 = _src2.kind();
Mat src1 = _src1.getMat(), src2 = _src2.getMat();
bool src1Scalar = checkScalar(src1, _src2.type(), kind1, kind2);
bool src2Scalar = checkScalar(src2, _src1.type(), kind2, kind1);
if (!src1Scalar && !src2Scalar &&
src1.depth() == CV_8U && src2.type() == src1.type() &&
src1.dims == 2 && src2.size() == src1.size() &&
mask.empty())
if (tegra::useTegra())
{
if (dtype < 0)
int kind1 = _src1.kind(), kind2 = _src2.kind();
Mat src1 = _src1.getMat(), src2 = _src2.getMat();
bool src1Scalar = checkScalar(src1, _src2.type(), kind1, kind2);
bool src2Scalar = checkScalar(src2, _src1.type(), kind2, kind1);
if (!src1Scalar && !src2Scalar &&
src1.depth() == CV_8U && src2.type() == src1.type() &&
src1.dims == 2 && src2.size() == src1.size() &&
mask.empty())
{
if (_dst.fixedType())
if (dtype < 0)
{
dtype = _dst.depth();
if (_dst.fixedType())
{
dtype = _dst.depth();
}
else
{
dtype = src1.depth();
}
}
else
{
dtype = src1.depth();
}
}
dtype = CV_MAT_DEPTH(dtype);
dtype = CV_MAT_DEPTH(dtype);
if (!_dst.fixedType() || dtype == _dst.depth())
{
_dst.create(src1.size(), CV_MAKE_TYPE(dtype, src1.channels()));
if (!_dst.fixedType() || dtype == _dst.depth())
{
_dst.create(src1.size(), CV_MAKE_TYPE(dtype, src1.channels()));
if (dtype == CV_16S)
{
Mat dst = _dst.getMat();
if(tegra::subtract_8u8u16s(src1, src2, dst))
return;
}
else if (dtype == CV_32F)
{
Mat dst = _dst.getMat();
if(tegra::subtract_8u8u32f(src1, src2, dst))
return;
}
else if (dtype == CV_8S)
{
Mat dst = _dst.getMat();
if(tegra::subtract_8u8u8s(src1, src2, dst))
return;
if (dtype == CV_16S)
{
Mat dst = _dst.getMat();
if(tegra::subtract_8u8u16s(src1, src2, dst))
return;
}
else if (dtype == CV_32F)
{
Mat dst = _dst.getMat();
if(tegra::subtract_8u8u32f(src1, src2, dst))
return;
}
else if (dtype == CV_8S)
{
Mat dst = _dst.getMat();
if(tegra::subtract_8u8u8s(src1, src2, dst))
return;
}
}
}
}

View File

@@ -504,7 +504,7 @@ cvInitNArrayIterator( int count, CvArr** arrs,
CV_IMPL int cvNextNArraySlice( CvNArrayIterator* iterator )
{
assert( iterator != 0 );
int i, dims, size = 0;
int i, dims;
for( dims = iterator->dims; dims > 0; dims-- )
{
@@ -514,7 +514,7 @@ CV_IMPL int cvNextNArraySlice( CvNArrayIterator* iterator )
if( --iterator->stack[dims-1] > 0 )
break;
size = iterator->hdr[0]->dim[dims-1].size;
const int size = iterator->hdr[0]->dim[dims-1].size;
for( i = 0; i < iterator->count; i++ )
iterator->ptr[i] -= (size_t)size*iterator->hdr[i]->dim[dims-1].step;
@@ -856,7 +856,6 @@ cvCreateData( CvArr* arr )
else if( CV_IS_MATND_HDR( arr ))
{
CvMatND* mat = (CvMatND*)arr;
int i;
size_t total_size = CV_ELEM_SIZE(mat->type);
if( mat->dim[0].size == 0 )
@@ -872,6 +871,7 @@ cvCreateData( CvArr* arr )
}
else
{
int i;
for( i = mat->dims - 1; i >= 0; i-- )
{
size_t size = (size_t)mat->dim[i].step*mat->dim[i].size;
@@ -1055,16 +1055,19 @@ cvGetRawData( const CvArr* arr, uchar** data, int* step, CvSize* roi_size )
if( roi_size || step )
{
int i, size1 = mat->dim[0].size, size2 = 1;
if( mat->dims > 2 )
for( i = 1; i < mat->dims; i++ )
size1 *= mat->dim[i].size;
else
size2 = mat->dim[1].size;
if( roi_size )
{
int size1 = mat->dim[0].size, size2 = 1;
if( mat->dims > 2 )
{
int i;
for( i = 1; i < mat->dims; i++ )
size1 *= mat->dim[i].size;
}
else
size2 = mat->dim[1].size;
roi_size->width = size2;
roi_size->height = size1;
}
@@ -2458,7 +2461,6 @@ cvGetMat( const CvArr* array, CvMat* mat,
else if( allowND && CV_IS_MATND_HDR(src) )
{
CvMatND* matnd = (CvMatND*)src;
int i;
int size1 = matnd->dim[0].size, size2 = 1;
if( !src->data.ptr )
@@ -2468,8 +2470,11 @@ cvGetMat( const CvArr* array, CvMat* mat,
CV_Error( CV_StsBadArg, "Only continuous nD arrays are supported here" );
if( matnd->dims > 2 )
{
int i;
for( i = 1; i < matnd->dims; i++ )
size2 *= matnd->dim[i].size;
}
else
size2 = matnd->dims == 1 ? 1 : matnd->dim[1].size;
@@ -2785,7 +2790,6 @@ cvGetImage( const CvArr* array, IplImage* img )
{
IplImage* result = 0;
const IplImage* src = (const IplImage*)array;
int depth;
if( !img )
CV_Error( CV_StsNullPtr, "" );
@@ -2800,7 +2804,7 @@ cvGetImage( const CvArr* array, IplImage* img )
if( mat->data.ptr == 0 )
CV_Error( CV_StsNullPtr, "" );
depth = cvIplDepth(mat->type);
int depth = cvIplDepth(mat->type);
cvInitImageHeader( img, cvSize(mat->cols, mat->rows),
depth, CV_MAT_CN(mat->type) );

View File

@@ -136,7 +136,6 @@ namespace cv
dprintf(("d first time\n"));print_matrix(d);
dprintf(("r\n"));print_matrix(r);
double beta=0;
for(int count=0;count<_termcrit.maxCount;count++){
minimizeOnTheLine(_Function,proxy_x,d,minimizeOnTheLine_buf1,minimizeOnTheLine_buf2);
r.copyTo(r_old);
@@ -147,7 +146,7 @@ namespace cv
break;
}
r_norm_sq=r_norm_sq*r_norm_sq;
beta=MAX(0.0,(r_norm_sq-r.dot(r_old))/r_norm_sq);
double beta=MAX(0.0,(r_norm_sq-r.dot(r_old))/r_norm_sq);
d=r+beta*d;
}

View File

@@ -115,10 +115,10 @@ copyMask_<uchar>(const uchar* _src, size_t sstep, const uchar* mask, size_t mste
}
}
#elif CV_NEON
uint8x16_t v_zero = vdupq_n_u8(0);
uint8x16_t v_one = vdupq_n_u8(1);
for( ; x <= size.width - 16; x += 16 )
{
uint8x16_t v_mask = vcgtq_u8(vld1q_u8(mask + x), v_zero);
uint8x16_t v_mask = vcgeq_u8(vld1q_u8(mask + x), v_one);
uint8x16_t v_dst = vld1q_u8(dst + x), v_src = vld1q_u8(src + x);
vst1q_u8(dst + x, vbslq_u8(v_mask, v_src, v_dst));
}
@@ -165,10 +165,10 @@ copyMask_<ushort>(const uchar* _src, size_t sstep, const uchar* mask, size_t mst
}
}
#elif CV_NEON
uint8x8_t v_zero = vdup_n_u8(0);
uint8x8_t v_one = vdup_n_u8(1);
for( ; x <= size.width - 8; x += 8 )
{
uint8x8_t v_mask = vcgt_u8(vld1_u8(mask + x), v_zero);
uint8x8_t v_mask = vcge_u8(vld1_u8(mask + x), v_one);
uint8x8x2_t v_mask2 = vzip_u8(v_mask, v_mask);
uint16x8_t v_mask_res = vreinterpretq_u16_u8(vcombine_u8(v_mask2.val[0], v_mask2.val[1]));

View File

@@ -56,14 +56,14 @@ namespace
struct DIR
{
#ifdef HAVE_WINRT
#ifdef WINRT
WIN32_FIND_DATAW data;
#else
WIN32_FIND_DATA data;
#endif
HANDLE handle;
dirent ent;
#ifdef HAVE_WINRT
#ifdef WINRT
DIR() { }
~DIR()
{
@@ -77,7 +77,7 @@ namespace
{
DIR* dir = new DIR;
dir->ent.d_name = 0;
#ifdef HAVE_WINRT
#ifdef WINRT
cv::String full_path = cv::String(path) + "\\*";
wchar_t wfull_path[MAX_PATH];
size_t copied = mbstowcs(wfull_path, full_path.c_str(), MAX_PATH);
@@ -99,7 +99,7 @@ namespace
dirent* readdir(DIR* dir)
{
#ifdef HAVE_WINRT
#ifdef WINRT
if (dir->ent.d_name != 0)
{
if (::FindNextFileW(dir->handle, &dir->data) != TRUE)
@@ -147,7 +147,7 @@ static bool isDir(const cv::String& path, DIR* dir)
else
{
WIN32_FILE_ATTRIBUTE_DATA all_attrs;
#ifdef HAVE_WINRT
#ifdef WINRT
wchar_t wpath[MAX_PATH];
size_t copied = mbstowcs(wpath, path.c_str(), MAX_PATH);
CV_Assert((copied != MAX_PATH) && (copied != (size_t)-1));

View File

@@ -180,10 +180,9 @@ public:
const int K = centers.rows;
const int dims = centers.cols;
const float *sample;
for( int i = begin; i<end; ++i)
{
sample = data.ptr<float>(i);
const float *sample = data.ptr<float>(i);
int k_best = 0;
double min_dist = DBL_MAX;

View File

@@ -127,7 +127,7 @@ static void FastAtan2_32f(const float *Y, const float *X, float *angle, int len,
float scale = angleInDegrees ? 1 : (float)(CV_PI/180);
#ifdef HAVE_TEGRA_OPTIMIZATION
if (tegra::FastAtan2_32f(Y, X, angle, len, scale))
if (tegra::useTegra() && tegra::FastAtan2_32f(Y, X, angle, len, scale))
return;
#endif

View File

@@ -205,9 +205,12 @@ public:
void deallocate(UMatData* u) const
{
if(!u)
return;
CV_Assert(u->urefcount >= 0);
CV_Assert(u->refcount >= 0);
if(u && u->refcount == 0)
if(u->refcount == 0)
{
if( !(u->flags & UMatData::USER_ALLOCATED) )
{

View File

@@ -64,7 +64,15 @@
// TODO Move to some common place
static bool getBoolParameter(const char* name, bool defaultValue)
{
/*
* If your system doesn't support getenv(), define NO_GETENV to disable
* this feature.
*/
#ifdef NO_GETENV
const char* envValue = NULL;
#else
const char* envValue = getenv(name);
#endif
if (envValue == NULL)
{
return defaultValue;
@@ -85,7 +93,7 @@ static bool getBoolParameter(const char* name, bool defaultValue)
// TODO Move to some common place
static size_t getConfigurationParameterForSize(const char* name, size_t defaultValue)
{
#ifdef HAVE_WINRT
#ifdef NO_GETENV
const char* envValue = NULL;
#else
const char* envValue = getenv(name);
@@ -728,7 +736,7 @@ static void* initOpenCLAndLoad(const char* funcname)
static HMODULE handle = 0;
if (!handle)
{
#ifndef HAVE_WINRT
#ifndef WINRT
if(!initialized)
{
handle = LoadLibraryA("OpenCL.dll");
@@ -2231,7 +2239,7 @@ static bool parseOpenCLDeviceConfiguration(const std::string& configurationStr,
return true;
}
#ifdef HAVE_WINRT
#ifdef WINRT
static cl_device_id selectOpenCLDevice()
{
return NULL;

View File

@@ -69,7 +69,7 @@
#define HAVE_GCD
#endif
#if defined _MSC_VER && _MSC_VER >= 1600
#if defined _MSC_VER && _MSC_VER >= 1600 && !defined(WINRT)
#define HAVE_CONCURRENCY
#endif
@@ -458,7 +458,7 @@ int cv::getNumberOfCPUs(void)
{
#if defined WIN32 || defined _WIN32
SYSTEM_INFO sysinfo;
#if defined(_M_ARM) || defined(_M_X64) || defined(HAVE_WINRT)
#if defined(_M_ARM) || defined(_M_X64) || defined(WINRT)
GetNativeSystemInfo( &sysinfo );
#else
GetSystemInfo( &sysinfo );

View File

@@ -5548,7 +5548,7 @@ void read( const FileNode& node, SparseMat& mat, const SparseMat& default_mat )
void write(FileStorage& fs, const String& objname, const std::vector<KeyPoint>& keypoints)
{
internal::WriteStructContext ws(fs, objname, CV_NODE_SEQ + CV_NODE_FLOW);
cv::internal::WriteStructContext ws(fs, objname, CV_NODE_SEQ + CV_NODE_FLOW);
int i, npoints = (int)keypoints.size();
for( i = 0; i < npoints; i++ )

View File

@@ -236,6 +236,9 @@ struct CoreTLSData
{
CoreTLSData() : device(0), useOpenCL(-1), useIPP(-1), useCollection(false)
{
#ifdef HAVE_TEGRA_OPTIMIZATION
useTegra = -1;
#endif
#ifdef CV_COLLECT_IMPL_DATA
implFlags = 0;
#endif
@@ -246,6 +249,9 @@ struct CoreTLSData
ocl::Queue oclQueue;
int useOpenCL; // 1 - use, 0 - do not use, -1 - auto/not initialized
int useIPP; // 1 - use, 0 - do not use, -1 - auto/not initialized
#ifdef HAVE_TEGRA_OPTIMIZATION
int useTegra; // 1 - use, 0 - do not use, -1 - auto/not initialized
#endif
bool useCollection; // enable/disable impl data collection
#ifdef CV_COLLECT_IMPL_DATA

View File

@@ -517,9 +517,11 @@ static const uchar * initPopcountTable()
unsigned int j = 0u;
#if CV_POPCNT
if (checkHardwareSupport(CV_CPU_POPCNT))
{
for( ; j < 256u; j++ )
tab[j] = (uchar)(8 - _mm_popcnt_u32(j));
#else
}
#endif
for( ; j < 256u; j++ )
{
int val = 0;
@@ -527,7 +529,6 @@ static const uchar * initPopcountTable()
val += (j & mask) == 0;
tab[j] = (uchar)val;
}
#endif
initialized = true;
}
@@ -2113,6 +2114,12 @@ static bool ocl_minMaxIdx( InputArray _src, double* minVal, double* maxVal, int*
int ddepth = -1, bool absValues = false, InputArray _src2 = noArray(), double * maxVal2 = NULL)
{
const ocl::Device & dev = ocl::Device::getDefault();
#ifdef ANDROID
if (dev.isNVidia())
return false;
#endif
bool doubleSupport = dev.doubleFPConfig() > 0, haveMask = !_mask.empty(),
haveSrc2 = _src2.kind() != _InputArray::NONE;
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type),
@@ -2884,6 +2891,12 @@ static NormDiffFunc getNormDiffFunc(int normType, int depth)
static bool ocl_norm( InputArray _src, int normType, InputArray _mask, double & result )
{
const ocl::Device & d = ocl::Device::getDefault();
#ifdef ANDROID
if (d.isNVidia())
return false;
#endif
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
bool doubleSupport = d.doubleFPConfig() > 0,
haveMask = _mask.kind() != _InputArray::NONE;
@@ -3249,6 +3262,11 @@ namespace cv {
static bool ocl_norm( InputArray _src1, InputArray _src2, int normType, InputArray _mask, double & result )
{
#ifdef ANDROID
if (ocl::Device::getDefault().isNVidia())
return false;
#endif
Scalar sc1, sc2;
int type = _src1.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
bool relative = (normType & NORM_RELATIVE) != 0;

View File

@@ -109,7 +109,7 @@
#endif
#endif
#ifdef HAVE_WINRT
#ifdef WINRT
#include <wrl/client.h>
#ifndef __cplusplus_winrt
#include <windows.storage.h>
@@ -159,7 +159,7 @@ std::wstring GetTempFileNameWinRT(std::wstring prefix)
UINT(g.Data4[2]), UINT(g.Data4[3]), UINT(g.Data4[4]),
UINT(g.Data4[5]), UINT(g.Data4[6]), UINT(g.Data4[7]));
return prefix + std::wstring(guidStr);
return prefix.append(std::wstring(guidStr));
}
#endif
@@ -319,14 +319,17 @@ struct HWFeatures
}
#if defined ANDROID || defined __linux__
#ifdef __aarch64__
f.have[CV_CPU_NEON] = true;
#else
int cpufile = open("/proc/self/auxv", O_RDONLY);
if (cpufile >= 0)
{
Elf32_auxv_t auxv;
const size_t size_auxv_t = sizeof(Elf32_auxv_t);
const size_t size_auxv_t = sizeof(auxv);
while (read(cpufile, &auxv, sizeof(Elf32_auxv_t)) == size_auxv_t)
while ((size_t)read(cpufile, &auxv, size_auxv_t) == size_auxv_t)
{
if (auxv.a_type == AT_HWCAP)
{
@@ -337,7 +340,8 @@ struct HWFeatures
close(cpufile);
}
#elif (defined __clang__ || defined __APPLE__) && defined __ARM_NEON__
#endif
#elif (defined __clang__ || defined __APPLE__) && (defined __ARM_NEON__ || (defined __ARM_NEON && defined __aarch64__))
f.have[CV_CPU_NEON] = true;
#endif
@@ -385,6 +389,12 @@ void setUseOptimized( bool flag )
useOptimizedFlag = flag;
currentFeatures = flag ? &featuresEnabled : &featuresDisabled;
USE_SSE2 = currentFeatures->have[CV_CPU_SSE2];
ipp::setUseIPP(flag);
ocl::setUseOpenCL(flag);
#ifdef HAVE_TEGRA_OPTIMIZATION
::tegra::setUseTegra(flag);
#endif
}
bool useOptimized(void)
@@ -532,24 +542,20 @@ String format( const char* fmt, ... )
String tempfile( const char* suffix )
{
String fname;
#ifndef HAVE_WINRT
#ifndef WINRT
const char *temp_dir = getenv("OPENCV_TEMP_PATH");
#endif
#if defined WIN32 || defined _WIN32
#ifdef HAVE_WINRT
#ifdef WINRT
RoInitialize(RO_INIT_MULTITHREADED);
std::wstring temp_dir = L"";
const wchar_t* opencv_temp_dir = GetTempPathWinRT().c_str();
if (opencv_temp_dir)
temp_dir = std::wstring(opencv_temp_dir);
std::wstring temp_dir = GetTempPathWinRT();
std::wstring temp_file;
temp_file = GetTempFileNameWinRT(L"ocv");
std::wstring temp_file = GetTempFileNameWinRT(L"ocv");
if (temp_file.empty())
return String();
temp_file = temp_dir + std::wstring(L"\\") + temp_file;
temp_file = temp_dir.append(std::wstring(L"\\")).append(temp_file);
DeleteFileW(temp_file.c_str());
char aname[MAX_PATH];
@@ -945,7 +951,7 @@ public:
#pragma warning(disable:4505) // unreferenced local function has been removed
#endif
#ifdef HAVE_WINRT
#ifdef WINRT
// using C++11 thread attribute for local thread data
static __declspec( thread ) TLSStorage* g_tlsdata = NULL;
@@ -996,10 +1002,10 @@ public:
}
return d;
}
#endif //HAVE_WINRT
#endif //WINRT
#if defined CVAPI_EXPORTS && defined WIN32 && !defined WINCE
#ifdef HAVE_WINRT
#ifdef WINRT
#pragma warning(disable:4447) // Disable warning 'main' signature found without threading model
#endif
@@ -1259,4 +1265,34 @@ void setUseIPP(bool flag)
} // namespace cv
#ifdef HAVE_TEGRA_OPTIMIZATION
namespace tegra {
bool useTegra()
{
cv::CoreTLSData* data = cv::getCoreTlsData().get();
if (data->useTegra < 0)
{
const char* pTegraEnv = getenv("OPENCV_TEGRA");
if (pTegraEnv && (cv::String(pTegraEnv) == "disabled"))
data->useTegra = false;
else
data->useTegra = true;
}
return (data->useTegra > 0);
}
void setUseTegra(bool flag)
{
cv::CoreTLSData* data = cv::getCoreTlsData().get();
data->useTegra = flag;
}
} // namespace tegra
#endif
/* End of file. */

View File

@@ -1,119 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../test_precomp.hpp"
#ifdef HAVE_CUDA
#include "opencv2/core/cuda.hpp"
#include "opencv2/core/private.cuda.hpp"
#include "opencv2/ts/cuda_test.hpp"
using namespace testing;
using namespace cv;
using namespace cv::cuda;
struct BufferPoolTest : TestWithParam<DeviceInfo>
{
void RunSimpleTest(Stream& stream, HostMem& dst_1, HostMem& dst_2)
{
BufferPool pool(stream);
{
GpuMat buf0 = pool.getBuffer(Size(640, 480), CV_8UC1);
EXPECT_FALSE( buf0.empty() );
buf0.setTo(Scalar::all(0), stream);
GpuMat buf1 = pool.getBuffer(Size(640, 480), CV_8UC1);
EXPECT_FALSE( buf1.empty() );
buf0.convertTo(buf1, buf1.type(), 1.0, 1.0, stream);
buf1.download(dst_1, stream);
}
{
GpuMat buf2 = pool.getBuffer(Size(1280, 1024), CV_32SC1);
EXPECT_FALSE( buf2.empty() );
buf2.setTo(Scalar::all(2), stream);
buf2.download(dst_2, stream);
}
}
void CheckSimpleTest(HostMem& dst_1, HostMem& dst_2)
{
EXPECT_MAT_NEAR(Mat(Size(640, 480), CV_8UC1, Scalar::all(1)), dst_1, 0.0);
EXPECT_MAT_NEAR(Mat(Size(1280, 1024), CV_32SC1, Scalar::all(2)), dst_2, 0.0);
}
};
CUDA_TEST_P(BufferPoolTest, FromNullStream)
{
HostMem dst_1, dst_2;
RunSimpleTest(Stream::Null(), dst_1, dst_2);
CheckSimpleTest(dst_1, dst_2);
}
CUDA_TEST_P(BufferPoolTest, From2Streams)
{
HostMem dst1_1, dst1_2;
HostMem dst2_1, dst2_2;
Stream stream1, stream2;
RunSimpleTest(stream1, dst1_1, dst1_2);
RunSimpleTest(stream2, dst2_1, dst2_2);
stream1.waitForCompletion();
stream2.waitForCompletion();
CheckSimpleTest(dst1_1, dst1_2);
CheckSimpleTest(dst2_1, dst2_2);
}
INSTANTIATE_TEST_CASE_P(CUDA_Stream, BufferPoolTest, ALL_DEVICES);
#endif // HAVE_CUDA

View File

@@ -1,364 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../test_precomp.hpp"
#ifdef HAVE_CUDA
#include "opencv2/core/cuda.hpp"
#include "opencv2/ts/cuda_test.hpp"
using namespace cvtest;
////////////////////////////////////////////////////////////////////////////////
// SetTo
PARAM_TEST_CASE(GpuMat_SetTo, cv::cuda::DeviceInfo, cv::Size, MatType, UseRoi)
{
cv::cuda::DeviceInfo devInfo;
cv::Size size;
int type;
bool useRoi;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
type = GET_PARAM(2);
useRoi = GET_PARAM(3);
cv::cuda::setDevice(devInfo.deviceID());
}
};
CUDA_TEST_P(GpuMat_SetTo, Zero)
{
cv::Scalar zero = cv::Scalar::all(0);
cv::cuda::GpuMat mat = createMat(size, type, useRoi);
mat.setTo(zero);
EXPECT_MAT_NEAR(cv::Mat::zeros(size, type), mat, 0.0);
}
CUDA_TEST_P(GpuMat_SetTo, SameVal)
{
cv::Scalar val = cv::Scalar::all(randomDouble(0.0, 255.0));
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE))
{
try
{
cv::cuda::GpuMat mat = createMat(size, type, useRoi);
mat.setTo(val);
}
catch (const cv::Exception& e)
{
ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code);
}
}
else
{
cv::cuda::GpuMat mat = createMat(size, type, useRoi);
mat.setTo(val);
EXPECT_MAT_NEAR(cv::Mat(size, type, val), mat, 0.0);
}
}
CUDA_TEST_P(GpuMat_SetTo, DifferentVal)
{
cv::Scalar val = randomScalar(0.0, 255.0);
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE))
{
try
{
cv::cuda::GpuMat mat = createMat(size, type, useRoi);
mat.setTo(val);
}
catch (const cv::Exception& e)
{
ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code);
}
}
else
{
cv::cuda::GpuMat mat = createMat(size, type, useRoi);
mat.setTo(val);
EXPECT_MAT_NEAR(cv::Mat(size, type, val), mat, 0.0);
}
}
CUDA_TEST_P(GpuMat_SetTo, Masked)
{
cv::Scalar val = randomScalar(0.0, 255.0);
cv::Mat mat_gold = randomMat(size, type);
cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0);
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE))
{
try
{
cv::cuda::GpuMat mat = createMat(size, type, useRoi);
mat.setTo(val, loadMat(mask));
}
catch (const cv::Exception& e)
{
ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code);
}
}
else
{
cv::cuda::GpuMat mat = loadMat(mat_gold, useRoi);
mat.setTo(val, loadMat(mask, useRoi));
mat_gold.setTo(val, mask);
EXPECT_MAT_NEAR(mat_gold, mat, 0.0);
}
}
INSTANTIATE_TEST_CASE_P(CUDA, GpuMat_SetTo, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
ALL_TYPES,
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// CopyTo
PARAM_TEST_CASE(GpuMat_CopyTo, cv::cuda::DeviceInfo, cv::Size, MatType, UseRoi)
{
cv::cuda::DeviceInfo devInfo;
cv::Size size;
int type;
bool useRoi;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
type = GET_PARAM(2);
useRoi = GET_PARAM(3);
cv::cuda::setDevice(devInfo.deviceID());
}
};
CUDA_TEST_P(GpuMat_CopyTo, WithOutMask)
{
cv::Mat src = randomMat(size, type);
cv::cuda::GpuMat d_src = loadMat(src, useRoi);
cv::cuda::GpuMat dst = createMat(size, type, useRoi);
d_src.copyTo(dst);
EXPECT_MAT_NEAR(src, dst, 0.0);
}
CUDA_TEST_P(GpuMat_CopyTo, Masked)
{
cv::Mat src = randomMat(size, type);
cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0);
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE))
{
try
{
cv::cuda::GpuMat d_src = loadMat(src);
cv::cuda::GpuMat dst;
d_src.copyTo(dst, loadMat(mask, useRoi));
}
catch (const cv::Exception& e)
{
ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code);
}
}
else
{
cv::cuda::GpuMat d_src = loadMat(src, useRoi);
cv::cuda::GpuMat dst = loadMat(cv::Mat::zeros(size, type), useRoi);
d_src.copyTo(dst, loadMat(mask, useRoi));
cv::Mat dst_gold = cv::Mat::zeros(size, type);
src.copyTo(dst_gold, mask);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
}
INSTANTIATE_TEST_CASE_P(CUDA, GpuMat_CopyTo, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
ALL_TYPES,
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// ConvertTo
PARAM_TEST_CASE(GpuMat_ConvertTo, cv::cuda::DeviceInfo, cv::Size, MatDepth, MatDepth, UseRoi)
{
cv::cuda::DeviceInfo devInfo;
cv::Size size;
int depth1;
int depth2;
bool useRoi;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
depth1 = GET_PARAM(2);
depth2 = GET_PARAM(3);
useRoi = GET_PARAM(4);
cv::cuda::setDevice(devInfo.deviceID());
}
};
CUDA_TEST_P(GpuMat_ConvertTo, WithOutScaling)
{
cv::Mat src = randomMat(size, depth1);
if ((depth1 == CV_64F || depth2 == CV_64F) && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE))
{
try
{
cv::cuda::GpuMat d_src = loadMat(src);
cv::cuda::GpuMat dst;
d_src.convertTo(dst, depth2);
}
catch (const cv::Exception& e)
{
ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code);
}
}
else
{
cv::cuda::GpuMat d_src = loadMat(src, useRoi);
cv::cuda::GpuMat dst = createMat(size, depth2, useRoi);
d_src.convertTo(dst, depth2);
cv::Mat dst_gold;
src.convertTo(dst_gold, depth2);
EXPECT_MAT_NEAR(dst_gold, dst, depth2 < CV_32F ? 1.0 : 1e-4);
}
}
CUDA_TEST_P(GpuMat_ConvertTo, WithScaling)
{
cv::Mat src = randomMat(size, depth1);
double a = randomDouble(0.0, 1.0);
double b = randomDouble(-10.0, 10.0);
if ((depth1 == CV_64F || depth2 == CV_64F) && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE))
{
try
{
cv::cuda::GpuMat d_src = loadMat(src);
cv::cuda::GpuMat dst;
d_src.convertTo(dst, depth2, a, b);
}
catch (const cv::Exception& e)
{
ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code);
}
}
else
{
cv::cuda::GpuMat d_src = loadMat(src, useRoi);
cv::cuda::GpuMat dst = createMat(size, depth2, useRoi);
d_src.convertTo(dst, depth2, a, b);
cv::Mat dst_gold;
src.convertTo(dst_gold, depth2, a, b);
EXPECT_MAT_NEAR(dst_gold, dst, depth2 < CV_32F ? 1.0 : 1e-4);
}
}
INSTANTIATE_TEST_CASE_P(CUDA, GpuMat_ConvertTo, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
ALL_DEPTH,
ALL_DEPTH,
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// ensureSizeIsEnough
struct EnsureSizeIsEnough : testing::TestWithParam<cv::cuda::DeviceInfo>
{
virtual void SetUp()
{
cv::cuda::DeviceInfo devInfo = GetParam();
cv::cuda::setDevice(devInfo.deviceID());
}
};
CUDA_TEST_P(EnsureSizeIsEnough, BufferReuse)
{
cv::cuda::GpuMat buffer(100, 100, CV_8U);
cv::cuda::GpuMat old = buffer;
// don't reallocate memory
cv::cuda::ensureSizeIsEnough(10, 20, CV_8U, buffer);
EXPECT_EQ(10, buffer.rows);
EXPECT_EQ(20, buffer.cols);
EXPECT_EQ(CV_8UC1, buffer.type());
EXPECT_EQ(reinterpret_cast<intptr_t>(old.data), reinterpret_cast<intptr_t>(buffer.data));
// don't reallocate memory
cv::cuda::ensureSizeIsEnough(20, 30, CV_8U, buffer);
EXPECT_EQ(20, buffer.rows);
EXPECT_EQ(30, buffer.cols);
EXPECT_EQ(CV_8UC1, buffer.type());
EXPECT_EQ(reinterpret_cast<intptr_t>(old.data), reinterpret_cast<intptr_t>(buffer.data));
}
INSTANTIATE_TEST_CASE_P(CUDA, EnsureSizeIsEnough, ALL_DEVICES);
#endif // HAVE_CUDA

View File

@@ -1,456 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../test_precomp.hpp"
#if defined(HAVE_CUDA) && defined(HAVE_OPENGL)
#include "opencv2/core/cuda.hpp"
#include "opencv2/core/opengl.hpp"
#include "opencv2/ts/cuda_test.hpp"
using namespace cvtest;
/////////////////////////////////////////////
// Buffer
PARAM_TEST_CASE(Buffer, cv::Size, MatType)
{
static void SetUpTestCase()
{
cv::namedWindow("test", cv::WINDOW_OPENGL);
}
static void TearDownTestCase()
{
cv::destroyAllWindows();
}
cv::Size size;
int type;
virtual void SetUp()
{
size = GET_PARAM(0);
type = GET_PARAM(1);
}
};
CUDA_TEST_P(Buffer, Constructor1)
{
cv::ogl::Buffer buf(size.height, size.width, type, cv::ogl::Buffer::ARRAY_BUFFER, true);
EXPECT_EQ(size.height, buf.rows());
EXPECT_EQ(size.width, buf.cols());
EXPECT_EQ(type, buf.type());
}
CUDA_TEST_P(Buffer, Constructor2)
{
cv::ogl::Buffer buf(size, type, cv::ogl::Buffer::ARRAY_BUFFER, true);
EXPECT_EQ(size.height, buf.rows());
EXPECT_EQ(size.width, buf.cols());
EXPECT_EQ(type, buf.type());
}
CUDA_TEST_P(Buffer, ConstructorFromMat)
{
cv::Mat gold = randomMat(size, type);
cv::ogl::Buffer buf(gold, cv::ogl::Buffer::ARRAY_BUFFER, true);
cv::Mat bufData;
buf.copyTo(bufData);
EXPECT_MAT_NEAR(gold, bufData, 0);
}
CUDA_TEST_P(Buffer, ConstructorFromGpuMat)
{
cv::Mat gold = randomMat(size, type);
cv::cuda::GpuMat d_gold(gold);
cv::ogl::Buffer buf(d_gold, cv::ogl::Buffer::ARRAY_BUFFER);
cv::Mat bufData;
buf.copyTo(bufData);
EXPECT_MAT_NEAR(gold, bufData, 0);
}
CUDA_TEST_P(Buffer, ConstructorFromBuffer)
{
cv::ogl::Buffer buf_gold(size, type, cv::ogl::Buffer::ARRAY_BUFFER, true);
cv::ogl::Buffer buf(buf_gold);
EXPECT_EQ(buf_gold.bufId(), buf.bufId());
EXPECT_EQ(buf_gold.rows(), buf.rows());
EXPECT_EQ(buf_gold.cols(), buf.cols());
EXPECT_EQ(buf_gold.type(), buf.type());
}
CUDA_TEST_P(Buffer, Create)
{
cv::ogl::Buffer buf;
buf.create(size.height, size.width, type, cv::ogl::Buffer::ARRAY_BUFFER, true);
EXPECT_EQ(size.height, buf.rows());
EXPECT_EQ(size.width, buf.cols());
EXPECT_EQ(type, buf.type());
}
CUDA_TEST_P(Buffer, CopyFromMat)
{
cv::Mat gold = randomMat(size, type);
cv::ogl::Buffer buf;
buf.copyFrom(gold, cv::ogl::Buffer::ARRAY_BUFFER, true);
cv::Mat bufData;
buf.copyTo(bufData);
EXPECT_MAT_NEAR(gold, bufData, 0);
}
CUDA_TEST_P(Buffer, CopyFromGpuMat)
{
cv::Mat gold = randomMat(size, type);
cv::cuda::GpuMat d_gold(gold);
cv::ogl::Buffer buf;
buf.copyFrom(d_gold, cv::ogl::Buffer::ARRAY_BUFFER, true);
cv::Mat bufData;
buf.copyTo(bufData);
EXPECT_MAT_NEAR(gold, bufData, 0);
}
CUDA_TEST_P(Buffer, CopyFromBuffer)
{
cv::Mat gold = randomMat(size, type);
cv::ogl::Buffer buf_gold(gold, cv::ogl::Buffer::ARRAY_BUFFER, true);
cv::ogl::Buffer buf;
buf.copyFrom(buf_gold, cv::ogl::Buffer::ARRAY_BUFFER, true);
EXPECT_NE(buf_gold.bufId(), buf.bufId());
cv::Mat bufData;
buf.copyTo(bufData);
EXPECT_MAT_NEAR(gold, bufData, 0);
}
CUDA_TEST_P(Buffer, CopyToGpuMat)
{
cv::Mat gold = randomMat(size, type);
cv::ogl::Buffer buf(gold, cv::ogl::Buffer::ARRAY_BUFFER, true);
cv::cuda::GpuMat dst;
buf.copyTo(dst);
EXPECT_MAT_NEAR(gold, dst, 0);
}
CUDA_TEST_P(Buffer, CopyToBuffer)
{
cv::Mat gold = randomMat(size, type);
cv::ogl::Buffer buf(gold, cv::ogl::Buffer::ARRAY_BUFFER, true);
cv::ogl::Buffer dst;
buf.copyTo(dst);
dst.setAutoRelease(true);
EXPECT_NE(buf.bufId(), dst.bufId());
cv::Mat bufData;
dst.copyTo(bufData);
EXPECT_MAT_NEAR(gold, bufData, 0);
}
CUDA_TEST_P(Buffer, Clone)
{
cv::Mat gold = randomMat(size, type);
cv::ogl::Buffer buf(gold, cv::ogl::Buffer::ARRAY_BUFFER, true);
cv::ogl::Buffer dst = buf.clone(cv::ogl::Buffer::ARRAY_BUFFER, true);
EXPECT_NE(buf.bufId(), dst.bufId());
cv::Mat bufData;
dst.copyTo(bufData);
EXPECT_MAT_NEAR(gold, bufData, 0);
}
CUDA_TEST_P(Buffer, MapHostRead)
{
cv::Mat gold = randomMat(size, type);
cv::ogl::Buffer buf(gold, cv::ogl::Buffer::ARRAY_BUFFER, true);
cv::Mat dst = buf.mapHost(cv::ogl::Buffer::READ_ONLY);
EXPECT_MAT_NEAR(gold, dst, 0);
buf.unmapHost();
}
CUDA_TEST_P(Buffer, MapHostWrite)
{
cv::Mat gold = randomMat(size, type);
cv::ogl::Buffer buf(size, type, cv::ogl::Buffer::ARRAY_BUFFER, true);
cv::Mat dst = buf.mapHost(cv::ogl::Buffer::WRITE_ONLY);
gold.copyTo(dst);
buf.unmapHost();
dst.release();
cv::Mat bufData;
buf.copyTo(bufData);
EXPECT_MAT_NEAR(gold, bufData, 0);
}
CUDA_TEST_P(Buffer, MapDevice)
{
cv::Mat gold = randomMat(size, type);
cv::ogl::Buffer buf(gold, cv::ogl::Buffer::ARRAY_BUFFER, true);
cv::cuda::GpuMat dst = buf.mapDevice();
EXPECT_MAT_NEAR(gold, dst, 0);
buf.unmapDevice();
}
INSTANTIATE_TEST_CASE_P(OpenGL, Buffer, testing::Combine(DIFFERENT_SIZES, ALL_TYPES));
/////////////////////////////////////////////
// Texture2D
PARAM_TEST_CASE(Texture2D, cv::Size, MatType)
{
static void SetUpTestCase()
{
cv::namedWindow("test", cv::WINDOW_OPENGL);
}
static void TearDownTestCase()
{
cv::destroyAllWindows();
}
cv::Size size;
int type;
int depth;
int cn;
cv::ogl::Texture2D::Format format;
virtual void SetUp()
{
size = GET_PARAM(0);
type = GET_PARAM(1);
depth = CV_MAT_DEPTH(type);
cn = CV_MAT_CN(type);
format = cn == 1 ? cv::ogl::Texture2D::DEPTH_COMPONENT : cn == 3 ? cv::ogl::Texture2D::RGB : cn == 4 ? cv::ogl::Texture2D::RGBA : cv::ogl::Texture2D::NONE;
}
};
CUDA_TEST_P(Texture2D, Constructor1)
{
cv::ogl::Texture2D tex(size.height, size.width, format, true);
EXPECT_EQ(size.height, tex.rows());
EXPECT_EQ(size.width, tex.cols());
EXPECT_EQ(format, tex.format());
}
CUDA_TEST_P(Texture2D, Constructor2)
{
cv::ogl::Texture2D tex(size, format, true);
EXPECT_EQ(size.height, tex.rows());
EXPECT_EQ(size.width, tex.cols());
EXPECT_EQ(format, tex.format());
}
CUDA_TEST_P(Texture2D, ConstructorFromMat)
{
cv::Mat gold = randomMat(size, type, 0, depth == CV_8U ? 255 : 1);
cv::ogl::Texture2D tex(gold, true);
cv::Mat texData;
tex.copyTo(texData, depth);
EXPECT_MAT_NEAR(gold, texData, 1e-2);
}
CUDA_TEST_P(Texture2D, ConstructorFromGpuMat)
{
cv::Mat gold = randomMat(size, type, 0, depth == CV_8U ? 255 : 1);
cv::cuda::GpuMat d_gold(gold);
cv::ogl::Texture2D tex(d_gold, true);
cv::Mat texData;
tex.copyTo(texData, depth);
EXPECT_MAT_NEAR(gold, texData, 1e-2);
}
CUDA_TEST_P(Texture2D, ConstructorFromBuffer)
{
cv::Mat gold = randomMat(size, type, 0, depth == CV_8U ? 255 : 1);
cv::ogl::Buffer buf_gold(gold, cv::ogl::Buffer::PIXEL_UNPACK_BUFFER, true);
cv::ogl::Texture2D tex(buf_gold, true);
cv::Mat texData;
tex.copyTo(texData, depth);
EXPECT_MAT_NEAR(gold, texData, 1e-2);
}
CUDA_TEST_P(Texture2D, ConstructorFromTexture2D)
{
cv::ogl::Texture2D tex_gold(size, format, true);
cv::ogl::Texture2D tex(tex_gold);
EXPECT_EQ(tex_gold.texId(), tex.texId());
EXPECT_EQ(tex_gold.rows(), tex.rows());
EXPECT_EQ(tex_gold.cols(), tex.cols());
EXPECT_EQ(tex_gold.format(), tex.format());
}
CUDA_TEST_P(Texture2D, Create)
{
cv::ogl::Texture2D tex;
tex.create(size.height, size.width, format, true);
EXPECT_EQ(size.height, tex.rows());
EXPECT_EQ(size.width, tex.cols());
EXPECT_EQ(format, tex.format());
}
CUDA_TEST_P(Texture2D, CopyFromMat)
{
cv::Mat gold = randomMat(size, type, 0, depth == CV_8U ? 255 : 1);
cv::ogl::Texture2D tex;
tex.copyFrom(gold, true);
cv::Mat texData;
tex.copyTo(texData, depth);
EXPECT_MAT_NEAR(gold, texData, 1e-2);
}
CUDA_TEST_P(Texture2D, CopyFromGpuMat)
{
cv::Mat gold = randomMat(size, type, 0, depth == CV_8U ? 255 : 1);
cv::cuda::GpuMat d_gold(gold);
cv::ogl::Texture2D tex;
tex.copyFrom(d_gold, true);
cv::Mat texData;
tex.copyTo(texData, depth);
EXPECT_MAT_NEAR(gold, texData, 1e-2);
}
CUDA_TEST_P(Texture2D, CopyFromBuffer)
{
cv::Mat gold = randomMat(size, type, 0, depth == CV_8U ? 255 : 1);
cv::ogl::Buffer buf_gold(gold, cv::ogl::Buffer::PIXEL_UNPACK_BUFFER, true);
cv::ogl::Texture2D tex;
tex.copyFrom(buf_gold, true);
cv::Mat texData;
tex.copyTo(texData, depth);
EXPECT_MAT_NEAR(gold, texData, 1e-2);
}
CUDA_TEST_P(Texture2D, CopyToGpuMat)
{
cv::Mat gold = randomMat(size, type, 0, depth == CV_8U ? 255 : 1);
cv::ogl::Texture2D tex(gold, true);
cv::cuda::GpuMat dst;
tex.copyTo(dst, depth);
EXPECT_MAT_NEAR(gold, dst, 1e-2);
}
CUDA_TEST_P(Texture2D, CopyToBuffer)
{
cv::Mat gold = randomMat(size, type, 0, depth == CV_8U ? 255 : 1);
cv::ogl::Texture2D tex(gold, true);
cv::ogl::Buffer dst;
tex.copyTo(dst, depth, true);
cv::Mat bufData;
dst.copyTo(bufData);
EXPECT_MAT_NEAR(gold, bufData, 1e-2);
}
INSTANTIATE_TEST_CASE_P(OpenGL, Texture2D, testing::Combine(DIFFERENT_SIZES, testing::Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC3, CV_32FC4)));
#endif

View File

@@ -1,153 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../test_precomp.hpp"
#ifdef HAVE_CUDA
#include <cuda_runtime.h>
#include "opencv2/core/cuda.hpp"
#include "opencv2/ts/cuda_test.hpp"
using namespace cvtest;
struct Async : testing::TestWithParam<cv::cuda::DeviceInfo>
{
cv::cuda::HostMem src;
cv::cuda::GpuMat d_src;
cv::cuda::HostMem dst;
cv::cuda::GpuMat d_dst;
virtual void SetUp()
{
cv::cuda::DeviceInfo devInfo = GetParam();
cv::cuda::setDevice(devInfo.deviceID());
src = cv::cuda::HostMem(cv::cuda::HostMem::PAGE_LOCKED);
cv::Mat m = randomMat(cv::Size(128, 128), CV_8UC1);
m.copyTo(src);
}
};
void checkMemSet(int status, void* userData)
{
ASSERT_EQ(cudaSuccess, status);
Async* test = reinterpret_cast<Async*>(userData);
cv::cuda::HostMem src = test->src;
cv::cuda::HostMem dst = test->dst;
cv::Mat dst_gold = cv::Mat::zeros(src.size(), src.type());
ASSERT_MAT_NEAR(dst_gold, dst, 0);
}
CUDA_TEST_P(Async, MemSet)
{
cv::cuda::Stream stream;
d_dst.upload(src);
d_dst.setTo(cv::Scalar::all(0), stream);
d_dst.download(dst, stream);
Async* test = this;
stream.enqueueHostCallback(checkMemSet, test);
stream.waitForCompletion();
}
void checkConvert(int status, void* userData)
{
ASSERT_EQ(cudaSuccess, status);
Async* test = reinterpret_cast<Async*>(userData);
cv::cuda::HostMem src = test->src;
cv::cuda::HostMem dst = test->dst;
cv::Mat dst_gold;
src.createMatHeader().convertTo(dst_gold, CV_32S);
ASSERT_MAT_NEAR(dst_gold, dst, 0);
}
CUDA_TEST_P(Async, Convert)
{
cv::cuda::Stream stream;
d_src.upload(src, stream);
d_src.convertTo(d_dst, CV_32S, stream);
d_dst.download(dst, stream);
Async* test = this;
stream.enqueueHostCallback(checkConvert, test);
stream.waitForCompletion();
}
CUDA_TEST_P(Async, HostMemAllocator)
{
cv::cuda::Stream stream;
cv::Mat h_dst;
h_dst.allocator = cv::cuda::HostMem::getAllocator();
d_src.upload(src, stream);
d_src.convertTo(d_dst, CV_32S, stream);
d_dst.download(h_dst, stream);
stream.waitForCompletion();
cv::Mat dst_gold;
src.createMatHeader().convertTo(dst_gold, CV_32S);
ASSERT_MAT_NEAR(dst_gold, h_dst, 0);
}
INSTANTIATE_TEST_CASE_P(CUDA_Stream, Async, ALL_DEVICES);
#endif // HAVE_CUDA

View File

@@ -331,7 +331,11 @@ OCL_TEST_P(Mul, Mat_Scale)
OCL_OFF(cv::multiply(src1_roi, src2_roi, dst1_roi, val[0]));
OCL_ON(cv::multiply(usrc1_roi, usrc2_roi, udst1_roi, val[0]));
#ifdef ANDROID
Near(udst1_roi.depth() >= CV_32F ? 2e-1 : 1);
#else
Near(udst1_roi.depth() >= CV_32F ? 1e-3 : 1);
#endif
}
}

View File

@@ -7,14 +7,4 @@
#include "test_precomp.hpp"
#ifndef HAVE_CUDA
CV_TEST_MAIN("cv")
#else
#include "opencv2/ts/cuda_test.hpp"
CV_CUDA_TEST_MAIN("cv")
#endif