Refined interface for Conjugate Gradient

Some interface was refined (most notably, the method for returning
Hessian was removed and the method for getting gradient was added as
optional to base Solver::Function class) and basic code for
setters/getters was added. Now is the time for the real work on an
algorithm.
This commit is contained in:
Alex Leontiev
2013-09-22 00:14:49 +08:00
parent eb1333d0a8
commit 581d454536
5 changed files with 157 additions and 12 deletions

View File

@@ -0,0 +1,61 @@
#include "test_precomp.hpp"
#include <cstdlib>
static void mytest(cv::Ptr<cv::optim::ConjGradSolver> solver,cv::Ptr<cv::optim::Solver::Function> ptr_F,cv::Mat& x,
cv::Mat& etalon_x,double etalon_res){
solver->setFunction(ptr_F);
//int ndim=MAX(step.cols,step.rows);
double res=solver->minimize(x);
std::cout<<"res:\n\t"<<res<<std::endl;
std::cout<<"x:\n\t"<<x<<std::endl;
std::cout<<"etalon_res:\n\t"<<etalon_res<<std::endl;
std::cout<<"etalon_x:\n\t"<<etalon_x<<std::endl;
double tol=solver->getTermCriteria().epsilon;
ASSERT_TRUE(std::abs(res-etalon_res)<tol);
/*for(cv::Mat_<double>::iterator it1=x.begin<double>(),it2=etalon_x.begin<double>();it1!=x.end<double>();it1++,it2++){
ASSERT_TRUE(std::abs((*it1)-(*it2))<tol);
}*/
std::cout<<"--------------------------\n";
}
class SphereF:public cv::optim::Solver::Function{
public:
double calc(const double* x)const{
return x[0]*x[0]+x[1]*x[1]+x[2]*x[2]+x[3]*x[3];
}
void getGradient(const double* x,double* grad){
for(int i=0;i<4;i++,grad++,x++){
grad[0]=2*x[0];
}
}
};
//TODO: test transp/usual x
/*class RosenbrockF:public cv::optim::Solver::Function{
double calc(const double* x)const{
return 100*(x[1]-x[0]*x[0])*(x[1]-x[0]*x[0])+(1-x[0])*(1-x[0]);
}
};*/
TEST(Optim_ConjGrad, regression_basic){
cv::Ptr<cv::optim::ConjGradSolver> solver=cv::optim::createConjGradSolver();
#if 1
{
cv::Ptr<cv::optim::Solver::Function> ptr_F(new SphereF());
cv::Mat x=(cv::Mat_<double>(1,2)<<1.0,1.0),
etalon_x=(cv::Mat_<double>(1,2)<<0.0,0.0);
double etalon_res=0.0;
return;
mytest(solver,ptr_F,x,etalon_x,etalon_res);
}
#endif
#if 0
{
cv::Ptr<cv::optim::Solver::Function> ptr_F(new RosenbrockF());
cv::Mat x=(cv::Mat_<double>(2,1)<<0.0,0.0),
step=(cv::Mat_<double>(2,1)<<0.5,+0.5),
etalon_x=(cv::Mat_<double>(2,1)<<1.0,1.0);
double etalon_res=0.0;
mytest(solver,ptr_F,x,step,etalon_x,etalon_res);
}
#endif
}