refactored opencv_stitching
This commit is contained in:
parent
29b917a500
commit
58b7c344aa
@ -18,13 +18,7 @@ include_directories(
|
|||||||
|
|
||||||
set(stitching_libs opencv_core opencv_imgproc opencv_highgui opencv_features2d opencv_calib3d opencv_gpu)
|
set(stitching_libs opencv_core opencv_imgproc opencv_highgui opencv_features2d opencv_calib3d opencv_gpu)
|
||||||
|
|
||||||
set(stitching_files blenders.hpp blenders.cpp
|
FILE(GLOB stitching_files "*.hpp" "*.cpp")
|
||||||
focal_estimators.hpp focal_estimators.cpp
|
|
||||||
motion_estimators.hpp motion_estimators.cpp
|
|
||||||
seam_finders.hpp seam_finders.cpp
|
|
||||||
util.hpp util.cpp util_inl.hpp
|
|
||||||
warpers.hpp warpers.cpp warpers_inl.hpp
|
|
||||||
main.cpp)
|
|
||||||
|
|
||||||
set(the_target opencv_stitching)
|
set(the_target opencv_stitching)
|
||||||
add_executable(${the_target} ${stitching_files})
|
add_executable(${the_target} ${stitching_files})
|
||||||
|
358
modules/stitching/matchers.cpp
Normal file
358
modules/stitching/matchers.cpp
Normal file
@ -0,0 +1,358 @@
|
|||||||
|
#include <algorithm>
|
||||||
|
#include <functional>
|
||||||
|
#include <opencv2/calib3d/calib3d.hpp>
|
||||||
|
#include <opencv2/gpu/gpu.hpp>
|
||||||
|
#include "matchers.hpp"
|
||||||
|
#include "util.hpp"
|
||||||
|
|
||||||
|
using namespace std;
|
||||||
|
using namespace cv;
|
||||||
|
using namespace cv::gpu;
|
||||||
|
|
||||||
|
//////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
namespace
|
||||||
|
{
|
||||||
|
class CpuSurfFeaturesFinder : public FeaturesFinder
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
inline CpuSurfFeaturesFinder(double hess_thresh, int num_octaves, int num_layers,
|
||||||
|
int num_octaves_descr, int num_layers_descr)
|
||||||
|
{
|
||||||
|
detector_ = new SurfFeatureDetector(hess_thresh, num_octaves, num_layers);
|
||||||
|
extractor_ = new SurfDescriptorExtractor(num_octaves_descr, num_layers_descr);
|
||||||
|
}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void find(const vector<Mat> &images, vector<ImageFeatures> &features);
|
||||||
|
|
||||||
|
private:
|
||||||
|
Ptr<FeatureDetector> detector_;
|
||||||
|
Ptr<DescriptorExtractor> extractor_;
|
||||||
|
};
|
||||||
|
|
||||||
|
void CpuSurfFeaturesFinder::find(const vector<Mat> &images, vector<ImageFeatures> &features)
|
||||||
|
{
|
||||||
|
// Make images gray
|
||||||
|
vector<Mat> gray_images(images.size());
|
||||||
|
for (size_t i = 0; i < images.size(); ++i)
|
||||||
|
{
|
||||||
|
CV_Assert(images[i].depth() == CV_8U);
|
||||||
|
cvtColor(images[i], gray_images[i], CV_BGR2GRAY);
|
||||||
|
}
|
||||||
|
|
||||||
|
features.resize(images.size());
|
||||||
|
|
||||||
|
// Find keypoints in all images
|
||||||
|
for (size_t i = 0; i < images.size(); ++i)
|
||||||
|
{
|
||||||
|
detector_->detect(gray_images[i], features[i].keypoints);
|
||||||
|
extractor_->compute(gray_images[i], features[i].keypoints, features[i].descriptors);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
class GpuSurfFeaturesFinder : public FeaturesFinder
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
inline GpuSurfFeaturesFinder(double hess_thresh, int num_octaves, int num_layers,
|
||||||
|
int num_octaves_descr, int num_layers_descr)
|
||||||
|
{
|
||||||
|
surf_.hessianThreshold = hess_thresh;
|
||||||
|
surf_.extended = false;
|
||||||
|
num_octaves_ = num_octaves;
|
||||||
|
num_layers_ = num_layers;
|
||||||
|
num_octaves_descr_ = num_octaves_descr;
|
||||||
|
num_layers_descr_ = num_layers_descr;
|
||||||
|
}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void find(const vector<Mat> &images, vector<ImageFeatures> &features);
|
||||||
|
|
||||||
|
private:
|
||||||
|
SURF_GPU surf_;
|
||||||
|
int num_octaves_, num_layers_;
|
||||||
|
int num_octaves_descr_, num_layers_descr_;
|
||||||
|
};
|
||||||
|
|
||||||
|
void GpuSurfFeaturesFinder::find(const vector<Mat> &images, vector<ImageFeatures> &features)
|
||||||
|
{
|
||||||
|
// Make images gray
|
||||||
|
vector<GpuMat> gray_images(images.size());
|
||||||
|
for (size_t i = 0; i < images.size(); ++i)
|
||||||
|
{
|
||||||
|
CV_Assert(images[i].depth() == CV_8U);
|
||||||
|
cvtColor(GpuMat(images[i]), gray_images[i], CV_BGR2GRAY);
|
||||||
|
}
|
||||||
|
|
||||||
|
features.resize(images.size());
|
||||||
|
|
||||||
|
// Find keypoints in all images
|
||||||
|
GpuMat d_keypoints;
|
||||||
|
GpuMat d_descriptors;
|
||||||
|
for (size_t i = 0; i < images.size(); ++i)
|
||||||
|
{
|
||||||
|
surf_.nOctaves = num_octaves_;
|
||||||
|
surf_.nOctaveLayers = num_layers_;
|
||||||
|
surf_(gray_images[i], GpuMat(), d_keypoints);
|
||||||
|
|
||||||
|
surf_.nOctaves = num_octaves_descr_;
|
||||||
|
surf_.nOctaveLayers = num_layers_descr_;
|
||||||
|
surf_(gray_images[i], GpuMat(), d_keypoints, d_descriptors, true);
|
||||||
|
|
||||||
|
surf_.downloadKeypoints(d_keypoints, features[i].keypoints);
|
||||||
|
d_descriptors.download(features[i].descriptors);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
SurfFeaturesFinder::SurfFeaturesFinder(bool gpu_hint, double hess_thresh, int num_octaves, int num_layers,
|
||||||
|
int num_octaves_descr, int num_layers_descr)
|
||||||
|
{
|
||||||
|
if (gpu_hint && getCudaEnabledDeviceCount() > 0)
|
||||||
|
impl_ = new GpuSurfFeaturesFinder(hess_thresh, num_octaves, num_layers, num_octaves_descr, num_layers_descr);
|
||||||
|
else
|
||||||
|
impl_ = new CpuSurfFeaturesFinder(hess_thresh, num_octaves, num_layers, num_octaves_descr, num_layers_descr);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void SurfFeaturesFinder::find(const vector<Mat> &images, vector<ImageFeatures> &features)
|
||||||
|
{
|
||||||
|
(*impl_)(images, features);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
//////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
MatchesInfo::MatchesInfo() : src_img_idx(-1), dst_img_idx(-1), num_inliers(0) {}
|
||||||
|
|
||||||
|
|
||||||
|
MatchesInfo::MatchesInfo(const MatchesInfo &other)
|
||||||
|
{
|
||||||
|
*this = other;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
const MatchesInfo& MatchesInfo::operator =(const MatchesInfo &other)
|
||||||
|
{
|
||||||
|
src_img_idx = other.src_img_idx;
|
||||||
|
dst_img_idx = other.dst_img_idx;
|
||||||
|
matches = other.matches;
|
||||||
|
num_inliers = other.num_inliers;
|
||||||
|
H = other.H.clone();
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
//////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
void FeaturesMatcher::operator ()(const vector<Mat> &images, const vector<ImageFeatures> &features,
|
||||||
|
vector<MatchesInfo> &pairwise_matches)
|
||||||
|
{
|
||||||
|
pairwise_matches.resize(images.size() * images.size());
|
||||||
|
for (size_t i = 0; i < images.size(); ++i)
|
||||||
|
{
|
||||||
|
LOGLN("Processing image " << i << "... ");
|
||||||
|
for (size_t j = 0; j < images.size(); ++j)
|
||||||
|
{
|
||||||
|
if (i == j)
|
||||||
|
continue;
|
||||||
|
size_t pair_idx = i * images.size() + j;
|
||||||
|
(*this)(images[i], features[i], images[j], features[j], pairwise_matches[pair_idx]);
|
||||||
|
pairwise_matches[pair_idx].src_img_idx = i;
|
||||||
|
pairwise_matches[pair_idx].dst_img_idx = j;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
//////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
namespace
|
||||||
|
{
|
||||||
|
class CpuMatcher : public FeaturesMatcher
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
inline CpuMatcher(float match_conf) : match_conf_(match_conf) {}
|
||||||
|
|
||||||
|
void match(const cv::Mat&, const ImageFeatures &features1, const cv::Mat&, const ImageFeatures &features2, MatchesInfo& matches_info);
|
||||||
|
|
||||||
|
private:
|
||||||
|
float match_conf_;
|
||||||
|
};
|
||||||
|
|
||||||
|
void CpuMatcher::match(const cv::Mat&, const ImageFeatures &features1, const cv::Mat&, const ImageFeatures &features2, MatchesInfo& matches_info)
|
||||||
|
{
|
||||||
|
matches_info.matches.clear();
|
||||||
|
|
||||||
|
BruteForceMatcher< L2<float> > matcher;
|
||||||
|
vector< vector<DMatch> > pair_matches;
|
||||||
|
|
||||||
|
// Find 1->2 matches
|
||||||
|
matcher.knnMatch(features1.descriptors, features2.descriptors, pair_matches, 2);
|
||||||
|
for (size_t i = 0; i < pair_matches.size(); ++i)
|
||||||
|
{
|
||||||
|
if (pair_matches[i].size() < 2)
|
||||||
|
continue;
|
||||||
|
const DMatch& m0 = pair_matches[i][0];
|
||||||
|
const DMatch& m1 = pair_matches[i][1];
|
||||||
|
if (m0.distance < (1.f - match_conf_) * m1.distance)
|
||||||
|
matches_info.matches.push_back(m0);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Find 2->1 matches
|
||||||
|
pair_matches.clear();
|
||||||
|
matcher.knnMatch(features2.descriptors, features1.descriptors, pair_matches, 2);
|
||||||
|
for (size_t i = 0; i < pair_matches.size(); ++i)
|
||||||
|
{
|
||||||
|
if (pair_matches[i].size() < 2)
|
||||||
|
continue;
|
||||||
|
const DMatch& m0 = pair_matches[i][0];
|
||||||
|
const DMatch& m1 = pair_matches[i][1];
|
||||||
|
if (m0.distance < (1.f - match_conf_) * m1.distance)
|
||||||
|
matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
class GpuMatcher : public FeaturesMatcher
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
inline GpuMatcher(float match_conf) : match_conf_(match_conf) {}
|
||||||
|
|
||||||
|
void match(const cv::Mat&, const ImageFeatures &features1, const cv::Mat&, const ImageFeatures &features2, MatchesInfo& matches_info);
|
||||||
|
|
||||||
|
private:
|
||||||
|
float match_conf_;
|
||||||
|
|
||||||
|
GpuMat descriptors1_;
|
||||||
|
GpuMat descriptors2_;
|
||||||
|
|
||||||
|
GpuMat trainIdx_, distance_, allDist_;
|
||||||
|
};
|
||||||
|
|
||||||
|
void GpuMatcher::match(const cv::Mat&, const ImageFeatures &features1, const cv::Mat&, const ImageFeatures &features2, MatchesInfo& matches_info)
|
||||||
|
{
|
||||||
|
matches_info.matches.clear();
|
||||||
|
|
||||||
|
BruteForceMatcher_GPU< L2<float> > matcher;
|
||||||
|
|
||||||
|
descriptors1_.upload(features1.descriptors);
|
||||||
|
descriptors2_.upload(features2.descriptors);
|
||||||
|
|
||||||
|
vector< vector<DMatch> > pair_matches;
|
||||||
|
|
||||||
|
// Find 1->2 matches
|
||||||
|
matcher.knnMatch(descriptors1_, descriptors2_, trainIdx_, distance_, allDist_, 2);
|
||||||
|
matcher.knnMatchDownload(trainIdx_, distance_, pair_matches);
|
||||||
|
for (size_t i = 0; i < pair_matches.size(); ++i)
|
||||||
|
{
|
||||||
|
if (pair_matches[i].size() < 2)
|
||||||
|
continue;
|
||||||
|
const DMatch& m0 = pair_matches[i][0];
|
||||||
|
const DMatch& m1 = pair_matches[i][1];
|
||||||
|
|
||||||
|
CV_Assert(m0.queryIdx < static_cast<int>(features1.keypoints.size()));
|
||||||
|
CV_Assert(m0.trainIdx < static_cast<int>(features2.keypoints.size()));
|
||||||
|
|
||||||
|
if (m0.distance < (1.f - match_conf_) * m1.distance)
|
||||||
|
matches_info.matches.push_back(m0);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Find 2->1 matches
|
||||||
|
pair_matches.clear();
|
||||||
|
matcher.knnMatch(descriptors2_, descriptors1_, trainIdx_, distance_, allDist_, 2);
|
||||||
|
matcher.knnMatchDownload(trainIdx_, distance_, pair_matches);
|
||||||
|
for (size_t i = 0; i < pair_matches.size(); ++i)
|
||||||
|
{
|
||||||
|
if (pair_matches[i].size() < 2)
|
||||||
|
continue;
|
||||||
|
const DMatch& m0 = pair_matches[i][0];
|
||||||
|
const DMatch& m1 = pair_matches[i][1];
|
||||||
|
|
||||||
|
CV_Assert(m0.trainIdx < static_cast<int>(features1.keypoints.size()));
|
||||||
|
CV_Assert(m0.queryIdx < static_cast<int>(features2.keypoints.size()));
|
||||||
|
|
||||||
|
if (m0.distance < (1.f - match_conf_) * m1.distance)
|
||||||
|
matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
BestOf2NearestMatcher::BestOf2NearestMatcher(bool gpu_hint, float match_conf, int num_matches_thresh1, int num_matches_thresh2)
|
||||||
|
{
|
||||||
|
if (gpu_hint && getCudaEnabledDeviceCount() > 0)
|
||||||
|
impl_ = new GpuMatcher(match_conf);
|
||||||
|
else
|
||||||
|
impl_ = new CpuMatcher(match_conf);
|
||||||
|
|
||||||
|
num_matches_thresh1_ = num_matches_thresh1;
|
||||||
|
num_matches_thresh2_ = num_matches_thresh2;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void BestOf2NearestMatcher::match(const Mat &img1, const ImageFeatures &features1, const Mat &img2, const ImageFeatures &features2,
|
||||||
|
MatchesInfo &matches_info)
|
||||||
|
{
|
||||||
|
(*impl_)(img1, features1, img2, features2, matches_info);
|
||||||
|
|
||||||
|
// Check if it makes sense to find homography
|
||||||
|
if (matches_info.matches.size() < static_cast<size_t>(num_matches_thresh1_))
|
||||||
|
return;
|
||||||
|
|
||||||
|
// Construct point-point correspondences for homography estimation
|
||||||
|
Mat src_points(1, matches_info.matches.size(), CV_32FC2);
|
||||||
|
Mat dst_points(1, matches_info.matches.size(), CV_32FC2);
|
||||||
|
for (size_t i = 0; i < matches_info.matches.size(); ++i)
|
||||||
|
{
|
||||||
|
const DMatch& m = matches_info.matches[i];
|
||||||
|
|
||||||
|
Point2f p = features1.keypoints[m.queryIdx].pt;
|
||||||
|
p.x -= img1.cols * 0.5f;
|
||||||
|
p.y -= img1.rows * 0.5f;
|
||||||
|
src_points.at<Point2f>(0, i) = p;
|
||||||
|
|
||||||
|
p = features2.keypoints[m.trainIdx].pt;
|
||||||
|
p.x -= img2.cols * 0.5f;
|
||||||
|
p.y -= img2.rows * 0.5f;
|
||||||
|
dst_points.at<Point2f>(0, i) = p;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Find pair-wise motion
|
||||||
|
matches_info.H = findHomography(src_points, dst_points, matches_info.inliers_mask, CV_RANSAC);
|
||||||
|
|
||||||
|
// Find number of inliers
|
||||||
|
matches_info.num_inliers = 0;
|
||||||
|
for (size_t i = 0; i < matches_info.inliers_mask.size(); ++i)
|
||||||
|
if (matches_info.inliers_mask[i])
|
||||||
|
matches_info.num_inliers++;
|
||||||
|
|
||||||
|
// Check if we should try to refine motion
|
||||||
|
if (matches_info.num_inliers < num_matches_thresh2_)
|
||||||
|
return;
|
||||||
|
|
||||||
|
// Construct point-point correspondences for inliers only
|
||||||
|
src_points.create(1, matches_info.num_inliers, CV_32FC2);
|
||||||
|
dst_points.create(1, matches_info.num_inliers, CV_32FC2);
|
||||||
|
int inlier_idx = 0;
|
||||||
|
for (size_t i = 0; i < matches_info.matches.size(); ++i)
|
||||||
|
{
|
||||||
|
if (!matches_info.inliers_mask[i])
|
||||||
|
continue;
|
||||||
|
|
||||||
|
const DMatch& m = matches_info.matches[i];
|
||||||
|
|
||||||
|
Point2f p = features1.keypoints[m.queryIdx].pt;
|
||||||
|
p.x -= img1.cols * 0.5f;
|
||||||
|
p.y -= img2.rows * 0.5f;
|
||||||
|
src_points.at<Point2f>(0, inlier_idx) = p;
|
||||||
|
|
||||||
|
p = features2.keypoints[m.trainIdx].pt;
|
||||||
|
p.x -= img2.cols * 0.5f;
|
||||||
|
p.y -= img2.rows * 0.5f;
|
||||||
|
dst_points.at<Point2f>(0, inlier_idx) = p;
|
||||||
|
|
||||||
|
inlier_idx++;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Rerun motion estimation on inliers only
|
||||||
|
matches_info.H = findHomography(src_points, dst_points, CV_RANSAC);
|
||||||
|
}
|
84
modules/stitching/matchers.hpp
Normal file
84
modules/stitching/matchers.hpp
Normal file
@ -0,0 +1,84 @@
|
|||||||
|
#ifndef __OPENCV_MATCHERS_HPP__
|
||||||
|
#define __OPENCV_MATCHERS_HPP__
|
||||||
|
|
||||||
|
#include <vector>
|
||||||
|
#include <opencv2/core/core.hpp>
|
||||||
|
#include <opencv2/features2d/features2d.hpp>
|
||||||
|
|
||||||
|
struct ImageFeatures
|
||||||
|
{
|
||||||
|
std::vector<cv::KeyPoint> keypoints;
|
||||||
|
cv::Mat descriptors;
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
class FeaturesFinder
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
virtual ~FeaturesFinder() {}
|
||||||
|
void operator ()(const std::vector<cv::Mat> &images, std::vector<ImageFeatures> &features) { find(images, features); }
|
||||||
|
|
||||||
|
protected:
|
||||||
|
virtual void find(const std::vector<cv::Mat> &images, std::vector<ImageFeatures> &features) = 0;
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
class SurfFeaturesFinder : public FeaturesFinder
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
explicit SurfFeaturesFinder(bool gpu_hint = true, double hess_thresh = 500.0,
|
||||||
|
int num_octaves = 3, int num_layers = 4,
|
||||||
|
int num_octaves_descr = 4, int num_layers_descr = 2);
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void find(const std::vector<cv::Mat> &images, std::vector<ImageFeatures> &features);
|
||||||
|
|
||||||
|
cv::Ptr<FeaturesFinder> impl_;
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
struct MatchesInfo
|
||||||
|
{
|
||||||
|
MatchesInfo();
|
||||||
|
MatchesInfo(const MatchesInfo &other);
|
||||||
|
const MatchesInfo& operator =(const MatchesInfo &other);
|
||||||
|
|
||||||
|
int src_img_idx, dst_img_idx; // Optional images indices
|
||||||
|
std::vector<cv::DMatch> matches;
|
||||||
|
std::vector<uchar> inliers_mask;
|
||||||
|
int num_inliers; // Number of geometrically consistent matches
|
||||||
|
cv::Mat H; // Homography
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
class FeaturesMatcher
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
virtual ~FeaturesMatcher() {}
|
||||||
|
void operator ()(const cv::Mat &img1, const ImageFeatures &features1, const cv::Mat &img2, const ImageFeatures &features2,
|
||||||
|
MatchesInfo& matches_info) { match(img1, features1, img2, features2, matches_info); }
|
||||||
|
void operator ()(const std::vector<cv::Mat> &images, const std::vector<ImageFeatures> &features,
|
||||||
|
std::vector<MatchesInfo> &pairwise_matches);
|
||||||
|
|
||||||
|
protected:
|
||||||
|
virtual void match(const cv::Mat &img1, const ImageFeatures &features1, const cv::Mat &img2, const ImageFeatures &features2,
|
||||||
|
MatchesInfo& matches_info) = 0;
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
class BestOf2NearestMatcher : public FeaturesMatcher
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
explicit BestOf2NearestMatcher(bool gpu_hint = true, float match_conf = 0.55f, int num_matches_thresh1 = 5, int num_matches_thresh2 = 5);
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void match(const cv::Mat &img1, const ImageFeatures &features1, const cv::Mat &img2, const ImageFeatures &features2,
|
||||||
|
MatchesInfo &matches_info);
|
||||||
|
|
||||||
|
int num_matches_thresh1_;
|
||||||
|
int num_matches_thresh2_;
|
||||||
|
|
||||||
|
cv::Ptr<FeaturesMatcher> impl_;
|
||||||
|
};
|
||||||
|
|
||||||
|
#endif // __OPENCV_MATCHERS_HPP__
|
@ -1,353 +1,12 @@
|
|||||||
#include <algorithm>
|
#include <algorithm>
|
||||||
#include <functional>
|
#include "opencv2/core/core_c.h"
|
||||||
#include <opencv2/calib3d/calib3d.hpp>
|
#include <opencv2/calib3d/calib3d.hpp>
|
||||||
#include <opencv2/gpu/gpu.hpp>
|
|
||||||
#include "focal_estimators.hpp"
|
#include "focal_estimators.hpp"
|
||||||
#include "motion_estimators.hpp"
|
#include "motion_estimators.hpp"
|
||||||
#include "util.hpp"
|
#include "util.hpp"
|
||||||
|
|
||||||
using namespace std;
|
using namespace std;
|
||||||
using namespace cv;
|
using namespace cv;
|
||||||
using namespace cv::gpu;
|
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////////////////////////
|
|
||||||
|
|
||||||
namespace
|
|
||||||
{
|
|
||||||
class CpuSurfFeaturesFinder : public FeaturesFinder
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
inline CpuSurfFeaturesFinder()
|
|
||||||
{
|
|
||||||
detector_ = new SurfFeatureDetector(500);
|
|
||||||
extractor_ = new SurfDescriptorExtractor();
|
|
||||||
}
|
|
||||||
|
|
||||||
protected:
|
|
||||||
void find(const vector<Mat> &images, vector<ImageFeatures> &features);
|
|
||||||
|
|
||||||
private:
|
|
||||||
Ptr<FeatureDetector> detector_;
|
|
||||||
Ptr<DescriptorExtractor> extractor_;
|
|
||||||
};
|
|
||||||
|
|
||||||
void CpuSurfFeaturesFinder::find(const vector<Mat> &images, vector<ImageFeatures> &features)
|
|
||||||
{
|
|
||||||
// Make images gray
|
|
||||||
vector<Mat> gray_images(images.size());
|
|
||||||
for (size_t i = 0; i < images.size(); ++i)
|
|
||||||
{
|
|
||||||
CV_Assert(images[i].depth() == CV_8U);
|
|
||||||
cvtColor(images[i], gray_images[i], CV_BGR2GRAY);
|
|
||||||
}
|
|
||||||
|
|
||||||
features.resize(images.size());
|
|
||||||
|
|
||||||
// Find keypoints in all images
|
|
||||||
for (size_t i = 0; i < images.size(); ++i)
|
|
||||||
{
|
|
||||||
detector_->detect(gray_images[i], features[i].keypoints);
|
|
||||||
extractor_->compute(gray_images[i], features[i].keypoints, features[i].descriptors);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
class GpuSurfFeaturesFinder : public FeaturesFinder
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
inline GpuSurfFeaturesFinder()
|
|
||||||
{
|
|
||||||
surf.hessianThreshold = 500.0;
|
|
||||||
surf.extended = false;
|
|
||||||
}
|
|
||||||
|
|
||||||
protected:
|
|
||||||
void find(const vector<Mat> &images, vector<ImageFeatures> &features);
|
|
||||||
|
|
||||||
private:
|
|
||||||
SURF_GPU surf;
|
|
||||||
};
|
|
||||||
|
|
||||||
void GpuSurfFeaturesFinder::find(const vector<Mat> &images, vector<ImageFeatures> &features)
|
|
||||||
{
|
|
||||||
// Make images gray
|
|
||||||
vector<GpuMat> gray_images(images.size());
|
|
||||||
for (size_t i = 0; i < images.size(); ++i)
|
|
||||||
{
|
|
||||||
CV_Assert(images[i].depth() == CV_8U);
|
|
||||||
cvtColor(GpuMat(images[i]), gray_images[i], CV_BGR2GRAY);
|
|
||||||
}
|
|
||||||
|
|
||||||
features.resize(images.size());
|
|
||||||
|
|
||||||
// Find keypoints in all images
|
|
||||||
GpuMat d_keypoints;
|
|
||||||
GpuMat d_descriptors;
|
|
||||||
for (size_t i = 0; i < images.size(); ++i)
|
|
||||||
{
|
|
||||||
surf.nOctaves = 3;
|
|
||||||
surf.nOctaveLayers = 4;
|
|
||||||
surf(gray_images[i], GpuMat(), d_keypoints);
|
|
||||||
|
|
||||||
surf.nOctaves = 4;
|
|
||||||
surf.nOctaveLayers = 2;
|
|
||||||
surf(gray_images[i], GpuMat(), d_keypoints, d_descriptors, true);
|
|
||||||
|
|
||||||
surf.downloadKeypoints(d_keypoints, features[i].keypoints);
|
|
||||||
d_descriptors.download(features[i].descriptors);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
SurfFeaturesFinder::SurfFeaturesFinder(bool gpu_hint)
|
|
||||||
{
|
|
||||||
if (gpu_hint && getCudaEnabledDeviceCount() > 0)
|
|
||||||
impl_ = new GpuSurfFeaturesFinder;
|
|
||||||
else
|
|
||||||
impl_ = new CpuSurfFeaturesFinder;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
void SurfFeaturesFinder::find(const vector<Mat> &images, vector<ImageFeatures> &features)
|
|
||||||
{
|
|
||||||
(*impl_)(images, features);
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////////////////////////
|
|
||||||
|
|
||||||
MatchesInfo::MatchesInfo() : src_img_idx(-1), dst_img_idx(-1), num_inliers(0) {}
|
|
||||||
|
|
||||||
|
|
||||||
MatchesInfo::MatchesInfo(const MatchesInfo &other)
|
|
||||||
{
|
|
||||||
*this = other;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
const MatchesInfo& MatchesInfo::operator =(const MatchesInfo &other)
|
|
||||||
{
|
|
||||||
src_img_idx = other.src_img_idx;
|
|
||||||
dst_img_idx = other.dst_img_idx;
|
|
||||||
matches = other.matches;
|
|
||||||
num_inliers = other.num_inliers;
|
|
||||||
H = other.H.clone();
|
|
||||||
return *this;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////////////////////////
|
|
||||||
|
|
||||||
void FeaturesMatcher::operator ()(const vector<Mat> &images, const vector<ImageFeatures> &features,
|
|
||||||
vector<MatchesInfo> &pairwise_matches)
|
|
||||||
{
|
|
||||||
pairwise_matches.resize(images.size() * images.size());
|
|
||||||
for (size_t i = 0; i < images.size(); ++i)
|
|
||||||
{
|
|
||||||
LOGLN("Processing image " << i << "... ");
|
|
||||||
for (size_t j = 0; j < images.size(); ++j)
|
|
||||||
{
|
|
||||||
if (i == j)
|
|
||||||
continue;
|
|
||||||
size_t pair_idx = i * images.size() + j;
|
|
||||||
(*this)(images[i], features[i], images[j], features[j], pairwise_matches[pair_idx]);
|
|
||||||
pairwise_matches[pair_idx].src_img_idx = i;
|
|
||||||
pairwise_matches[pair_idx].dst_img_idx = j;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////////////////////////
|
|
||||||
|
|
||||||
namespace
|
|
||||||
{
|
|
||||||
class CpuMatcher : public FeaturesMatcher
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
inline CpuMatcher(float match_conf) : match_conf_(match_conf) {}
|
|
||||||
|
|
||||||
void match(const cv::Mat&, const ImageFeatures &features1, const cv::Mat&, const ImageFeatures &features2, MatchesInfo& matches_info);
|
|
||||||
|
|
||||||
private:
|
|
||||||
float match_conf_;
|
|
||||||
};
|
|
||||||
|
|
||||||
void CpuMatcher::match(const cv::Mat&, const ImageFeatures &features1, const cv::Mat&, const ImageFeatures &features2, MatchesInfo& matches_info)
|
|
||||||
{
|
|
||||||
matches_info.matches.clear();
|
|
||||||
|
|
||||||
BruteForceMatcher< L2<float> > matcher;
|
|
||||||
vector< vector<DMatch> > pair_matches;
|
|
||||||
|
|
||||||
// Find 1->2 matches
|
|
||||||
matcher.knnMatch(features1.descriptors, features2.descriptors, pair_matches, 2);
|
|
||||||
for (size_t i = 0; i < pair_matches.size(); ++i)
|
|
||||||
{
|
|
||||||
if (pair_matches[i].size() < 2)
|
|
||||||
continue;
|
|
||||||
const DMatch& m0 = pair_matches[i][0];
|
|
||||||
const DMatch& m1 = pair_matches[i][1];
|
|
||||||
if (m0.distance < (1.f - match_conf_) * m1.distance)
|
|
||||||
matches_info.matches.push_back(m0);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Find 2->1 matches
|
|
||||||
pair_matches.clear();
|
|
||||||
matcher.knnMatch(features2.descriptors, features1.descriptors, pair_matches, 2);
|
|
||||||
for (size_t i = 0; i < pair_matches.size(); ++i)
|
|
||||||
{
|
|
||||||
if (pair_matches[i].size() < 2)
|
|
||||||
continue;
|
|
||||||
const DMatch& m0 = pair_matches[i][0];
|
|
||||||
const DMatch& m1 = pair_matches[i][1];
|
|
||||||
if (m0.distance < (1.f - match_conf_) * m1.distance)
|
|
||||||
matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
class GpuMatcher : public FeaturesMatcher
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
inline GpuMatcher(float match_conf) : match_conf_(match_conf) {}
|
|
||||||
|
|
||||||
void match(const cv::Mat&, const ImageFeatures &features1, const cv::Mat&, const ImageFeatures &features2, MatchesInfo& matches_info);
|
|
||||||
|
|
||||||
private:
|
|
||||||
float match_conf_;
|
|
||||||
|
|
||||||
GpuMat descriptors1_;
|
|
||||||
GpuMat descriptors2_;
|
|
||||||
|
|
||||||
GpuMat trainIdx_, distance_, allDist_;
|
|
||||||
};
|
|
||||||
|
|
||||||
void GpuMatcher::match(const cv::Mat&, const ImageFeatures &features1, const cv::Mat&, const ImageFeatures &features2, MatchesInfo& matches_info)
|
|
||||||
{
|
|
||||||
matches_info.matches.clear();
|
|
||||||
|
|
||||||
BruteForceMatcher_GPU< L2<float> > matcher;
|
|
||||||
|
|
||||||
descriptors1_.upload(features1.descriptors);
|
|
||||||
descriptors2_.upload(features2.descriptors);
|
|
||||||
|
|
||||||
vector< vector<DMatch> > pair_matches;
|
|
||||||
|
|
||||||
// Find 1->2 matches
|
|
||||||
matcher.knnMatch(descriptors1_, descriptors2_, trainIdx_, distance_, allDist_, 2);
|
|
||||||
matcher.knnMatchDownload(trainIdx_, distance_, pair_matches);
|
|
||||||
for (size_t i = 0; i < pair_matches.size(); ++i)
|
|
||||||
{
|
|
||||||
if (pair_matches[i].size() < 2)
|
|
||||||
continue;
|
|
||||||
const DMatch& m0 = pair_matches[i][0];
|
|
||||||
const DMatch& m1 = pair_matches[i][1];
|
|
||||||
|
|
||||||
CV_Assert(m0.queryIdx < static_cast<int>(features1.keypoints.size()));
|
|
||||||
CV_Assert(m0.trainIdx < static_cast<int>(features2.keypoints.size()));
|
|
||||||
|
|
||||||
if (m0.distance < (1.f - match_conf_) * m1.distance)
|
|
||||||
matches_info.matches.push_back(m0);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Find 2->1 matches
|
|
||||||
pair_matches.clear();
|
|
||||||
matcher.knnMatch(descriptors2_, descriptors1_, trainIdx_, distance_, allDist_, 2);
|
|
||||||
matcher.knnMatchDownload(trainIdx_, distance_, pair_matches);
|
|
||||||
for (size_t i = 0; i < pair_matches.size(); ++i)
|
|
||||||
{
|
|
||||||
if (pair_matches[i].size() < 2)
|
|
||||||
continue;
|
|
||||||
const DMatch& m0 = pair_matches[i][0];
|
|
||||||
const DMatch& m1 = pair_matches[i][1];
|
|
||||||
|
|
||||||
CV_Assert(m0.trainIdx < static_cast<int>(features1.keypoints.size()));
|
|
||||||
CV_Assert(m0.queryIdx < static_cast<int>(features2.keypoints.size()));
|
|
||||||
|
|
||||||
if (m0.distance < (1.f - match_conf_) * m1.distance)
|
|
||||||
matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
BestOf2NearestMatcher::BestOf2NearestMatcher(bool gpu_hint, float match_conf, int num_matches_thresh1, int num_matches_thresh2)
|
|
||||||
{
|
|
||||||
if (gpu_hint && getCudaEnabledDeviceCount() > 0)
|
|
||||||
impl_ = new GpuMatcher(match_conf);
|
|
||||||
else
|
|
||||||
impl_ = new CpuMatcher(match_conf);
|
|
||||||
|
|
||||||
num_matches_thresh1_ = num_matches_thresh1;
|
|
||||||
num_matches_thresh2_ = num_matches_thresh2;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
void BestOf2NearestMatcher::match(const Mat &img1, const ImageFeatures &features1, const Mat &img2, const ImageFeatures &features2,
|
|
||||||
MatchesInfo &matches_info)
|
|
||||||
{
|
|
||||||
(*impl_)(img1, features1, img2, features2, matches_info);
|
|
||||||
|
|
||||||
// Check if it makes sense to find homography
|
|
||||||
if (matches_info.matches.size() < static_cast<size_t>(num_matches_thresh1_))
|
|
||||||
return;
|
|
||||||
|
|
||||||
// Construct point-point correspondences for homography estimation
|
|
||||||
Mat src_points(1, matches_info.matches.size(), CV_32FC2);
|
|
||||||
Mat dst_points(1, matches_info.matches.size(), CV_32FC2);
|
|
||||||
for (size_t i = 0; i < matches_info.matches.size(); ++i)
|
|
||||||
{
|
|
||||||
const DMatch& m = matches_info.matches[i];
|
|
||||||
|
|
||||||
Point2f p = features1.keypoints[m.queryIdx].pt;
|
|
||||||
p.x -= img1.cols * 0.5f;
|
|
||||||
p.y -= img1.rows * 0.5f;
|
|
||||||
src_points.at<Point2f>(0, i) = p;
|
|
||||||
|
|
||||||
p = features2.keypoints[m.trainIdx].pt;
|
|
||||||
p.x -= img2.cols * 0.5f;
|
|
||||||
p.y -= img2.rows * 0.5f;
|
|
||||||
dst_points.at<Point2f>(0, i) = p;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Find pair-wise motion
|
|
||||||
matches_info.H = findHomography(src_points, dst_points, matches_info.inliers_mask, CV_RANSAC);
|
|
||||||
|
|
||||||
// Find number of inliers
|
|
||||||
matches_info.num_inliers = 0;
|
|
||||||
for (size_t i = 0; i < matches_info.inliers_mask.size(); ++i)
|
|
||||||
if (matches_info.inliers_mask[i])
|
|
||||||
matches_info.num_inliers++;
|
|
||||||
|
|
||||||
// Check if we should try to refine motion
|
|
||||||
if (matches_info.num_inliers < num_matches_thresh2_)
|
|
||||||
return;
|
|
||||||
|
|
||||||
// Construct point-point correspondences for inliers only
|
|
||||||
src_points.create(1, matches_info.num_inliers, CV_32FC2);
|
|
||||||
dst_points.create(1, matches_info.num_inliers, CV_32FC2);
|
|
||||||
int inlier_idx = 0;
|
|
||||||
for (size_t i = 0; i < matches_info.matches.size(); ++i)
|
|
||||||
{
|
|
||||||
if (!matches_info.inliers_mask[i])
|
|
||||||
continue;
|
|
||||||
|
|
||||||
const DMatch& m = matches_info.matches[i];
|
|
||||||
|
|
||||||
Point2f p = features1.keypoints[m.queryIdx].pt;
|
|
||||||
p.x -= img1.cols * 0.5f;
|
|
||||||
p.y -= img2.rows * 0.5f;
|
|
||||||
src_points.at<Point2f>(0, inlier_idx) = p;
|
|
||||||
|
|
||||||
p = features2.keypoints[m.trainIdx].pt;
|
|
||||||
p.x -= img2.cols * 0.5f;
|
|
||||||
p.y -= img2.rows * 0.5f;
|
|
||||||
dst_points.at<Point2f>(0, inlier_idx) = p;
|
|
||||||
|
|
||||||
inlier_idx++;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Rerun motion estimation on inliers only
|
|
||||||
matches_info.H = findHomography(src_points, dst_points, CV_RANSAC);
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////
|
||||||
|
@ -3,84 +3,9 @@
|
|||||||
|
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include <opencv2/core/core.hpp>
|
#include <opencv2/core/core.hpp>
|
||||||
#include <opencv2/features2d/features2d.hpp>
|
#include "matchers.hpp"
|
||||||
#include "util.hpp"
|
#include "util.hpp"
|
||||||
|
|
||||||
struct ImageFeatures
|
|
||||||
{
|
|
||||||
std::vector<cv::KeyPoint> keypoints;
|
|
||||||
cv::Mat descriptors;
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
class FeaturesFinder
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
virtual ~FeaturesFinder() {}
|
|
||||||
void operator ()(const std::vector<cv::Mat> &images, std::vector<ImageFeatures> &features) { find(images, features); }
|
|
||||||
|
|
||||||
protected:
|
|
||||||
virtual void find(const std::vector<cv::Mat> &images, std::vector<ImageFeatures> &features) = 0;
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
class SurfFeaturesFinder : public FeaturesFinder
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
explicit SurfFeaturesFinder(bool gpu_hint = true);
|
|
||||||
|
|
||||||
protected:
|
|
||||||
void find(const std::vector<cv::Mat> &images, std::vector<ImageFeatures> &features);
|
|
||||||
|
|
||||||
cv::Ptr<FeaturesFinder> impl_;
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
struct MatchesInfo
|
|
||||||
{
|
|
||||||
MatchesInfo();
|
|
||||||
MatchesInfo(const MatchesInfo &other);
|
|
||||||
const MatchesInfo& operator =(const MatchesInfo &other);
|
|
||||||
|
|
||||||
int src_img_idx, dst_img_idx; // Optional images indices
|
|
||||||
std::vector<cv::DMatch> matches;
|
|
||||||
std::vector<uchar> inliers_mask;
|
|
||||||
int num_inliers; // Number of geometrically consistent matches
|
|
||||||
cv::Mat H; // Homography
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
class FeaturesMatcher
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
virtual ~FeaturesMatcher() {}
|
|
||||||
void operator ()(const cv::Mat &img1, const ImageFeatures &features1, const cv::Mat &img2, const ImageFeatures &features2,
|
|
||||||
MatchesInfo& matches_info) { match(img1, features1, img2, features2, matches_info); }
|
|
||||||
void operator ()(const std::vector<cv::Mat> &images, const std::vector<ImageFeatures> &features,
|
|
||||||
std::vector<MatchesInfo> &pairwise_matches);
|
|
||||||
|
|
||||||
protected:
|
|
||||||
virtual void match(const cv::Mat &img1, const ImageFeatures &features1, const cv::Mat &img2, const ImageFeatures &features2,
|
|
||||||
MatchesInfo& matches_info) = 0;
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
class BestOf2NearestMatcher : public FeaturesMatcher
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
explicit BestOf2NearestMatcher(bool gpu_hint = true, float match_conf = 0.55f, int num_matches_thresh1 = 5, int num_matches_thresh2 = 5);
|
|
||||||
|
|
||||||
protected:
|
|
||||||
void match(const cv::Mat &img1, const ImageFeatures &features1, const cv::Mat &img2, const ImageFeatures &features2,
|
|
||||||
MatchesInfo &matches_info);
|
|
||||||
|
|
||||||
int num_matches_thresh1_;
|
|
||||||
int num_matches_thresh2_;
|
|
||||||
|
|
||||||
cv::Ptr<FeaturesMatcher> impl_;
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
struct CameraParams
|
struct CameraParams
|
||||||
{
|
{
|
||||||
CameraParams();
|
CameraParams();
|
||||||
|
@ -52,7 +52,7 @@ class GraphCutSeamFinder : public PairwiseSeamFinder
|
|||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
// TODO add COST_COLOR_GRAD support
|
// TODO add COST_COLOR_GRAD support
|
||||||
enum { COST_COLOR/*, COST_COLOR_GRAD*/ };
|
enum { COST_COLOR };
|
||||||
|
|
||||||
GraphCutSeamFinder(int cost_type = COST_COLOR, float terminal_cost = 10000.f,
|
GraphCutSeamFinder(int cost_type = COST_COLOR, float terminal_cost = 10000.f,
|
||||||
float bad_region_penalty = 1000.f);
|
float bad_region_penalty = 1000.f);
|
||||||
|
Loading…
x
Reference in New Issue
Block a user