made GPU version of SURF more consistent with CPU one
This commit is contained in:
parent
c067c633f0
commit
58f6919795
modules/gpu
samples/gpu
@ -1537,83 +1537,55 @@ namespace cv
|
||||
};
|
||||
|
||||
////////////////////////////////// SURF //////////////////////////////////////////
|
||||
|
||||
struct CV_EXPORTS SURFParams_GPU
|
||||
{
|
||||
SURFParams_GPU() : threshold(0.1f), nOctaves(4), nIntervals(4), initialScale(2.f),
|
||||
l1(3.f/1.5f), l2(5.f/1.5f), l3(3.f/1.5f), l4(1.f/1.5f),
|
||||
edgeScale(0.81f), initialStep(1), extended(true), featuresRatio(0.01f) {}
|
||||
|
||||
//! The interest operator threshold
|
||||
float threshold;
|
||||
//! The number of octaves to process
|
||||
int nOctaves;
|
||||
//! The number of intervals in each octave
|
||||
int nIntervals;
|
||||
//! The scale associated with the first interval of the first octave
|
||||
float initialScale;
|
||||
|
||||
//! mask parameter l_1
|
||||
float l1;
|
||||
//! mask parameter l_2
|
||||
float l2;
|
||||
//! mask parameter l_3
|
||||
float l3;
|
||||
//! mask parameter l_4
|
||||
float l4;
|
||||
//! The amount to scale the edge rejection mask
|
||||
float edgeScale;
|
||||
//! The initial sampling step in pixels.
|
||||
int initialStep;
|
||||
|
||||
//! True, if generate 128-len descriptors, false - 64-len descriptors
|
||||
bool extended;
|
||||
|
||||
//! max features = featuresRatio * img.size().srea()
|
||||
float featuresRatio;
|
||||
};
|
||||
|
||||
class CV_EXPORTS SURF_GPU : public SURFParams_GPU
|
||||
class CV_EXPORTS SURF_GPU : public CvSURFParams
|
||||
{
|
||||
public:
|
||||
//! the default constructor
|
||||
SURF_GPU();
|
||||
//! the full constructor taking all the necessary parameters
|
||||
explicit SURF_GPU(double _hessianThreshold, int _nOctaves=4,
|
||||
int _nOctaveLayers=2, bool _extended=false, float _keypointsRatio=0.01f);
|
||||
|
||||
//! returns the descriptor size in float's (64 or 128)
|
||||
int descriptorSize() const;
|
||||
|
||||
//! upload host keypoints to device memory
|
||||
static void uploadKeypoints(const vector<KeyPoint>& keypoints, GpuMat& keypointsGPU);
|
||||
void uploadKeypoints(const vector<KeyPoint>& keypoints, GpuMat& keypointsGPU);
|
||||
//! download keypoints from device to host memory
|
||||
static void downloadKeypoints(const GpuMat& keypointsGPU, vector<KeyPoint>& keypoints);
|
||||
void downloadKeypoints(const GpuMat& keypointsGPU, vector<KeyPoint>& keypoints);
|
||||
|
||||
//! download descriptors from device to host memory
|
||||
static void downloadDescriptors(const GpuMat& descriptorsGPU, vector<float>& descriptors);
|
||||
void downloadDescriptors(const GpuMat& descriptorsGPU, vector<float>& descriptors);
|
||||
|
||||
//! finds the keypoints using fast hessian detector used in SURF
|
||||
//! supports CV_8UC1 images
|
||||
//! keypoints will have 1 row and type CV_32FC(6)
|
||||
//! keypoints.at<float[6]>(1, i) contains i'th keypoint
|
||||
//! format: (x, y, size, response, angle, octave)
|
||||
//! format: (x, y, laplacian, size, dir, hessian)
|
||||
void operator()(const GpuMat& img, const GpuMat& mask, GpuMat& keypoints);
|
||||
//! finds the keypoints and computes their descriptors.
|
||||
//! Optionally it can compute descriptors for the user-provided keypoints and recompute keypoints direction
|
||||
void operator()(const GpuMat& img, const GpuMat& mask, GpuMat& keypoints, GpuMat& descriptors,
|
||||
bool useProvidedKeypoints = false, bool calcOrientation = true);
|
||||
bool useProvidedKeypoints = false);
|
||||
|
||||
void operator()(const GpuMat& img, const GpuMat& mask, std::vector<KeyPoint>& keypoints);
|
||||
void operator()(const GpuMat& img, const GpuMat& mask, std::vector<KeyPoint>& keypoints, GpuMat& descriptors,
|
||||
bool useProvidedKeypoints = false, bool calcOrientation = true);
|
||||
bool useProvidedKeypoints = false);
|
||||
|
||||
void operator()(const GpuMat& img, const GpuMat& mask, std::vector<KeyPoint>& keypoints, std::vector<float>& descriptors,
|
||||
bool useProvidedKeypoints = false, bool calcOrientation = true);
|
||||
bool useProvidedKeypoints = false);
|
||||
|
||||
GpuMat sum;
|
||||
GpuMat sumf;
|
||||
//! max keypoints = keypointsRatio * img.size().area()
|
||||
float keypointsRatio;
|
||||
|
||||
GpuMat mask1;
|
||||
GpuMat maskSum;
|
||||
GpuMat sum, mask1, maskSum, intBuffer;
|
||||
|
||||
GpuMat det, trace;
|
||||
|
||||
GpuMat hessianBuffer;
|
||||
GpuMat maxPosBuffer;
|
||||
GpuMat featuresBuffer;
|
||||
GpuMat keypointsBuffer;
|
||||
};
|
||||
|
||||
}
|
||||
|
@ -111,20 +111,20 @@ namespace cv
|
||||
{
|
||||
float x;
|
||||
float y;
|
||||
float laplacian;
|
||||
float size;
|
||||
float response;
|
||||
float angle;
|
||||
float octave;
|
||||
float dir;
|
||||
float hessian;
|
||||
};
|
||||
|
||||
enum KeypointLayout
|
||||
{
|
||||
SF_X,
|
||||
SF_Y,
|
||||
SF_LAPLACIAN,
|
||||
SF_SIZE,
|
||||
SF_RESPONSE,
|
||||
SF_ANGLE,
|
||||
SF_OCTAVE,
|
||||
SF_DIR,
|
||||
SF_HESSIAN,
|
||||
SF_FEATURE_STRIDE
|
||||
};
|
||||
}
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -48,123 +48,93 @@ using namespace std;
|
||||
|
||||
#if !defined (HAVE_CUDA)
|
||||
|
||||
cv::gpu::SURF_GPU::SURF_GPU() { throw_nogpu(); }
|
||||
cv::gpu::SURF_GPU::SURF_GPU(double, int, int, bool, float) { throw_nogpu(); }
|
||||
int cv::gpu::SURF_GPU::descriptorSize() const { throw_nogpu(); return 0;}
|
||||
void cv::gpu::SURF_GPU::uploadKeypoints(const vector<KeyPoint>&, GpuMat&) { throw_nogpu(); }
|
||||
void cv::gpu::SURF_GPU::downloadKeypoints(const GpuMat&, vector<KeyPoint>&) { throw_nogpu(); }
|
||||
void cv::gpu::SURF_GPU::downloadDescriptors(const GpuMat&, vector<float>&) { throw_nogpu(); }
|
||||
void cv::gpu::SURF_GPU::operator()(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
|
||||
void cv::gpu::SURF_GPU::operator()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, bool, bool) { throw_nogpu(); }
|
||||
void cv::gpu::SURF_GPU::operator()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, bool) { throw_nogpu(); }
|
||||
void cv::gpu::SURF_GPU::operator()(const GpuMat&, const GpuMat&, vector<KeyPoint>&) { throw_nogpu(); }
|
||||
void cv::gpu::SURF_GPU::operator()(const GpuMat&, const GpuMat&, vector<KeyPoint>&, GpuMat&, bool, bool) { throw_nogpu(); }
|
||||
void cv::gpu::SURF_GPU::operator()(const GpuMat&, const GpuMat&, vector<KeyPoint>&, vector<float>&, bool, bool) { throw_nogpu(); }
|
||||
void cv::gpu::SURF_GPU::operator()(const GpuMat&, const GpuMat&, vector<KeyPoint>&, GpuMat&, bool) { throw_nogpu(); }
|
||||
void cv::gpu::SURF_GPU::operator()(const GpuMat&, const GpuMat&, vector<KeyPoint>&, vector<float>&, bool) { throw_nogpu(); }
|
||||
|
||||
#else /* !defined (HAVE_CUDA) */
|
||||
|
||||
namespace cv { namespace gpu { namespace surf
|
||||
{
|
||||
dim3 calcBlockSize(int nIntervals);
|
||||
|
||||
void fasthessian_gpu(PtrStepf hessianBuffer, int x_size, int y_size, const dim3& threads);
|
||||
void fasthessian_gpu_old(PtrStepf hessianBuffer, int x_size, int y_size, const dim3& threadsOld);
|
||||
|
||||
void nonmaxonly_gpu(PtrStepf hessianBuffer, int4* maxPosBuffer, unsigned int& maxCounter,
|
||||
int x_size, int y_size, bool use_mask, const dim3& threads);
|
||||
|
||||
void fh_interp_extremum_gpu(PtrStepf hessianBuffer, const int4* maxPosBuffer, unsigned int maxCounter,
|
||||
KeyPoint_GPU* featuresBuffer, unsigned int& featureCounter);
|
||||
|
||||
void find_orientation_gpu(KeyPoint_GPU* features, int nFeatures);
|
||||
|
||||
void icvCalcLayerDetAndTrace_gpu(const PtrStepf& det, const PtrStepf& trace, int img_rows, int img_cols, int octave, int nOctaveLayers);
|
||||
|
||||
void icvFindMaximaInLayer_gpu(const PtrStepf& det, const PtrStepf& trace, int4* maxPosBuffer, unsigned int* maxCounter,
|
||||
int img_rows, int img_cols, int octave, bool use_mask, int nLayers);
|
||||
|
||||
void icvInterpolateKeypoint_gpu(const PtrStepf& det, const int4* maxPosBuffer, unsigned int maxCounter, KeyPoint_GPU* featuresBuffer, unsigned int* featureCounter);
|
||||
|
||||
void icvCalcOrientation_gpu(const KeyPoint_GPU* featureBuffer, int nFeatures, KeyPoint_GPU* keypoints, unsigned int* keypointCounter);
|
||||
|
||||
void compute_descriptors_gpu(const DevMem2Df& descriptors, const KeyPoint_GPU* features, int nFeatures);
|
||||
void compute_descriptors_gpu_old(const DevMem2Df& descriptors, const KeyPoint_GPU* features, int nFeatures);
|
||||
}}}
|
||||
|
||||
using namespace cv::gpu::surf;
|
||||
|
||||
namespace
|
||||
{
|
||||
class SURF_GPU_Invoker : private SURFParams_GPU
|
||||
class SURF_GPU_Invoker : private CvSURFParams
|
||||
{
|
||||
public:
|
||||
SURF_GPU_Invoker(SURF_GPU& surf, const GpuMat& img, const GpuMat& mask) :
|
||||
SURFParams_GPU(surf),
|
||||
SURF_GPU_Invoker(SURF_GPU& surf, const GpuMat& img, const GpuMat& mask) :
|
||||
CvSURFParams(surf),
|
||||
|
||||
sum(surf.sum), sumf(surf.sumf),
|
||||
sum(surf.sum), mask1(surf.mask1), maskSum(surf.maskSum), intBuffer(surf.intBuffer), det(surf.det), trace(surf.trace),
|
||||
|
||||
mask1(surf.mask1), maskSum(surf.maskSum),
|
||||
|
||||
hessianBuffer(surf.hessianBuffer),
|
||||
maxPosBuffer(surf.maxPosBuffer),
|
||||
featuresBuffer(surf.featuresBuffer),
|
||||
maxPosBuffer(surf.maxPosBuffer), featuresBuffer(surf.featuresBuffer), keypointsBuffer(surf.keypointsBuffer),
|
||||
|
||||
img_cols(img.cols), img_rows(img.rows),
|
||||
|
||||
use_mask(!mask.empty()),
|
||||
|
||||
mask_width(0), mask_height(0),
|
||||
|
||||
featureCounter(0), maxCounter(0)
|
||||
use_mask(!mask.empty())
|
||||
{
|
||||
CV_Assert(!img.empty() && img.type() == CV_8UC1);
|
||||
CV_Assert(mask.empty() || (mask.size() == img.size() && mask.type() == CV_8UC1));
|
||||
CV_Assert(nOctaves > 0 && nIntervals > 2 && nIntervals < 22);
|
||||
CV_Assert(DeviceInfo().supports(GLOBAL_ATOMICS));
|
||||
CV_Assert(nOctaves > 0 && nOctaveLayers > 0);
|
||||
CV_Assert(TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS));
|
||||
|
||||
max_features = static_cast<int>(img.size().area() * featuresRatio);
|
||||
max_candidates = static_cast<int>(1.5 * max_features);
|
||||
maxKeypoints = static_cast<int>(img.size().area() * surf.keypointsRatio);
|
||||
maxFeatures = static_cast<int>(1.5 * maxKeypoints);
|
||||
maxCandidates = static_cast<int>(1.5 * maxFeatures);
|
||||
|
||||
CV_Assert(max_features > 0);
|
||||
|
||||
featuresBuffer.create(1, max_features, CV_32FC(6));
|
||||
maxPosBuffer.create(1, max_candidates, CV_32SC4);
|
||||
|
||||
mask_width = l2 * 0.5f;
|
||||
mask_height = 1.0f + l1;
|
||||
|
||||
// Dxy gap half-width
|
||||
float dxy_center_offset = 0.5f * (l4 + l3);
|
||||
// Dxy squares half-width
|
||||
float dxy_half_width = 0.5f * l3;
|
||||
|
||||
// rescale edge_scale to fit with the filter dimensions
|
||||
float dxy_scale = edgeScale * std::pow((2.f + 2.f * l1) * l2 / (4.f * l3 * l3), 2.f);
|
||||
CV_Assert(maxKeypoints > 0);
|
||||
|
||||
// Compute border required such that the filters don't overstep the image boundaries
|
||||
float smax0 = 2.0f * initialScale + 0.5f;
|
||||
int border0 = static_cast<int>(std::ceil(smax0 * std::max(std::max(mask_width, mask_height), l3 + l4 * 0.5f)));
|
||||
cudaSafeCall( cudaMalloc((void**)&d_counters, (nOctaves + 2) * sizeof(unsigned int)) );
|
||||
cudaSafeCall( cudaMemset(d_counters, 0, (nOctaves + 2) * sizeof(unsigned int)) );
|
||||
|
||||
int width0 = (img_cols - 2 * border0) / initialStep;
|
||||
int height0 = (img_rows - 2 * border0) / initialStep;
|
||||
uploadConstant("cv::gpu::surf::c_max_candidates", maxCandidates);
|
||||
uploadConstant("cv::gpu::surf::c_max_features", maxFeatures);
|
||||
uploadConstant("cv::gpu::surf::c_max_keypoints", maxKeypoints);
|
||||
uploadConstant("cv::gpu::surf::c_img_rows", img_rows);
|
||||
uploadConstant("cv::gpu::surf::c_img_cols", img_cols);
|
||||
uploadConstant("cv::gpu::surf::c_nOctaveLayers", nOctaveLayers);
|
||||
uploadConstant("cv::gpu::surf::c_hessianThreshold", static_cast<float>(hessianThreshold));
|
||||
|
||||
uploadConstant("cv::gpu::surf::c_max_candidates", max_candidates);
|
||||
uploadConstant("cv::gpu::surf::c_max_features", max_features);
|
||||
uploadConstant("cv::gpu::surf::c_nIntervals", nIntervals);
|
||||
uploadConstant("cv::gpu::surf::c_mask_width", mask_width);
|
||||
uploadConstant("cv::gpu::surf::c_mask_height", mask_height);
|
||||
uploadConstant("cv::gpu::surf::c_dxy_center_offset", dxy_center_offset);
|
||||
uploadConstant("cv::gpu::surf::c_dxy_half_width", dxy_half_width);
|
||||
uploadConstant("cv::gpu::surf::c_dxy_scale", dxy_scale);
|
||||
uploadConstant("cv::gpu::surf::c_initialScale", initialScale);
|
||||
uploadConstant("cv::gpu::surf::c_threshold", threshold);
|
||||
|
||||
hessianBuffer.create(height0 * nIntervals, width0, CV_32F);
|
||||
bindTexture("cv::gpu::surf::imgTex", (DevMem2D)img);
|
||||
|
||||
integral(img, sum);
|
||||
sum.convertTo(sumf, CV_32F, 1.0 / 255.0);
|
||||
|
||||
bindTexture("cv::gpu::surf::sumTex", (DevMem2Df)sumf);
|
||||
integralBuffered(img, sum, intBuffer);
|
||||
bindTexture("cv::gpu::surf::sumTex", (DevMem2D_<unsigned int>)sum);
|
||||
|
||||
if (!mask.empty())
|
||||
{
|
||||
if (use_mask)
|
||||
{
|
||||
min(mask, 1.0, mask1);
|
||||
integral(mask1, maskSum);
|
||||
|
||||
bindTexture("cv::gpu::surf::maskSumTex", (DevMem2Di)maskSum);
|
||||
}
|
||||
integralBuffered(mask1, maskSum, intBuffer);
|
||||
|
||||
bindTexture("cv::gpu::surf::maskSumTex", (DevMem2D_<unsigned int>)maskSum);
|
||||
}
|
||||
}
|
||||
|
||||
~SURF_GPU_Invoker()
|
||||
{
|
||||
cudaSafeCall( cudaFree(d_counters) );
|
||||
|
||||
unbindTexture("cv::gpu::surf::imgTex");
|
||||
unbindTexture("cv::gpu::surf::sumTex");
|
||||
if (use_mask)
|
||||
unbindTexture("cv::gpu::surf::maskSumTex");
|
||||
@ -172,102 +142,115 @@ namespace
|
||||
|
||||
void detectKeypoints(GpuMat& keypoints)
|
||||
{
|
||||
typedef void (*fasthessian_t)(PtrStepf hessianBuffer, int x_size, int y_size, const dim3& threads);
|
||||
const fasthessian_t fasthessian =
|
||||
DeviceInfo().supports(FEATURE_SET_COMPUTE_13) ? fasthessian_gpu : fasthessian_gpu_old;
|
||||
ensureSizeIsEnough(img_rows * (nOctaveLayers + 2), img_cols, CV_32FC1, det);
|
||||
ensureSizeIsEnough(img_rows * (nOctaveLayers + 2), img_cols, CV_32FC1, trace);
|
||||
|
||||
ensureSizeIsEnough(1, maxCandidates, CV_32SC4, maxPosBuffer);
|
||||
ensureSizeIsEnough(1, maxFeatures, CV_32FC(6), featuresBuffer);
|
||||
|
||||
dim3 threads = calcBlockSize(nIntervals);
|
||||
for(int octave = 0; octave < nOctaves; ++octave)
|
||||
for (int octave = 0; octave < nOctaves; ++octave)
|
||||
{
|
||||
int step = initialStep * (1 << octave);
|
||||
const int layer_rows = img_rows >> octave;
|
||||
const int layer_cols = img_cols >> octave;
|
||||
|
||||
// Compute border required such that the filters don't overstep the image boundaries
|
||||
float d = (initialScale * (1 << octave)) / (nIntervals - 2);
|
||||
float smax = initialScale * (1 << octave) + d * (nIntervals - 2.0f) + 0.5f;
|
||||
int border = static_cast<int>(std::ceil(smax * std::max(std::max(mask_width, mask_height), l3 + l4 * 0.5f)));
|
||||
|
||||
int x_size = (img_cols - 2 * border) / step;
|
||||
int y_size = (img_rows - 2 * border) / step;
|
||||
|
||||
if (x_size <= 0 || y_size <= 0)
|
||||
break;
|
||||
uploadConstant("cv::gpu::surf::c_octave", octave);
|
||||
uploadConstant("cv::gpu::surf::c_layer_rows", layer_rows);
|
||||
uploadConstant("cv::gpu::surf::c_layer_cols", layer_cols);
|
||||
|
||||
uploadConstant("cv::gpu::surf::c_octave", octave);
|
||||
uploadConstant("cv::gpu::surf::c_x_size", x_size);
|
||||
uploadConstant("cv::gpu::surf::c_y_size", y_size);
|
||||
uploadConstant("cv::gpu::surf::c_border", border);
|
||||
uploadConstant("cv::gpu::surf::c_step", step);
|
||||
icvCalcLayerDetAndTrace_gpu(det, trace, img_rows, img_cols, octave, nOctaveLayers);
|
||||
|
||||
fasthessian(hessianBuffer, x_size, y_size, threads);
|
||||
icvFindMaximaInLayer_gpu(det, trace, maxPosBuffer.ptr<int4>(), d_counters + 2 + octave,
|
||||
img_rows, img_cols, octave, use_mask, nOctaveLayers);
|
||||
|
||||
// Reset the candidate count.
|
||||
maxCounter = 0;
|
||||
|
||||
nonmaxonly_gpu(hessianBuffer, maxPosBuffer.ptr<int4>(), maxCounter, x_size, y_size, use_mask, threads);
|
||||
|
||||
maxCounter = std::min(maxCounter, static_cast<unsigned int>(max_candidates));
|
||||
unsigned int maxCounter;
|
||||
cudaSafeCall( cudaMemcpy(&maxCounter, d_counters + 2 + octave, sizeof(unsigned int), cudaMemcpyDeviceToHost) );
|
||||
maxCounter = std::min(maxCounter, static_cast<unsigned int>(maxCandidates));
|
||||
|
||||
if (maxCounter > 0)
|
||||
{
|
||||
fh_interp_extremum_gpu(hessianBuffer, maxPosBuffer.ptr<int4>(), maxCounter,
|
||||
featuresBuffer.ptr<KeyPoint_GPU>(), featureCounter);
|
||||
|
||||
featureCounter = std::min(featureCounter, static_cast<unsigned int>(max_features));
|
||||
icvInterpolateKeypoint_gpu(det, maxPosBuffer.ptr<int4>(), maxCounter,
|
||||
featuresBuffer.ptr<KeyPoint_GPU>(), d_counters);
|
||||
}
|
||||
}
|
||||
unsigned int featureCounter;
|
||||
cudaSafeCall( cudaMemcpy(&featureCounter, d_counters, sizeof(unsigned int), cudaMemcpyDeviceToHost) );
|
||||
featureCounter = std::min(featureCounter, static_cast<unsigned int>(maxFeatures));
|
||||
|
||||
if (featureCounter > 0)
|
||||
featuresBuffer.colRange(0, featureCounter).copyTo(keypoints);
|
||||
else
|
||||
keypoints.release();
|
||||
findOrientation(featuresBuffer.colRange(0, featureCounter), keypoints);
|
||||
}
|
||||
|
||||
void findOrientation(GpuMat& keypoints)
|
||||
void findOrientation(const GpuMat& features, GpuMat& keypoints)
|
||||
{
|
||||
if (keypoints.cols > 0)
|
||||
find_orientation_gpu(keypoints.ptr<KeyPoint_GPU>(), keypoints.cols);
|
||||
if (features.cols > 0)
|
||||
{
|
||||
ensureSizeIsEnough(1, maxKeypoints, CV_32FC(6), keypointsBuffer);
|
||||
|
||||
icvCalcOrientation_gpu(features.ptr<KeyPoint_GPU>(), features.cols, keypointsBuffer.ptr<KeyPoint_GPU>(),
|
||||
d_counters + 1);
|
||||
|
||||
unsigned int keypointsCounter;
|
||||
cudaSafeCall( cudaMemcpy(&keypointsCounter, d_counters + 1, sizeof(unsigned int), cudaMemcpyDeviceToHost) );
|
||||
keypointsCounter = std::min(keypointsCounter, static_cast<unsigned int>(maxKeypoints));
|
||||
|
||||
if (keypointsCounter > 0)
|
||||
keypointsBuffer.colRange(0, keypointsCounter).copyTo(keypoints);
|
||||
else
|
||||
keypoints.release();
|
||||
}
|
||||
}
|
||||
|
||||
void computeDescriptors(const GpuMat& keypoints, GpuMat& descriptors, int descriptorSize)
|
||||
{
|
||||
typedef void (*compute_descriptors_t)(const DevMem2Df& descriptors,
|
||||
const KeyPoint_GPU* features, int nFeatures);
|
||||
|
||||
const compute_descriptors_t compute_descriptors = compute_descriptors_gpu_old;
|
||||
//DeviceInfo().supports(FEATURE_SET_COMPUTE_13) ? compute_descriptors_gpu : compute_descriptors_gpu_old;
|
||||
|
||||
if (keypoints.cols > 0)
|
||||
{
|
||||
descriptors.create(keypoints.cols, descriptorSize, CV_32F);
|
||||
compute_descriptors(descriptors, keypoints.ptr<KeyPoint_GPU>(), keypoints.cols);
|
||||
compute_descriptors_gpu(descriptors, keypoints.ptr<KeyPoint_GPU>(), keypoints.cols);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
GpuMat& sum;
|
||||
GpuMat& sumf;
|
||||
|
||||
GpuMat& mask1;
|
||||
GpuMat& maskSum;
|
||||
GpuMat& intBuffer;
|
||||
|
||||
GpuMat& det;
|
||||
GpuMat& trace;
|
||||
|
||||
GpuMat& hessianBuffer;
|
||||
GpuMat& maxPosBuffer;
|
||||
GpuMat& featuresBuffer;
|
||||
GpuMat& keypointsBuffer;
|
||||
|
||||
int img_cols, img_rows;
|
||||
|
||||
bool use_mask;
|
||||
|
||||
float mask_width, mask_height;
|
||||
|
||||
unsigned int featureCounter;
|
||||
unsigned int maxCounter;
|
||||
int maxCandidates;
|
||||
int maxFeatures;
|
||||
int maxKeypoints;
|
||||
|
||||
int max_candidates;
|
||||
int max_features;
|
||||
unsigned int* d_counters;
|
||||
};
|
||||
}
|
||||
|
||||
cv::gpu::SURF_GPU::SURF_GPU()
|
||||
{
|
||||
hessianThreshold = 100;
|
||||
extended = 1;
|
||||
nOctaves = 4;
|
||||
nOctaveLayers = 2;
|
||||
keypointsRatio = 0.01f;
|
||||
}
|
||||
|
||||
cv::gpu::SURF_GPU::SURF_GPU(double _threshold, int _nOctaves, int _nOctaveLayers, bool _extended, float _keypointsRatio)
|
||||
{
|
||||
hessianThreshold = _threshold;
|
||||
extended = _extended;
|
||||
nOctaves = _nOctaves;
|
||||
nOctaveLayers = _nOctaveLayers;
|
||||
keypointsRatio = _keypointsRatio;
|
||||
}
|
||||
|
||||
int cv::gpu::SURF_GPU::descriptorSize() const
|
||||
{
|
||||
return extended ? 128 : 64;
|
||||
@ -281,27 +264,64 @@ void cv::gpu::SURF_GPU::uploadKeypoints(const vector<KeyPoint>& keypoints, GpuMa
|
||||
{
|
||||
Mat keypointsCPU(1, keypoints.size(), CV_32FC(6));
|
||||
|
||||
const KeyPoint* keypoints_ptr = &keypoints[0];
|
||||
KeyPoint_GPU* keypointsCPU_ptr = keypointsCPU.ptr<KeyPoint_GPU>();
|
||||
for (size_t i = 0; i < keypoints.size(); ++i, ++keypoints_ptr, ++keypointsCPU_ptr)
|
||||
for (size_t i = 0; i < keypoints.size(); ++i)
|
||||
{
|
||||
const KeyPoint& kp = *keypoints_ptr;
|
||||
KeyPoint_GPU& gkp = *keypointsCPU_ptr;
|
||||
const KeyPoint& kp = keypoints[i];
|
||||
KeyPoint_GPU& gkp = keypointsCPU.ptr<KeyPoint_GPU>()[i];
|
||||
|
||||
gkp.x = kp.pt.x;
|
||||
gkp.y = kp.pt.y;
|
||||
|
||||
gkp.laplacian = 1.0f;
|
||||
|
||||
gkp.size = kp.size;
|
||||
|
||||
gkp.octave = static_cast<float>(kp.octave);
|
||||
gkp.angle = kp.angle;
|
||||
gkp.response = kp.response;
|
||||
gkp.dir = kp.angle;
|
||||
gkp.hessian = kp.response;
|
||||
}
|
||||
|
||||
keypointsGPU.upload(keypointsCPU);
|
||||
}
|
||||
}
|
||||
|
||||
namespace
|
||||
{
|
||||
int calcSize(int octave, int layer)
|
||||
{
|
||||
/* Wavelet size at first layer of first octave. */
|
||||
const int HAAR_SIZE0 = 9;
|
||||
|
||||
/* Wavelet size increment between layers. This should be an even number,
|
||||
such that the wavelet sizes in an octave are either all even or all odd.
|
||||
This ensures that when looking for the neighbours of a sample, the layers
|
||||
above and below are aligned correctly. */
|
||||
const int HAAR_SIZE_INC = 6;
|
||||
|
||||
return (HAAR_SIZE0 + HAAR_SIZE_INC * layer) << octave;
|
||||
}
|
||||
|
||||
int getPointOctave(const KeyPoint_GPU& kpt, const CvSURFParams& params)
|
||||
{
|
||||
int best_octave = 0;
|
||||
float min_diff = numeric_limits<float>::max();
|
||||
for (int octave = 1; octave < params.nOctaves; ++octave)
|
||||
{
|
||||
for (int layer = 0; layer < params.nOctaveLayers; ++layer)
|
||||
{
|
||||
float diff = std::abs(kpt.size - (float)calcSize(octave, layer));
|
||||
if (min_diff > diff)
|
||||
{
|
||||
min_diff = diff;
|
||||
best_octave = octave;
|
||||
if (min_diff == 0)
|
||||
return best_octave;
|
||||
}
|
||||
}
|
||||
}
|
||||
return best_octave;
|
||||
}
|
||||
}
|
||||
|
||||
void cv::gpu::SURF_GPU::downloadKeypoints(const GpuMat& keypointsGPU, vector<KeyPoint>& keypoints)
|
||||
{
|
||||
if (keypointsGPU.empty())
|
||||
@ -313,21 +333,23 @@ void cv::gpu::SURF_GPU::downloadKeypoints(const GpuMat& keypointsGPU, vector<Key
|
||||
Mat keypointsCPU = keypointsGPU;
|
||||
keypoints.resize(keypointsGPU.cols);
|
||||
|
||||
KeyPoint* keypoints_ptr = &keypoints[0];
|
||||
const KeyPoint_GPU* keypointsCPU_ptr = keypointsCPU.ptr<KeyPoint_GPU>();
|
||||
for (int i = 0; i < keypointsGPU.cols; ++i, ++keypoints_ptr, ++keypointsCPU_ptr)
|
||||
for (int i = 0; i < keypointsGPU.cols; ++i)
|
||||
{
|
||||
KeyPoint& kp = *keypoints_ptr;
|
||||
const KeyPoint_GPU& gkp = *keypointsCPU_ptr;
|
||||
KeyPoint& kp = keypoints[i];
|
||||
const KeyPoint_GPU& gkp = keypointsCPU.ptr<KeyPoint_GPU>()[i];
|
||||
|
||||
kp.pt.x = gkp.x;
|
||||
kp.pt.y = gkp.y;
|
||||
|
||||
kp.size = gkp.size;
|
||||
|
||||
kp.octave = static_cast<int>(gkp.octave);
|
||||
kp.angle = gkp.angle;
|
||||
kp.response = gkp.response;
|
||||
kp.angle = gkp.dir;
|
||||
|
||||
kp.response = gkp.hessian;
|
||||
|
||||
kp.octave = getPointOctave(gkp, *this);
|
||||
|
||||
kp.class_id = static_cast<int>(gkp.laplacian);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -353,23 +375,24 @@ void cv::gpu::SURF_GPU::operator()(const GpuMat& img, const GpuMat& mask, GpuMat
|
||||
SURF_GPU_Invoker surf(*this, img, mask);
|
||||
|
||||
surf.detectKeypoints(keypoints);
|
||||
|
||||
surf.findOrientation(keypoints);
|
||||
}
|
||||
}
|
||||
|
||||
void cv::gpu::SURF_GPU::operator()(const GpuMat& img, const GpuMat& mask, GpuMat& keypoints, GpuMat& descriptors,
|
||||
bool useProvidedKeypoints, bool calcOrientation)
|
||||
bool useProvidedKeypoints)
|
||||
{
|
||||
if (!img.empty())
|
||||
{
|
||||
SURF_GPU_Invoker surf(*this, img, mask);
|
||||
|
||||
|
||||
if (!useProvidedKeypoints)
|
||||
surf.detectKeypoints(keypoints);
|
||||
|
||||
if (calcOrientation)
|
||||
surf.findOrientation(keypoints);
|
||||
else
|
||||
{
|
||||
GpuMat keypointsBuf;
|
||||
surf.findOrientation(keypoints, keypointsBuf);
|
||||
keypointsBuf.copyTo(keypoints);
|
||||
}
|
||||
|
||||
surf.computeDescriptors(keypoints, descriptors, descriptorSize());
|
||||
}
|
||||
@ -385,24 +408,24 @@ void cv::gpu::SURF_GPU::operator()(const GpuMat& img, const GpuMat& mask, vector
|
||||
}
|
||||
|
||||
void cv::gpu::SURF_GPU::operator()(const GpuMat& img, const GpuMat& mask, vector<KeyPoint>& keypoints,
|
||||
GpuMat& descriptors, bool useProvidedKeypoints, bool calcOrientation)
|
||||
GpuMat& descriptors, bool useProvidedKeypoints)
|
||||
{
|
||||
GpuMat keypointsGPU;
|
||||
|
||||
if (useProvidedKeypoints)
|
||||
uploadKeypoints(keypoints, keypointsGPU);
|
||||
|
||||
(*this)(img, mask, keypointsGPU, descriptors, useProvidedKeypoints, calcOrientation);
|
||||
(*this)(img, mask, keypointsGPU, descriptors, useProvidedKeypoints);
|
||||
|
||||
downloadKeypoints(keypointsGPU, keypoints);
|
||||
}
|
||||
|
||||
void cv::gpu::SURF_GPU::operator()(const GpuMat& img, const GpuMat& mask, vector<KeyPoint>& keypoints,
|
||||
vector<float>& descriptors, bool useProvidedKeypoints, bool calcOrientation)
|
||||
vector<float>& descriptors, bool useProvidedKeypoints)
|
||||
{
|
||||
GpuMat descriptorsGPU;
|
||||
|
||||
(*this)(img, mask, keypoints, descriptorsGPU, useProvidedKeypoints, calcOrientation);
|
||||
(*this)(img, mask, keypoints, descriptorsGPU, useProvidedKeypoints);
|
||||
|
||||
downloadDescriptors(descriptorsGPU, descriptors);
|
||||
}
|
||||
|
@ -48,7 +48,6 @@ using namespace std;
|
||||
|
||||
const string FEATURES2D_DIR = "features2d";
|
||||
const string IMAGE_FILENAME = "aloe.png";
|
||||
const string VALID_FILE_NAME = "surf.xml.gz";
|
||||
|
||||
class CV_GPU_SURFTest : public cvtest::BaseTest
|
||||
{
|
||||
@ -59,17 +58,20 @@ public:
|
||||
|
||||
protected:
|
||||
bool isSimilarKeypoints(const KeyPoint& p1, const KeyPoint& p2);
|
||||
int getValidCount(const vector<KeyPoint>& keypoints1, const vector<KeyPoint>& keypoints2, const vector<DMatch>& matches);
|
||||
void compareKeypointSets(const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints,
|
||||
const Mat& validDescriptors, const Mat& calcDescriptors);
|
||||
|
||||
void emptyDataTest(SURF_GPU& fdetector);
|
||||
void regressionTest(SURF_GPU& fdetector);
|
||||
void emptyDataTest();
|
||||
void accuracyTest();
|
||||
|
||||
virtual void run(int);
|
||||
};
|
||||
|
||||
void CV_GPU_SURFTest::emptyDataTest(SURF_GPU& fdetector)
|
||||
void CV_GPU_SURFTest::emptyDataTest()
|
||||
{
|
||||
SURF_GPU fdetector;
|
||||
|
||||
GpuMat image;
|
||||
vector<KeyPoint> keypoints;
|
||||
vector<float> descriptors;
|
||||
@ -114,116 +116,80 @@ bool CV_GPU_SURFTest::isSimilarKeypoints(const KeyPoint& p1, const KeyPoint& p2)
|
||||
p1.class_id == p2.class_id );
|
||||
}
|
||||
|
||||
int CV_GPU_SURFTest::getValidCount(const vector<KeyPoint>& keypoints1, const vector<KeyPoint>& keypoints2,
|
||||
const vector<DMatch>& matches)
|
||||
{
|
||||
int count = 0;
|
||||
|
||||
for (size_t i = 0; i < matches.size(); ++i)
|
||||
{
|
||||
const DMatch& m = matches[i];
|
||||
|
||||
const KeyPoint& kp1 = keypoints1[m.queryIdx];
|
||||
const KeyPoint& kp2 = keypoints2[m.trainIdx];
|
||||
|
||||
if (isSimilarKeypoints(kp1, kp2))
|
||||
++count;
|
||||
}
|
||||
|
||||
return count;
|
||||
}
|
||||
|
||||
void CV_GPU_SURFTest::compareKeypointSets(const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints,
|
||||
const Mat& validDescriptors, const Mat& calcDescriptors)
|
||||
{
|
||||
if (validKeypoints.size() != calcKeypoints.size())
|
||||
BruteForceMatcher< L2<float> > matcher;
|
||||
vector<DMatch> matches;
|
||||
|
||||
matcher.match(validDescriptors, calcDescriptors, matches);
|
||||
|
||||
int validCount = getValidCount(validKeypoints, calcKeypoints, matches);
|
||||
float validRatio = (float)validCount / matches.size();
|
||||
|
||||
if (validRatio < 0.5f)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "Keypoints sizes doesn't equal (validCount = %d, calcCount = %d).\n",
|
||||
validKeypoints.size(), calcKeypoints.size());
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
ts->printf(cvtest::TS::LOG, "Bad accuracy - %f.\n", validRatio);
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
if (validDescriptors.size() != calcDescriptors.size())
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "Descriptors sizes doesn't equal.\n");
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
return;
|
||||
}
|
||||
for (size_t v = 0; v < validKeypoints.size(); v++)
|
||||
{
|
||||
int nearestIdx = -1;
|
||||
float minDist = std::numeric_limits<float>::max();
|
||||
|
||||
for (size_t c = 0; c < calcKeypoints.size(); c++)
|
||||
{
|
||||
float curDist = (float)norm(calcKeypoints[c].pt - validKeypoints[v].pt);
|
||||
if (curDist < minDist)
|
||||
{
|
||||
minDist = curDist;
|
||||
nearestIdx = c;
|
||||
}
|
||||
}
|
||||
|
||||
assert(minDist >= 0);
|
||||
if (!isSimilarKeypoints(validKeypoints[v], calcKeypoints[nearestIdx]))
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "Bad keypoints accuracy.\n");
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
|
||||
if (norm(validDescriptors.row(v), calcDescriptors.row(nearestIdx), NORM_L2) > 1.5f)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "Bad descriptors accuracy.\n");
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void CV_GPU_SURFTest::regressionTest(SURF_GPU& fdetector)
|
||||
void CV_GPU_SURFTest::accuracyTest()
|
||||
{
|
||||
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
|
||||
string resFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + VALID_FILE_NAME;
|
||||
|
||||
// Read the test image.
|
||||
GpuMat image(imread(imgFilename, 0));
|
||||
Mat image = imread(imgFilename, 0);
|
||||
if (image.empty())
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
||||
return;
|
||||
}
|
||||
|
||||
FileStorage fs(resFilename, FileStorage::READ);
|
||||
|
||||
Mat mask(image.size(), CV_8UC1, Scalar::all(1));
|
||||
mask(Range(0, image.rows / 2), Range(0, image.cols / 2)).setTo(Scalar::all(0));
|
||||
|
||||
// Compute keypoints.
|
||||
GpuMat mask(image.size(), CV_8UC1, Scalar::all(1));
|
||||
mask(Range(0, image.rows / 2), Range(0, image.cols / 2)).setTo(Scalar::all(0));
|
||||
vector<KeyPoint> calcKeypoints;
|
||||
GpuMat calcDespcriptors;
|
||||
fdetector(image, mask, calcKeypoints, calcDespcriptors);
|
||||
GpuMat calcDescriptors;
|
||||
SURF_GPU fdetector; fdetector.extended = false;
|
||||
fdetector(GpuMat(image), GpuMat(mask), calcKeypoints, calcDescriptors);
|
||||
|
||||
if (fs.isOpened()) // Compare computed and valid keypoints.
|
||||
{
|
||||
// Read validation keypoints set.
|
||||
vector<KeyPoint> validKeypoints;
|
||||
Mat validDespcriptors;
|
||||
read(fs["keypoints"], validKeypoints);
|
||||
read(fs["descriptors"], validDespcriptors);
|
||||
if (validKeypoints.empty() || validDespcriptors.empty())
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "Validation file can not be read.\n");
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||||
return;
|
||||
}
|
||||
// Calc validation keypoints set.
|
||||
vector<KeyPoint> validKeypoints;
|
||||
vector<float> validDescriptors;
|
||||
SURF fdetector_gold; fdetector_gold.extended = false;
|
||||
fdetector_gold(image, mask, validKeypoints, validDescriptors);
|
||||
|
||||
compareKeypointSets(validKeypoints, calcKeypoints, validDespcriptors, calcDespcriptors);
|
||||
}
|
||||
else // Write detector parameters and computed keypoints as validation data.
|
||||
{
|
||||
fs.open(resFilename, FileStorage::WRITE);
|
||||
if (!fs.isOpened())
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "File %s can not be opened to write.\n", resFilename.c_str());
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||||
return;
|
||||
}
|
||||
else
|
||||
{
|
||||
write(fs, "keypoints", calcKeypoints);
|
||||
write(fs, "descriptors", (Mat)calcDespcriptors);
|
||||
}
|
||||
}
|
||||
compareKeypointSets(validKeypoints, calcKeypoints,
|
||||
Mat(validKeypoints.size(), fdetector_gold.descriptorSize(), CV_32F, &validDescriptors[0]), calcDescriptors);
|
||||
}
|
||||
|
||||
void CV_GPU_SURFTest::run( int /*start_from*/ )
|
||||
{
|
||||
SURF_GPU fdetector;
|
||||
|
||||
emptyDataTest(fdetector);
|
||||
regressionTest(fdetector);
|
||||
emptyDataTest();
|
||||
accuracyTest();
|
||||
}
|
||||
|
||||
TEST(SURF, empty_data_and_regression) { CV_GPU_SURFTest test; test.safe_run(); }
|
||||
TEST(SURF, empty_data_and_accuracy) { CV_GPU_SURFTest test; test.safe_run(); }
|
||||
|
@ -264,10 +264,11 @@ TEST(SURF)
|
||||
|
||||
SURF surf;
|
||||
vector<KeyPoint> keypoints1, keypoints2;
|
||||
vector<float> descriptors1, descriptors2;
|
||||
|
||||
CPU_ON;
|
||||
surf(src1, Mat(), keypoints1);
|
||||
surf(src2, Mat(), keypoints2);
|
||||
surf(src1, Mat(), keypoints1, descriptors1);
|
||||
surf(src2, Mat(), keypoints2, descriptors2);
|
||||
CPU_OFF;
|
||||
|
||||
gpu::SURF_GPU d_surf;
|
||||
@ -275,8 +276,8 @@ TEST(SURF)
|
||||
gpu::GpuMat d_descriptors1, d_descriptors2;
|
||||
|
||||
GPU_ON;
|
||||
d_surf(d_src1, gpu::GpuMat(), d_keypoints1);
|
||||
d_surf(d_src2, gpu::GpuMat(), d_keypoints2);
|
||||
d_surf(d_src1, gpu::GpuMat(), d_keypoints1, d_descriptors1);
|
||||
d_surf(d_src2, gpu::GpuMat(), d_keypoints2, d_descriptors2);
|
||||
GPU_OFF;
|
||||
}
|
||||
|
||||
|
@ -51,10 +51,10 @@ int main(int argc, char* argv[])
|
||||
vector<KeyPoint> keypoints1, keypoints2;
|
||||
vector<float> descriptors1, descriptors2;
|
||||
vector<DMatch> matches;
|
||||
SURF_GPU::downloadKeypoints(keypoints1GPU, keypoints1);
|
||||
SURF_GPU::downloadKeypoints(keypoints2GPU, keypoints2);
|
||||
SURF_GPU::downloadDescriptors(descriptors1GPU, descriptors1);
|
||||
SURF_GPU::downloadDescriptors(descriptors2GPU, descriptors2);
|
||||
surf.downloadKeypoints(keypoints1GPU, keypoints1);
|
||||
surf.downloadKeypoints(keypoints2GPU, keypoints2);
|
||||
surf.downloadDescriptors(descriptors1GPU, descriptors1);
|
||||
surf.downloadDescriptors(descriptors2GPU, descriptors2);
|
||||
BruteForceMatcher_GPU< L2<float> >::matchDownload(trainIdx, distance, matches);
|
||||
|
||||
// drawing the results
|
||||
|
Loading…
x
Reference in New Issue
Block a user