renamed gpuoptflow -> cudaoptflow

This commit is contained in:
Vladislav Vinogradov
2013-07-23 17:04:38 +04:00
parent a0ae602bb7
commit 5660d6a680
47 changed files with 45 additions and 45 deletions

View File

@@ -0,0 +1,204 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::cuda;
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
void cv::cuda::calcOpticalFlowBM(const GpuMat&, const GpuMat&, Size, Size, Size, bool, GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); }
#else // HAVE_CUDA
namespace optflowbm
{
void calc(PtrStepSzb prev, PtrStepSzb curr, PtrStepSzf velx, PtrStepSzf vely, int2 blockSize, int2 shiftSize, bool usePrevious,
int maxX, int maxY, int acceptLevel, int escapeLevel, const short2* ss, int ssCount, cudaStream_t stream);
}
void cv::cuda::calcOpticalFlowBM(const GpuMat& prev, const GpuMat& curr, Size blockSize, Size shiftSize, Size maxRange, bool usePrevious, GpuMat& velx, GpuMat& vely, GpuMat& buf, Stream& st)
{
CV_Assert( prev.type() == CV_8UC1 );
CV_Assert( curr.size() == prev.size() && curr.type() == prev.type() );
const Size velSize((prev.cols - blockSize.width + shiftSize.width) / shiftSize.width,
(prev.rows - blockSize.height + shiftSize.height) / shiftSize.height);
velx.create(velSize, CV_32FC1);
vely.create(velSize, CV_32FC1);
// scanning scheme coordinates
std::vector<short2> ss((2 * maxRange.width + 1) * (2 * maxRange.height + 1));
int ssCount = 0;
// Calculate scanning scheme
const int minCount = std::min(maxRange.width, maxRange.height);
// use spiral search pattern
//
// 9 10 11 12
// 8 1 2 13
// 7 * 3 14
// 6 5 4 15
//... 20 19 18 17
//
for (int i = 0; i < minCount; ++i)
{
// four cycles along sides
int x = -i - 1, y = x;
// upper side
for (int j = -i; j <= i + 1; ++j, ++ssCount)
{
ss[ssCount].x = (short) ++x;
ss[ssCount].y = (short) y;
}
// right side
for (int j = -i; j <= i + 1; ++j, ++ssCount)
{
ss[ssCount].x = (short) x;
ss[ssCount].y = (short) ++y;
}
// bottom side
for (int j = -i; j <= i + 1; ++j, ++ssCount)
{
ss[ssCount].x = (short) --x;
ss[ssCount].y = (short) y;
}
// left side
for (int j = -i; j <= i + 1; ++j, ++ssCount)
{
ss[ssCount].x = (short) x;
ss[ssCount].y = (short) --y;
}
}
// the rest part
if (maxRange.width < maxRange.height)
{
const int xleft = -minCount;
// cycle by neighbor rings
for (int i = minCount; i < maxRange.height; ++i)
{
// two cycles by x
int y = -(i + 1);
int x = xleft;
// upper side
for (int j = -maxRange.width; j <= maxRange.width; ++j, ++ssCount, ++x)
{
ss[ssCount].x = (short) x;
ss[ssCount].y = (short) y;
}
x = xleft;
y = -y;
// bottom side
for (int j = -maxRange.width; j <= maxRange.width; ++j, ++ssCount, ++x)
{
ss[ssCount].x = (short) x;
ss[ssCount].y = (short) y;
}
}
}
else if (maxRange.width > maxRange.height)
{
const int yupper = -minCount;
// cycle by neighbor rings
for (int i = minCount; i < maxRange.width; ++i)
{
// two cycles by y
int x = -(i + 1);
int y = yupper;
// left side
for (int j = -maxRange.height; j <= maxRange.height; ++j, ++ssCount, ++y)
{
ss[ssCount].x = (short) x;
ss[ssCount].y = (short) y;
}
y = yupper;
x = -x;
// right side
for (int j = -maxRange.height; j <= maxRange.height; ++j, ++ssCount, ++y)
{
ss[ssCount].x = (short) x;
ss[ssCount].y = (short) y;
}
}
}
const cudaStream_t stream = StreamAccessor::getStream(st);
ensureSizeIsEnough(1, ssCount, CV_16SC2, buf);
if (stream == 0)
cudaSafeCall( cudaMemcpy(buf.data, &ss[0], ssCount * sizeof(short2), cudaMemcpyHostToDevice) );
else
cudaSafeCall( cudaMemcpyAsync(buf.data, &ss[0], ssCount * sizeof(short2), cudaMemcpyHostToDevice, stream) );
const int maxX = prev.cols - blockSize.width;
const int maxY = prev.rows - blockSize.height;
const int SMALL_DIFF = 2;
const int BIG_DIFF = 128;
const int blSize = blockSize.area();
const int acceptLevel = blSize * SMALL_DIFF;
const int escapeLevel = blSize * BIG_DIFF;
optflowbm::calc(prev, curr, velx, vely,
make_int2(blockSize.width, blockSize.height), make_int2(shiftSize.width, shiftSize.height), usePrevious,
maxX, maxY, acceptLevel, escapeLevel, buf.ptr<short2>(), ssCount, stream);
}
#endif // HAVE_CUDA

View File

@@ -0,0 +1,90 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::cuda;
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
void cv::cuda::FastOpticalFlowBM::operator ()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, int, int, Stream&) { throw_no_cuda(); }
#else // HAVE_CUDA
namespace optflowbm_fast
{
void get_buffer_size(int src_cols, int src_rows, int search_window, int block_window, int& buffer_cols, int& buffer_rows);
template <typename T>
void calc(PtrStepSzb I0, PtrStepSzb I1, PtrStepSzf velx, PtrStepSzf vely, PtrStepi buffer, int search_window, int block_window, cudaStream_t stream);
}
void cv::cuda::FastOpticalFlowBM::operator ()(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy, int search_window, int block_window, Stream& stream)
{
CV_Assert( I0.type() == CV_8UC1 );
CV_Assert( I1.size() == I0.size() && I1.type() == I0.type() );
int border_size = search_window / 2 + block_window / 2;
Size esize = I0.size() + Size(border_size, border_size) * 2;
ensureSizeIsEnough(esize, I0.type(), extended_I0);
ensureSizeIsEnough(esize, I0.type(), extended_I1);
cuda::copyMakeBorder(I0, extended_I0, border_size, border_size, border_size, border_size, cv::BORDER_DEFAULT, Scalar(), stream);
cuda::copyMakeBorder(I1, extended_I1, border_size, border_size, border_size, border_size, cv::BORDER_DEFAULT, Scalar(), stream);
GpuMat I0_hdr = extended_I0(Rect(Point2i(border_size, border_size), I0.size()));
GpuMat I1_hdr = extended_I1(Rect(Point2i(border_size, border_size), I0.size()));
int bcols, brows;
optflowbm_fast::get_buffer_size(I0.cols, I0.rows, search_window, block_window, bcols, brows);
ensureSizeIsEnough(brows, bcols, CV_32SC1, buffer);
flowx.create(I0.size(), CV_32FC1);
flowy.create(I0.size(), CV_32FC1);
optflowbm_fast::calc<uchar>(I0_hdr, I1_hdr, flowx, flowy, buffer, search_window, block_window, StreamAccessor::getStream(stream));
}
#endif // HAVE_CUDA

View File

@@ -0,0 +1,130 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::cuda;
#if !defined (HAVE_CUDA) || !defined (HAVE_OPENCV_CUDALEGACY) || defined (CUDA_DISABLER)
void cv::cuda::BroxOpticalFlow::operator ()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); }
#else
namespace
{
size_t getBufSize(const NCVBroxOpticalFlowDescriptor& desc, const NCVMatrix<Ncv32f>& frame0, const NCVMatrix<Ncv32f>& frame1,
NCVMatrix<Ncv32f>& u, NCVMatrix<Ncv32f>& v, const cudaDeviceProp& devProp)
{
NCVMemStackAllocator gpuCounter(static_cast<Ncv32u>(devProp.textureAlignment));
ncvSafeCall( NCVBroxOpticalFlow(desc, gpuCounter, frame0, frame1, u, v, 0) );
return gpuCounter.maxSize();
}
}
namespace
{
static void outputHandler(const String &msg) { CV_Error(cv::Error::GpuApiCallError, msg.c_str()); }
}
void cv::cuda::BroxOpticalFlow::operator ()(const GpuMat& frame0, const GpuMat& frame1, GpuMat& u, GpuMat& v, Stream& s)
{
ncvSetDebugOutputHandler(outputHandler);
CV_Assert(frame0.type() == CV_32FC1);
CV_Assert(frame1.size() == frame0.size() && frame1.type() == frame0.type());
u.create(frame0.size(), CV_32FC1);
v.create(frame0.size(), CV_32FC1);
cudaDeviceProp devProp;
cudaSafeCall( cudaGetDeviceProperties(&devProp, getDevice()) );
NCVBroxOpticalFlowDescriptor desc;
desc.alpha = alpha;
desc.gamma = gamma;
desc.scale_factor = scale_factor;
desc.number_of_inner_iterations = inner_iterations;
desc.number_of_outer_iterations = outer_iterations;
desc.number_of_solver_iterations = solver_iterations;
NCVMemSegment frame0MemSeg;
frame0MemSeg.begin.memtype = NCVMemoryTypeDevice;
frame0MemSeg.begin.ptr = const_cast<uchar*>(frame0.data);
frame0MemSeg.size = frame0.step * frame0.rows;
NCVMemSegment frame1MemSeg;
frame1MemSeg.begin.memtype = NCVMemoryTypeDevice;
frame1MemSeg.begin.ptr = const_cast<uchar*>(frame1.data);
frame1MemSeg.size = frame1.step * frame1.rows;
NCVMemSegment uMemSeg;
uMemSeg.begin.memtype = NCVMemoryTypeDevice;
uMemSeg.begin.ptr = u.ptr();
uMemSeg.size = u.step * u.rows;
NCVMemSegment vMemSeg;
vMemSeg.begin.memtype = NCVMemoryTypeDevice;
vMemSeg.begin.ptr = v.ptr();
vMemSeg.size = v.step * v.rows;
NCVMatrixReuse<Ncv32f> frame0Mat(frame0MemSeg, static_cast<Ncv32u>(devProp.textureAlignment), frame0.cols, frame0.rows, static_cast<Ncv32u>(frame0.step));
NCVMatrixReuse<Ncv32f> frame1Mat(frame1MemSeg, static_cast<Ncv32u>(devProp.textureAlignment), frame1.cols, frame1.rows, static_cast<Ncv32u>(frame1.step));
NCVMatrixReuse<Ncv32f> uMat(uMemSeg, static_cast<Ncv32u>(devProp.textureAlignment), u.cols, u.rows, static_cast<Ncv32u>(u.step));
NCVMatrixReuse<Ncv32f> vMat(vMemSeg, static_cast<Ncv32u>(devProp.textureAlignment), v.cols, v.rows, static_cast<Ncv32u>(v.step));
cudaStream_t stream = StreamAccessor::getStream(s);
size_t bufSize = getBufSize(desc, frame0Mat, frame1Mat, uMat, vMat, devProp);
ensureSizeIsEnough(1, static_cast<int>(bufSize), CV_8UC1, buf);
NCVMemStackAllocator gpuAllocator(NCVMemoryTypeDevice, bufSize, static_cast<Ncv32u>(devProp.textureAlignment), buf.ptr());
ncvSafeCall( NCVBroxOpticalFlow(desc, gpuAllocator, frame0Mat, frame1Mat, uMat, vMat, stream) );
}
#endif /* HAVE_CUDA */

View File

@@ -0,0 +1,169 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#if !defined CUDA_DISABLER
#include "opencv2/core/cuda/common.hpp"
#include "opencv2/core/cuda/limits.hpp"
#include "opencv2/core/cuda/functional.hpp"
#include "opencv2/core/cuda/reduce.hpp"
using namespace cv::cuda;
using namespace cv::cuda::device;
namespace optflowbm
{
texture<uchar, cudaTextureType2D, cudaReadModeElementType> tex_prev(false, cudaFilterModePoint, cudaAddressModeClamp);
texture<uchar, cudaTextureType2D, cudaReadModeElementType> tex_curr(false, cudaFilterModePoint, cudaAddressModeClamp);
__device__ int cmpBlocks(int X1, int Y1, int X2, int Y2, int2 blockSize)
{
int s = 0;
for (int y = 0; y < blockSize.y; ++y)
{
for (int x = 0; x < blockSize.x; ++x)
s += ::abs(tex2D(tex_prev, X1 + x, Y1 + y) - tex2D(tex_curr, X2 + x, Y2 + y));
}
return s;
}
__global__ void calcOptFlowBM(PtrStepSzf velx, PtrStepf vely, const int2 blockSize, const int2 shiftSize, const bool usePrevious,
const int maxX, const int maxY, const int acceptLevel, const int escapeLevel,
const short2* ss, const int ssCount)
{
const int j = blockIdx.x * blockDim.x + threadIdx.x;
const int i = blockIdx.y * blockDim.y + threadIdx.y;
if (i >= velx.rows || j >= velx.cols)
return;
const int X1 = j * shiftSize.x;
const int Y1 = i * shiftSize.y;
const int offX = usePrevious ? __float2int_rn(velx(i, j)) : 0;
const int offY = usePrevious ? __float2int_rn(vely(i, j)) : 0;
int X2 = X1 + offX;
int Y2 = Y1 + offY;
int dist = numeric_limits<int>::max();
if (0 <= X2 && X2 <= maxX && 0 <= Y2 && Y2 <= maxY)
dist = cmpBlocks(X1, Y1, X2, Y2, blockSize);
int countMin = 1;
int sumx = offX;
int sumy = offY;
if (dist > acceptLevel)
{
// do brute-force search
for (int k = 0; k < ssCount; ++k)
{
const short2 ssVal = ss[k];
const int dx = offX + ssVal.x;
const int dy = offY + ssVal.y;
X2 = X1 + dx;
Y2 = Y1 + dy;
if (0 <= X2 && X2 <= maxX && 0 <= Y2 && Y2 <= maxY)
{
const int tmpDist = cmpBlocks(X1, Y1, X2, Y2, blockSize);
if (tmpDist < acceptLevel)
{
sumx = dx;
sumy = dy;
countMin = 1;
break;
}
if (tmpDist < dist)
{
dist = tmpDist;
sumx = dx;
sumy = dy;
countMin = 1;
}
else if (tmpDist == dist)
{
sumx += dx;
sumy += dy;
countMin++;
}
}
}
if (dist > escapeLevel)
{
sumx = offX;
sumy = offY;
countMin = 1;
}
}
velx(i, j) = static_cast<float>(sumx) / countMin;
vely(i, j) = static_cast<float>(sumy) / countMin;
}
void calc(PtrStepSzb prev, PtrStepSzb curr, PtrStepSzf velx, PtrStepSzf vely, int2 blockSize, int2 shiftSize, bool usePrevious,
int maxX, int maxY, int acceptLevel, int escapeLevel, const short2* ss, int ssCount, cudaStream_t stream)
{
bindTexture(&tex_prev, prev);
bindTexture(&tex_curr, curr);
const dim3 block(32, 8);
const dim3 grid(divUp(velx.cols, block.x), divUp(vely.rows, block.y));
calcOptFlowBM<<<grid, block, 0, stream>>>(velx, vely, blockSize, shiftSize, usePrevious,
maxX, maxY, acceptLevel, escapeLevel, ss, ssCount);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
}
#endif // !defined CUDA_DISABLER

View File

@@ -0,0 +1,295 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#if !defined CUDA_DISABLER
#include "opencv2/core/cuda/common.hpp"
#include "opencv2/core/cuda/limits.hpp"
#include "opencv2/core/cuda/functional.hpp"
#include "opencv2/core/cuda/reduce.hpp"
using namespace cv::cuda;
using namespace cv::cuda::device;
namespace optflowbm_fast
{
enum
{
CTA_SIZE = 128,
TILE_COLS = 128,
TILE_ROWS = 32,
STRIDE = CTA_SIZE
};
template <typename T> __device__ __forceinline__ int calcDist(T a, T b)
{
return ::abs(a - b);
}
template <class T> struct FastOptFlowBM
{
int search_radius;
int block_radius;
int search_window;
int block_window;
PtrStepSz<T> I0;
PtrStep<T> I1;
mutable PtrStepi buffer;
FastOptFlowBM(int search_window_, int block_window_,
PtrStepSz<T> I0_, PtrStepSz<T> I1_,
PtrStepi buffer_) :
search_radius(search_window_ / 2), block_radius(block_window_ / 2),
search_window(search_window_), block_window(block_window_),
I0(I0_), I1(I1_),
buffer(buffer_)
{
}
__device__ __forceinline__ void initSums_BruteForce(int i, int j, int* dist_sums, PtrStepi& col_sums, PtrStepi& up_col_sums) const
{
for (int index = threadIdx.x; index < search_window * search_window; index += STRIDE)
{
dist_sums[index] = 0;
for (int tx = 0; tx < block_window; ++tx)
col_sums(tx, index) = 0;
int y = index / search_window;
int x = index - y * search_window;
int ay = i;
int ax = j;
int by = i + y - search_radius;
int bx = j + x - search_radius;
for (int tx = -block_radius; tx <= block_radius; ++tx)
{
int col_sum = 0;
for (int ty = -block_radius; ty <= block_radius; ++ty)
{
int dist = calcDist(I0(ay + ty, ax + tx), I1(by + ty, bx + tx));
dist_sums[index] += dist;
col_sum += dist;
}
col_sums(tx + block_radius, index) = col_sum;
}
up_col_sums(j, index) = col_sums(block_window - 1, index);
}
}
__device__ __forceinline__ void shiftRight_FirstRow(int i, int j, int first, int* dist_sums, PtrStepi& col_sums, PtrStepi& up_col_sums) const
{
for (int index = threadIdx.x; index < search_window * search_window; index += STRIDE)
{
int y = index / search_window;
int x = index - y * search_window;
int ay = i;
int ax = j + block_radius;
int by = i + y - search_radius;
int bx = j + x - search_radius + block_radius;
int col_sum = 0;
for (int ty = -block_radius; ty <= block_radius; ++ty)
col_sum += calcDist(I0(ay + ty, ax), I1(by + ty, bx));
dist_sums[index] += col_sum - col_sums(first, index);
col_sums(first, index) = col_sum;
up_col_sums(j, index) = col_sum;
}
}
__device__ __forceinline__ void shiftRight_UpSums(int i, int j, int first, int* dist_sums, PtrStepi& col_sums, PtrStepi& up_col_sums) const
{
int ay = i;
int ax = j + block_radius;
T a_up = I0(ay - block_radius - 1, ax);
T a_down = I0(ay + block_radius, ax);
for(int index = threadIdx.x; index < search_window * search_window; index += STRIDE)
{
int y = index / search_window;
int x = index - y * search_window;
int by = i + y - search_radius;
int bx = j + x - search_radius + block_radius;
T b_up = I1(by - block_radius - 1, bx);
T b_down = I1(by + block_radius, bx);
int col_sum = up_col_sums(j, index) + calcDist(a_down, b_down) - calcDist(a_up, b_up);
dist_sums[index] += col_sum - col_sums(first, index);
col_sums(first, index) = col_sum;
up_col_sums(j, index) = col_sum;
}
}
__device__ __forceinline__ void convolve_window(int i, int j, const int* dist_sums, float& velx, float& vely) const
{
int bestDist = numeric_limits<int>::max();
int bestInd = -1;
for (int index = threadIdx.x; index < search_window * search_window; index += STRIDE)
{
int curDist = dist_sums[index];
if (curDist < bestDist)
{
bestDist = curDist;
bestInd = index;
}
}
__shared__ int cta_dist_buffer[CTA_SIZE];
__shared__ int cta_ind_buffer[CTA_SIZE];
reduceKeyVal<CTA_SIZE>(cta_dist_buffer, bestDist, cta_ind_buffer, bestInd, threadIdx.x, less<int>());
if (threadIdx.x == 0)
{
int y = bestInd / search_window;
int x = bestInd - y * search_window;
velx = x - search_radius;
vely = y - search_radius;
}
}
__device__ __forceinline__ void operator()(PtrStepf velx, PtrStepf vely) const
{
int tbx = blockIdx.x * TILE_COLS;
int tby = blockIdx.y * TILE_ROWS;
int tex = ::min(tbx + TILE_COLS, I0.cols);
int tey = ::min(tby + TILE_ROWS, I0.rows);
PtrStepi col_sums;
col_sums.data = buffer.ptr(I0.cols + blockIdx.x * block_window) + blockIdx.y * search_window * search_window;
col_sums.step = buffer.step;
PtrStepi up_col_sums;
up_col_sums.data = buffer.data + blockIdx.y * search_window * search_window;
up_col_sums.step = buffer.step;
extern __shared__ int dist_sums[]; //search_window * search_window
int first = 0;
for (int i = tby; i < tey; ++i)
{
for (int j = tbx; j < tex; ++j)
{
__syncthreads();
if (j == tbx)
{
initSums_BruteForce(i, j, dist_sums, col_sums, up_col_sums);
first = 0;
}
else
{
if (i == tby)
shiftRight_FirstRow(i, j, first, dist_sums, col_sums, up_col_sums);
else
shiftRight_UpSums(i, j, first, dist_sums, col_sums, up_col_sums);
first = (first + 1) % block_window;
}
__syncthreads();
convolve_window(i, j, dist_sums, velx(i, j), vely(i, j));
}
}
}
};
template<typename T> __global__ void optflowbm_fast_kernel(const FastOptFlowBM<T> fbm, PtrStepf velx, PtrStepf vely)
{
fbm(velx, vely);
}
void get_buffer_size(int src_cols, int src_rows, int search_window, int block_window, int& buffer_cols, int& buffer_rows)
{
dim3 grid(divUp(src_cols, TILE_COLS), divUp(src_rows, TILE_ROWS));
buffer_cols = search_window * search_window * grid.y;
buffer_rows = src_cols + block_window * grid.x;
}
template <typename T>
void calc(PtrStepSzb I0, PtrStepSzb I1, PtrStepSzf velx, PtrStepSzf vely, PtrStepi buffer, int search_window, int block_window, cudaStream_t stream)
{
FastOptFlowBM<T> fbm(search_window, block_window, I0, I1, buffer);
dim3 block(CTA_SIZE, 1);
dim3 grid(divUp(I0.cols, TILE_COLS), divUp(I0.rows, TILE_ROWS));
size_t smem = search_window * search_window * sizeof(int);
optflowbm_fast_kernel<<<grid, block, smem, stream>>>(fbm, velx, vely);
cudaSafeCall ( cudaGetLastError () );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template void calc<uchar>(PtrStepSzb I0, PtrStepSzb I1, PtrStepSzf velx, PtrStepSzf vely, PtrStepi buffer, int search_window, int block_window, cudaStream_t stream);
}
#endif // !defined CUDA_DISABLER

View File

@@ -0,0 +1,656 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#if !defined CUDA_DISABLER
#include "opencv2/core/cuda/common.hpp"
#include "opencv2/core/cuda/border_interpolate.hpp"
#define tx threadIdx.x
#define ty threadIdx.y
#define bx blockIdx.x
#define by blockIdx.y
#define bdx blockDim.x
#define bdy blockDim.y
#define BORDER_SIZE 5
#define MAX_KSIZE_HALF 100
namespace cv { namespace cuda { namespace device { namespace optflow_farneback
{
__constant__ float c_g[8];
__constant__ float c_xg[8];
__constant__ float c_xxg[8];
__constant__ float c_ig11, c_ig03, c_ig33, c_ig55;
template <int polyN>
__global__ void polynomialExpansion(
const int height, const int width, const PtrStepf src, PtrStepf dst)
{
const int y = by * bdy + ty;
const int x = bx * (bdx - 2*polyN) + tx - polyN;
if (y < height)
{
extern __shared__ float smem[];
volatile float *row = smem + tx;
int xWarped = ::min(::max(x, 0), width - 1);
row[0] = src(y, xWarped) * c_g[0];
row[bdx] = 0.f;
row[2*bdx] = 0.f;
for (int k = 1; k <= polyN; ++k)
{
float t0 = src(::max(y - k, 0), xWarped);
float t1 = src(::min(y + k, height - 1), xWarped);
row[0] += c_g[k] * (t0 + t1);
row[bdx] += c_xg[k] * (t1 - t0);
row[2*bdx] += c_xxg[k] * (t0 + t1);
}
__syncthreads();
if (tx >= polyN && tx + polyN < bdx && x < width)
{
float b1 = c_g[0] * row[0];
float b3 = c_g[0] * row[bdx];
float b5 = c_g[0] * row[2*bdx];
float b2 = 0, b4 = 0, b6 = 0;
for (int k = 1; k <= polyN; ++k)
{
b1 += (row[k] + row[-k]) * c_g[k];
b4 += (row[k] + row[-k]) * c_xxg[k];
b2 += (row[k] - row[-k]) * c_xg[k];
b3 += (row[k + bdx] + row[-k + bdx]) * c_g[k];
b6 += (row[k + bdx] - row[-k + bdx]) * c_xg[k];
b5 += (row[k + 2*bdx] + row[-k + 2*bdx]) * c_g[k];
}
dst(y, xWarped) = b3*c_ig11;
dst(height + y, xWarped) = b2*c_ig11;
dst(2*height + y, xWarped) = b1*c_ig03 + b5*c_ig33;
dst(3*height + y, xWarped) = b1*c_ig03 + b4*c_ig33;
dst(4*height + y, xWarped) = b6*c_ig55;
}
}
}
void setPolynomialExpansionConsts(
int polyN, const float *g, const float *xg, const float *xxg,
float ig11, float ig03, float ig33, float ig55)
{
cudaSafeCall(cudaMemcpyToSymbol(c_g, g, (polyN + 1) * sizeof(*g)));
cudaSafeCall(cudaMemcpyToSymbol(c_xg, xg, (polyN + 1) * sizeof(*xg)));
cudaSafeCall(cudaMemcpyToSymbol(c_xxg, xxg, (polyN + 1) * sizeof(*xxg)));
cudaSafeCall(cudaMemcpyToSymbol(c_ig11, &ig11, sizeof(ig11)));
cudaSafeCall(cudaMemcpyToSymbol(c_ig03, &ig03, sizeof(ig03)));
cudaSafeCall(cudaMemcpyToSymbol(c_ig33, &ig33, sizeof(ig33)));
cudaSafeCall(cudaMemcpyToSymbol(c_ig55, &ig55, sizeof(ig55)));
}
void polynomialExpansionGpu(const PtrStepSzf &src, int polyN, PtrStepSzf dst, cudaStream_t stream)
{
dim3 block(256);
dim3 grid(divUp(src.cols, block.x - 2*polyN), src.rows);
int smem = 3 * block.x * sizeof(float);
if (polyN == 5)
polynomialExpansion<5><<<grid, block, smem, stream>>>(src.rows, src.cols, src, dst);
else if (polyN == 7)
polynomialExpansion<7><<<grid, block, smem, stream>>>(src.rows, src.cols, src, dst);
cudaSafeCall(cudaGetLastError());
if (stream == 0)
cudaSafeCall(cudaDeviceSynchronize());
}
__constant__ float c_border[BORDER_SIZE + 1];
__global__ void updateMatrices(
const int height, const int width, const PtrStepf flowx, const PtrStepf flowy,
const PtrStepf R0, const PtrStepf R1, PtrStepf M)
{
const int y = by * bdy + ty;
const int x = bx * bdx + tx;
if (y < height && x < width)
{
float dx = flowx(y, x);
float dy = flowy(y, x);
float fx = x + dx;
float fy = y + dy;
int x1 = floorf(fx);
int y1 = floorf(fy);
fx -= x1; fy -= y1;
float r2, r3, r4, r5, r6;
if (x1 >= 0 && y1 >= 0 && x1 < width - 1 && y1 < height - 1)
{
float a00 = (1.f - fx) * (1.f - fy);
float a01 = fx * (1.f - fy);
float a10 = (1.f - fx) * fy;
float a11 = fx * fy;
r2 = a00 * R1(y1, x1) +
a01 * R1(y1, x1 + 1) +
a10 * R1(y1 + 1, x1) +
a11 * R1(y1 + 1, x1 + 1);
r3 = a00 * R1(height + y1, x1) +
a01 * R1(height + y1, x1 + 1) +
a10 * R1(height + y1 + 1, x1) +
a11 * R1(height + y1 + 1, x1 + 1);
r4 = a00 * R1(2*height + y1, x1) +
a01 * R1(2*height + y1, x1 + 1) +
a10 * R1(2*height + y1 + 1, x1) +
a11 * R1(2*height + y1 + 1, x1 + 1);
r5 = a00 * R1(3*height + y1, x1) +
a01 * R1(3*height + y1, x1 + 1) +
a10 * R1(3*height + y1 + 1, x1) +
a11 * R1(3*height + y1 + 1, x1 + 1);
r6 = a00 * R1(4*height + y1, x1) +
a01 * R1(4*height + y1, x1 + 1) +
a10 * R1(4*height + y1 + 1, x1) +
a11 * R1(4*height + y1 + 1, x1 + 1);
r4 = (R0(2*height + y, x) + r4) * 0.5f;
r5 = (R0(3*height + y, x) + r5) * 0.5f;
r6 = (R0(4*height + y, x) + r6) * 0.25f;
}
else
{
r2 = r3 = 0.f;
r4 = R0(2*height + y, x);
r5 = R0(3*height + y, x);
r6 = R0(4*height + y, x) * 0.5f;
}
r2 = (R0(y, x) - r2) * 0.5f;
r3 = (R0(height + y, x) - r3) * 0.5f;
r2 += r4*dy + r6*dx;
r3 += r6*dy + r5*dx;
float scale =
c_border[::min(x, BORDER_SIZE)] *
c_border[::min(y, BORDER_SIZE)] *
c_border[::min(width - x - 1, BORDER_SIZE)] *
c_border[::min(height - y - 1, BORDER_SIZE)];
r2 *= scale; r3 *= scale; r4 *= scale;
r5 *= scale; r6 *= scale;
M(y, x) = r4*r4 + r6*r6;
M(height + y, x) = (r4 + r5)*r6;
M(2*height + y, x) = r5*r5 + r6*r6;
M(3*height + y, x) = r4*r2 + r6*r3;
M(4*height + y, x) = r6*r2 + r5*r3;
}
}
void setUpdateMatricesConsts()
{
static const float border[BORDER_SIZE + 1] = {0.14f, 0.14f, 0.4472f, 0.4472f, 0.4472f, 1.f};
cudaSafeCall(cudaMemcpyToSymbol(c_border, border, (BORDER_SIZE + 1) * sizeof(*border)));
}
void updateMatricesGpu(
const PtrStepSzf flowx, const PtrStepSzf flowy, const PtrStepSzf R0, const PtrStepSzf R1,
PtrStepSzf M, cudaStream_t stream)
{
dim3 block(32, 8);
dim3 grid(divUp(flowx.cols, block.x), divUp(flowx.rows, block.y));
updateMatrices<<<grid, block, 0, stream>>>(flowx.rows, flowx.cols, flowx, flowy, R0, R1, M);
cudaSafeCall(cudaGetLastError());
if (stream == 0)
cudaSafeCall(cudaDeviceSynchronize());
}
__global__ void updateFlow(
const int height, const int width, const PtrStepf M, PtrStepf flowx, PtrStepf flowy)
{
const int y = by * bdy + ty;
const int x = bx * bdx + tx;
if (y < height && x < width)
{
float g11 = M(y, x);
float g12 = M(height + y, x);
float g22 = M(2*height + y, x);
float h1 = M(3*height + y, x);
float h2 = M(4*height + y, x);
float detInv = 1.f / (g11*g22 - g12*g12 + 1e-3f);
flowx(y, x) = (g11*h2 - g12*h1) * detInv;
flowy(y, x) = (g22*h1 - g12*h2) * detInv;
}
}
void updateFlowGpu(const PtrStepSzf M, PtrStepSzf flowx, PtrStepSzf flowy, cudaStream_t stream)
{
dim3 block(32, 8);
dim3 grid(divUp(flowx.cols, block.x), divUp(flowx.rows, block.y));
updateFlow<<<grid, block, 0, stream>>>(flowx.rows, flowx.cols, M, flowx, flowy);
cudaSafeCall(cudaGetLastError());
if (stream == 0)
cudaSafeCall(cudaDeviceSynchronize());
}
/*__global__ void boxFilter(
const int height, const int width, const PtrStepf src,
const int ksizeHalf, const float boxAreaInv, PtrStepf dst)
{
const int y = by * bdy + ty;
const int x = bx * bdx + tx;
extern __shared__ float smem[];
volatile float *row = smem + ty * (bdx + 2*ksizeHalf);
if (y < height)
{
// Vertical pass
for (int i = tx; i < bdx + 2*ksizeHalf; i += bdx)
{
int xExt = int(bx * bdx) + i - ksizeHalf;
xExt = ::min(::max(xExt, 0), width - 1);
row[i] = src(y, xExt);
for (int j = 1; j <= ksizeHalf; ++j)
row[i] += src(::max(y - j, 0), xExt) + src(::min(y + j, height - 1), xExt);
}
if (x < width)
{
__syncthreads();
// Horizontal passs
row += tx + ksizeHalf;
float res = row[0];
for (int i = 1; i <= ksizeHalf; ++i)
res += row[-i] + row[i];
dst(y, x) = res * boxAreaInv;
}
}
}
void boxFilterGpu(const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, cudaStream_t stream)
{
dim3 block(256);
dim3 grid(divUp(src.cols, block.x), divUp(src.rows, block.y));
int smem = (block.x + 2*ksizeHalf) * block.y * sizeof(float);
float boxAreaInv = 1.f / ((1 + 2*ksizeHalf) * (1 + 2*ksizeHalf));
boxFilter<<<grid, block, smem, stream>>>(src.rows, src.cols, src, ksizeHalf, boxAreaInv, dst);
cudaSafeCall(cudaGetLastError());
if (stream == 0)
cudaSafeCall(cudaDeviceSynchronize());
}*/
__global__ void boxFilter5(
const int height, const int width, const PtrStepf src,
const int ksizeHalf, const float boxAreaInv, PtrStepf dst)
{
const int y = by * bdy + ty;
const int x = bx * bdx + tx;
extern __shared__ float smem[];
const int smw = bdx + 2*ksizeHalf; // shared memory "width"
volatile float *row = smem + 5 * ty * smw;
if (y < height)
{
// Vertical pass
for (int i = tx; i < bdx + 2*ksizeHalf; i += bdx)
{
int xExt = int(bx * bdx) + i - ksizeHalf;
xExt = ::min(::max(xExt, 0), width - 1);
#pragma unroll
for (int k = 0; k < 5; ++k)
row[k*smw + i] = src(k*height + y, xExt);
for (int j = 1; j <= ksizeHalf; ++j)
#pragma unroll
for (int k = 0; k < 5; ++k)
row[k*smw + i] +=
src(k*height + ::max(y - j, 0), xExt) +
src(k*height + ::min(y + j, height - 1), xExt);
}
if (x < width)
{
__syncthreads();
// Horizontal passs
row += tx + ksizeHalf;
float res[5];
#pragma unroll
for (int k = 0; k < 5; ++k)
res[k] = row[k*smw];
for (int i = 1; i <= ksizeHalf; ++i)
#pragma unroll
for (int k = 0; k < 5; ++k)
res[k] += row[k*smw - i] + row[k*smw + i];
#pragma unroll
for (int k = 0; k < 5; ++k)
dst(k*height + y, x) = res[k] * boxAreaInv;
}
}
}
void boxFilter5Gpu(const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, cudaStream_t stream)
{
int height = src.rows / 5;
int width = src.cols;
dim3 block(256);
dim3 grid(divUp(width, block.x), divUp(height, block.y));
int smem = (block.x + 2*ksizeHalf) * 5 * block.y * sizeof(float);
float boxAreaInv = 1.f / ((1 + 2*ksizeHalf) * (1 + 2*ksizeHalf));
boxFilter5<<<grid, block, smem, stream>>>(height, width, src, ksizeHalf, boxAreaInv, dst);
cudaSafeCall(cudaGetLastError());
if (stream == 0)
cudaSafeCall(cudaDeviceSynchronize());
}
void boxFilter5Gpu_CC11(const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, cudaStream_t stream)
{
int height = src.rows / 5;
int width = src.cols;
dim3 block(128);
dim3 grid(divUp(width, block.x), divUp(height, block.y));
int smem = (block.x + 2*ksizeHalf) * 5 * block.y * sizeof(float);
float boxAreaInv = 1.f / ((1 + 2*ksizeHalf) * (1 + 2*ksizeHalf));
boxFilter5<<<grid, block, smem, stream>>>(height, width, src, ksizeHalf, boxAreaInv, dst);
cudaSafeCall(cudaGetLastError());
if (stream == 0)
cudaSafeCall(cudaDeviceSynchronize());
}
__constant__ float c_gKer[MAX_KSIZE_HALF + 1];
template <typename Border>
__global__ void gaussianBlur(
const int height, const int width, const PtrStepf src, const int ksizeHalf,
const Border b, PtrStepf dst)
{
const int y = by * bdy + ty;
const int x = bx * bdx + tx;
extern __shared__ float smem[];
volatile float *row = smem + ty * (bdx + 2*ksizeHalf);
if (y < height)
{
// Vertical pass
for (int i = tx; i < bdx + 2*ksizeHalf; i += bdx)
{
int xExt = int(bx * bdx) + i - ksizeHalf;
xExt = b.idx_col(xExt);
row[i] = src(y, xExt) * c_gKer[0];
for (int j = 1; j <= ksizeHalf; ++j)
row[i] +=
(src(b.idx_row_low(y - j), xExt) +
src(b.idx_row_high(y + j), xExt)) * c_gKer[j];
}
if (x < width)
{
__syncthreads();
// Horizontal pass
row += tx + ksizeHalf;
float res = row[0] * c_gKer[0];
for (int i = 1; i <= ksizeHalf; ++i)
res += (row[-i] + row[i]) * c_gKer[i];
dst(y, x) = res;
}
}
}
void setGaussianBlurKernel(const float *gKer, int ksizeHalf)
{
cudaSafeCall(cudaMemcpyToSymbol(c_gKer, gKer, (ksizeHalf + 1) * sizeof(*gKer)));
}
template <typename Border>
void gaussianBlurCaller(const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, cudaStream_t stream)
{
int height = src.rows;
int width = src.cols;
dim3 block(256);
dim3 grid(divUp(width, block.x), divUp(height, block.y));
int smem = (block.x + 2*ksizeHalf) * block.y * sizeof(float);
Border b(height, width);
gaussianBlur<<<grid, block, smem, stream>>>(height, width, src, ksizeHalf, b, dst);
cudaSafeCall(cudaGetLastError());
if (stream == 0)
cudaSafeCall(cudaDeviceSynchronize());
}
void gaussianBlurGpu(
const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, int borderMode, cudaStream_t stream)
{
typedef void (*caller_t)(const PtrStepSzf, int, PtrStepSzf, cudaStream_t);
static const caller_t callers[] =
{
0 /*gaussianBlurCaller<BrdConstant<float> >*/,
gaussianBlurCaller<BrdReplicate<float> >,
0 /*gaussianBlurCaller<BrdReflect<float> >*/,
0 /*gaussianBlurCaller<BrdWrap<float> >*/,
gaussianBlurCaller<BrdReflect101<float> >
};
callers[borderMode](src, ksizeHalf, dst, stream);
}
template <typename Border>
__global__ void gaussianBlur5(
const int height, const int width, const PtrStepf src, const int ksizeHalf,
const Border b, PtrStepf dst)
{
const int y = by * bdy + ty;
const int x = bx * bdx + tx;
extern __shared__ float smem[];
const int smw = bdx + 2*ksizeHalf; // shared memory "width"
volatile float *row = smem + 5 * ty * smw;
if (y < height)
{
// Vertical pass
for (int i = tx; i < bdx + 2*ksizeHalf; i += bdx)
{
int xExt = int(bx * bdx) + i - ksizeHalf;
xExt = b.idx_col(xExt);
#pragma unroll
for (int k = 0; k < 5; ++k)
row[k*smw + i] = src(k*height + y, xExt) * c_gKer[0];
for (int j = 1; j <= ksizeHalf; ++j)
#pragma unroll
for (int k = 0; k < 5; ++k)
row[k*smw + i] +=
(src(k*height + b.idx_row_low(y - j), xExt) +
src(k*height + b.idx_row_high(y + j), xExt)) * c_gKer[j];
}
if (x < width)
{
__syncthreads();
// Horizontal pass
row += tx + ksizeHalf;
float res[5];
#pragma unroll
for (int k = 0; k < 5; ++k)
res[k] = row[k*smw] * c_gKer[0];
for (int i = 1; i <= ksizeHalf; ++i)
#pragma unroll
for (int k = 0; k < 5; ++k)
res[k] += (row[k*smw - i] + row[k*smw + i]) * c_gKer[i];
#pragma unroll
for (int k = 0; k < 5; ++k)
dst(k*height + y, x) = res[k];
}
}
}
template <typename Border, int blockDimX>
void gaussianBlur5Caller(
const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, cudaStream_t stream)
{
int height = src.rows / 5;
int width = src.cols;
dim3 block(blockDimX);
dim3 grid(divUp(width, block.x), divUp(height, block.y));
int smem = (block.x + 2*ksizeHalf) * 5 * block.y * sizeof(float);
Border b(height, width);
gaussianBlur5<<<grid, block, smem, stream>>>(height, width, src, ksizeHalf, b, dst);
cudaSafeCall(cudaGetLastError());
if (stream == 0)
cudaSafeCall(cudaDeviceSynchronize());
}
void gaussianBlur5Gpu(
const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, int borderMode, cudaStream_t stream)
{
typedef void (*caller_t)(const PtrStepSzf, int, PtrStepSzf, cudaStream_t);
static const caller_t callers[] =
{
0 /*gaussianBlur5Caller<BrdConstant<float>,256>*/,
gaussianBlur5Caller<BrdReplicate<float>,256>,
0 /*gaussianBlur5Caller<BrdReflect<float>,256>*/,
0 /*gaussianBlur5Caller<BrdWrap<float>,256>*/,
gaussianBlur5Caller<BrdReflect101<float>,256>
};
callers[borderMode](src, ksizeHalf, dst, stream);
}
void gaussianBlur5Gpu_CC11(
const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, int borderMode, cudaStream_t stream)
{
typedef void (*caller_t)(const PtrStepSzf, int, PtrStepSzf, cudaStream_t);
static const caller_t callers[] =
{
0 /*gaussianBlur5Caller<BrdConstant<float>,128>*/,
gaussianBlur5Caller<BrdReplicate<float>,128>,
0 /*gaussianBlur5Caller<BrdReflect<float>,128>*/,
0 /*gaussianBlur5Caller<BrdWrap<float>,128>*/,
gaussianBlur5Caller<BrdReflect101<float>,128>
};
callers[borderMode](src, ksizeHalf, dst, stream);
}
}}}} // namespace cv { namespace cuda { namespace cudev { namespace optflow_farneback
#endif /* CUDA_DISABLER */

View File

@@ -0,0 +1,220 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#if !defined CUDA_DISABLER
#include "opencv2/core/cuda/common.hpp"
namespace cv { namespace cuda { namespace device
{
namespace optical_flow
{
#define NEEDLE_MAP_SCALE 16
#define NUM_VERTS_PER_ARROW 6
__global__ void NeedleMapAverageKernel(const PtrStepSzf u, const PtrStepf v, PtrStepf u_avg, PtrStepf v_avg)
{
__shared__ float smem[2 * NEEDLE_MAP_SCALE];
volatile float* u_col_sum = smem;
volatile float* v_col_sum = u_col_sum + NEEDLE_MAP_SCALE;
const int x = blockIdx.x * NEEDLE_MAP_SCALE + threadIdx.x;
const int y = blockIdx.y * NEEDLE_MAP_SCALE;
u_col_sum[threadIdx.x] = 0;
v_col_sum[threadIdx.x] = 0;
#pragma unroll
for(int i = 0; i < NEEDLE_MAP_SCALE; ++i)
{
u_col_sum[threadIdx.x] += u(::min(y + i, u.rows - 1), x);
v_col_sum[threadIdx.x] += v(::min(y + i, u.rows - 1), x);
}
if (threadIdx.x < 8)
{
// now add the column sums
const uint X = threadIdx.x;
if (X | 0xfe == 0xfe) // bit 0 is 0
{
u_col_sum[threadIdx.x] += u_col_sum[threadIdx.x + 1];
v_col_sum[threadIdx.x] += v_col_sum[threadIdx.x + 1];
}
if (X | 0xfe == 0xfc) // bits 0 & 1 == 0
{
u_col_sum[threadIdx.x] += u_col_sum[threadIdx.x + 2];
v_col_sum[threadIdx.x] += v_col_sum[threadIdx.x + 2];
}
if (X | 0xf8 == 0xf8)
{
u_col_sum[threadIdx.x] += u_col_sum[threadIdx.x + 4];
v_col_sum[threadIdx.x] += v_col_sum[threadIdx.x + 4];
}
if (X == 0)
{
u_col_sum[threadIdx.x] += u_col_sum[threadIdx.x + 8];
v_col_sum[threadIdx.x] += v_col_sum[threadIdx.x + 8];
}
}
if (threadIdx.x == 0)
{
const float coeff = 1.0f / (NEEDLE_MAP_SCALE * NEEDLE_MAP_SCALE);
u_col_sum[0] *= coeff;
v_col_sum[0] *= coeff;
u_avg(blockIdx.y, blockIdx.x) = u_col_sum[0];
v_avg(blockIdx.y, blockIdx.x) = v_col_sum[0];
}
}
void NeedleMapAverage_gpu(PtrStepSzf u, PtrStepSzf v, PtrStepSzf u_avg, PtrStepSzf v_avg)
{
const dim3 block(NEEDLE_MAP_SCALE);
const dim3 grid(u_avg.cols, u_avg.rows);
NeedleMapAverageKernel<<<grid, block>>>(u, v, u_avg, v_avg);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
__global__ void NeedleMapVertexKernel(const PtrStepSzf u_avg, const PtrStepf v_avg, float* vertex_data, float* color_data, float max_flow, float xscale, float yscale)
{
// test - just draw a triangle at each pixel
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const float arrow_x = x * NEEDLE_MAP_SCALE + NEEDLE_MAP_SCALE / 2.0f;
const float arrow_y = y * NEEDLE_MAP_SCALE + NEEDLE_MAP_SCALE / 2.0f;
float3 v[NUM_VERTS_PER_ARROW];
if (x < u_avg.cols && y < u_avg.rows)
{
const float u_avg_val = u_avg(y, x);
const float v_avg_val = v_avg(y, x);
const float theta = ::atan2f(v_avg_val, u_avg_val);
float r = ::sqrtf(v_avg_val * v_avg_val + u_avg_val * u_avg_val);
r = fmin(14.0f * (r / max_flow), 14.0f);
v[0].z = 1.0f;
v[1].z = 0.7f;
v[2].z = 0.7f;
v[3].z = 0.7f;
v[4].z = 0.7f;
v[5].z = 1.0f;
v[0].x = arrow_x;
v[0].y = arrow_y;
v[5].x = arrow_x;
v[5].y = arrow_y;
v[2].x = arrow_x + r * ::cosf(theta);
v[2].y = arrow_y + r * ::sinf(theta);
v[3].x = v[2].x;
v[3].y = v[2].y;
r = ::fmin(r, 2.5f);
v[1].x = arrow_x + r * ::cosf(theta - CV_PI_F / 2.0f);
v[1].y = arrow_y + r * ::sinf(theta - CV_PI_F / 2.0f);
v[4].x = arrow_x + r * ::cosf(theta + CV_PI_F / 2.0f);
v[4].y = arrow_y + r * ::sinf(theta + CV_PI_F / 2.0f);
int indx = (y * u_avg.cols + x) * NUM_VERTS_PER_ARROW * 3;
color_data[indx] = (theta - CV_PI_F) / CV_PI_F * 180.0f;
vertex_data[indx++] = v[0].x * xscale;
vertex_data[indx++] = v[0].y * yscale;
vertex_data[indx++] = v[0].z;
color_data[indx] = (theta - CV_PI_F) / CV_PI_F * 180.0f;
vertex_data[indx++] = v[1].x * xscale;
vertex_data[indx++] = v[1].y * yscale;
vertex_data[indx++] = v[1].z;
color_data[indx] = (theta - CV_PI_F) / CV_PI_F * 180.0f;
vertex_data[indx++] = v[2].x * xscale;
vertex_data[indx++] = v[2].y * yscale;
vertex_data[indx++] = v[2].z;
color_data[indx] = (theta - CV_PI_F) / CV_PI_F * 180.0f;
vertex_data[indx++] = v[3].x * xscale;
vertex_data[indx++] = v[3].y * yscale;
vertex_data[indx++] = v[3].z;
color_data[indx] = (theta - CV_PI_F) / CV_PI_F * 180.0f;
vertex_data[indx++] = v[4].x * xscale;
vertex_data[indx++] = v[4].y * yscale;
vertex_data[indx++] = v[4].z;
color_data[indx] = (theta - CV_PI_F) / CV_PI_F * 180.0f;
vertex_data[indx++] = v[5].x * xscale;
vertex_data[indx++] = v[5].y * yscale;
vertex_data[indx++] = v[5].z;
}
}
void CreateOpticalFlowNeedleMap_gpu(PtrStepSzf u_avg, PtrStepSzf v_avg, float* vertex_buffer, float* color_data, float max_flow, float xscale, float yscale)
{
const dim3 block(16);
const dim3 grid(divUp(u_avg.cols, block.x), divUp(u_avg.rows, block.y));
NeedleMapVertexKernel<<<grid, block>>>(u_avg, v_avg, vertex_buffer, color_data, max_flow, xscale, yscale);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
}
}}}
#endif /* CUDA_DISABLER */

View File

@@ -0,0 +1,560 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#if !defined CUDA_DISABLER
#include "opencv2/core/cuda/common.hpp"
#include "opencv2/core/cuda/utility.hpp"
#include "opencv2/core/cuda/functional.hpp"
#include "opencv2/core/cuda/limits.hpp"
#include "opencv2/core/cuda/vec_math.hpp"
#include "opencv2/core/cuda/reduce.hpp"
using namespace cv::cuda;
using namespace cv::cuda::device;
namespace pyrlk
{
__constant__ int c_winSize_x;
__constant__ int c_winSize_y;
__constant__ int c_halfWin_x;
__constant__ int c_halfWin_y;
__constant__ int c_iters;
texture<float, cudaTextureType2D, cudaReadModeElementType> tex_If(false, cudaFilterModeLinear, cudaAddressModeClamp);
texture<float4, cudaTextureType2D, cudaReadModeElementType> tex_If4(false, cudaFilterModeLinear, cudaAddressModeClamp);
texture<uchar, cudaTextureType2D, cudaReadModeElementType> tex_Ib(false, cudaFilterModePoint, cudaAddressModeClamp);
texture<float, cudaTextureType2D, cudaReadModeElementType> tex_Jf(false, cudaFilterModeLinear, cudaAddressModeClamp);
texture<float4, cudaTextureType2D, cudaReadModeElementType> tex_Jf4(false, cudaFilterModeLinear, cudaAddressModeClamp);
template <int cn> struct Tex_I;
template <> struct Tex_I<1>
{
static __device__ __forceinline__ float read(float x, float y)
{
return tex2D(tex_If, x, y);
}
};
template <> struct Tex_I<4>
{
static __device__ __forceinline__ float4 read(float x, float y)
{
return tex2D(tex_If4, x, y);
}
};
template <int cn> struct Tex_J;
template <> struct Tex_J<1>
{
static __device__ __forceinline__ float read(float x, float y)
{
return tex2D(tex_Jf, x, y);
}
};
template <> struct Tex_J<4>
{
static __device__ __forceinline__ float4 read(float x, float y)
{
return tex2D(tex_Jf4, x, y);
}
};
__device__ __forceinline__ void accum(float& dst, float val)
{
dst += val;
}
__device__ __forceinline__ void accum(float& dst, const float4& val)
{
dst += val.x + val.y + val.z;
}
__device__ __forceinline__ float abs_(float a)
{
return ::fabsf(a);
}
__device__ __forceinline__ float4 abs_(const float4& a)
{
return abs(a);
}
template <int cn, int PATCH_X, int PATCH_Y, bool calcErr>
__global__ void sparseKernel(const float2* prevPts, float2* nextPts, uchar* status, float* err, const int level, const int rows, const int cols)
{
#if __CUDA_ARCH__ <= 110
const int BLOCK_SIZE = 128;
#else
const int BLOCK_SIZE = 256;
#endif
__shared__ float smem1[BLOCK_SIZE];
__shared__ float smem2[BLOCK_SIZE];
__shared__ float smem3[BLOCK_SIZE];
const unsigned int tid = threadIdx.y * blockDim.x + threadIdx.x;
float2 prevPt = prevPts[blockIdx.x];
prevPt.x *= (1.0f / (1 << level));
prevPt.y *= (1.0f / (1 << level));
if (prevPt.x < 0 || prevPt.x >= cols || prevPt.y < 0 || prevPt.y >= rows)
{
if (tid == 0 && level == 0)
status[blockIdx.x] = 0;
return;
}
prevPt.x -= c_halfWin_x;
prevPt.y -= c_halfWin_y;
// extract the patch from the first image, compute covariation matrix of derivatives
float A11 = 0;
float A12 = 0;
float A22 = 0;
typedef typename TypeVec<float, cn>::vec_type work_type;
work_type I_patch [PATCH_Y][PATCH_X];
work_type dIdx_patch[PATCH_Y][PATCH_X];
work_type dIdy_patch[PATCH_Y][PATCH_X];
for (int yBase = threadIdx.y, i = 0; yBase < c_winSize_y; yBase += blockDim.y, ++i)
{
for (int xBase = threadIdx.x, j = 0; xBase < c_winSize_x; xBase += blockDim.x, ++j)
{
float x = prevPt.x + xBase + 0.5f;
float y = prevPt.y + yBase + 0.5f;
I_patch[i][j] = Tex_I<cn>::read(x, y);
// Sharr Deriv
work_type dIdx = 3.0f * Tex_I<cn>::read(x+1, y-1) + 10.0f * Tex_I<cn>::read(x+1, y) + 3.0f * Tex_I<cn>::read(x+1, y+1) -
(3.0f * Tex_I<cn>::read(x-1, y-1) + 10.0f * Tex_I<cn>::read(x-1, y) + 3.0f * Tex_I<cn>::read(x-1, y+1));
work_type dIdy = 3.0f * Tex_I<cn>::read(x-1, y+1) + 10.0f * Tex_I<cn>::read(x, y+1) + 3.0f * Tex_I<cn>::read(x+1, y+1) -
(3.0f * Tex_I<cn>::read(x-1, y-1) + 10.0f * Tex_I<cn>::read(x, y-1) + 3.0f * Tex_I<cn>::read(x+1, y-1));
dIdx_patch[i][j] = dIdx;
dIdy_patch[i][j] = dIdy;
accum(A11, dIdx * dIdx);
accum(A12, dIdx * dIdy);
accum(A22, dIdy * dIdy);
}
}
reduce<BLOCK_SIZE>(smem_tuple(smem1, smem2, smem3), thrust::tie(A11, A12, A22), tid, thrust::make_tuple(plus<float>(), plus<float>(), plus<float>()));
#if __CUDA_ARCH__ >= 300
if (tid == 0)
{
smem1[0] = A11;
smem2[0] = A12;
smem3[0] = A22;
}
#endif
__syncthreads();
A11 = smem1[0];
A12 = smem2[0];
A22 = smem3[0];
float D = A11 * A22 - A12 * A12;
if (D < numeric_limits<float>::epsilon())
{
if (tid == 0 && level == 0)
status[blockIdx.x] = 0;
return;
}
D = 1.f / D;
A11 *= D;
A12 *= D;
A22 *= D;
float2 nextPt = nextPts[blockIdx.x];
nextPt.x *= 2.f;
nextPt.y *= 2.f;
nextPt.x -= c_halfWin_x;
nextPt.y -= c_halfWin_y;
for (int k = 0; k < c_iters; ++k)
{
if (nextPt.x < -c_halfWin_x || nextPt.x >= cols || nextPt.y < -c_halfWin_y || nextPt.y >= rows)
{
if (tid == 0 && level == 0)
status[blockIdx.x] = 0;
return;
}
float b1 = 0;
float b2 = 0;
for (int y = threadIdx.y, i = 0; y < c_winSize_y; y += blockDim.y, ++i)
{
for (int x = threadIdx.x, j = 0; x < c_winSize_x; x += blockDim.x, ++j)
{
work_type I_val = I_patch[i][j];
work_type J_val = Tex_J<cn>::read(nextPt.x + x + 0.5f, nextPt.y + y + 0.5f);
work_type diff = (J_val - I_val) * 32.0f;
accum(b1, diff * dIdx_patch[i][j]);
accum(b2, diff * dIdy_patch[i][j]);
}
}
reduce<BLOCK_SIZE>(smem_tuple(smem1, smem2), thrust::tie(b1, b2), tid, thrust::make_tuple(plus<float>(), plus<float>()));
#if __CUDA_ARCH__ >= 300
if (tid == 0)
{
smem1[0] = b1;
smem2[0] = b2;
}
#endif
__syncthreads();
b1 = smem1[0];
b2 = smem2[0];
float2 delta;
delta.x = A12 * b2 - A22 * b1;
delta.y = A12 * b1 - A11 * b2;
nextPt.x += delta.x;
nextPt.y += delta.y;
if (::fabs(delta.x) < 0.01f && ::fabs(delta.y) < 0.01f)
break;
}
float errval = 0;
if (calcErr)
{
for (int y = threadIdx.y, i = 0; y < c_winSize_y; y += blockDim.y, ++i)
{
for (int x = threadIdx.x, j = 0; x < c_winSize_x; x += blockDim.x, ++j)
{
work_type I_val = I_patch[i][j];
work_type J_val = Tex_J<cn>::read(nextPt.x + x + 0.5f, nextPt.y + y + 0.5f);
work_type diff = J_val - I_val;
accum(errval, abs_(diff));
}
}
reduce<BLOCK_SIZE>(smem1, errval, tid, plus<float>());
}
if (tid == 0)
{
nextPt.x += c_halfWin_x;
nextPt.y += c_halfWin_y;
nextPts[blockIdx.x] = nextPt;
if (calcErr)
err[blockIdx.x] = static_cast<float>(errval) / (cn * c_winSize_x * c_winSize_y);
}
}
template <int cn, int PATCH_X, int PATCH_Y>
void sparse_caller(int rows, int cols, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
int level, dim3 block, cudaStream_t stream)
{
dim3 grid(ptcount);
if (level == 0 && err)
sparseKernel<cn, PATCH_X, PATCH_Y, true><<<grid, block>>>(prevPts, nextPts, status, err, level, rows, cols);
else
sparseKernel<cn, PATCH_X, PATCH_Y, false><<<grid, block>>>(prevPts, nextPts, status, err, level, rows, cols);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template <bool calcErr>
__global__ void denseKernel(PtrStepf u, PtrStepf v, const PtrStepf prevU, const PtrStepf prevV, PtrStepf err, const int rows, const int cols)
{
extern __shared__ int smem[];
const int patchWidth = blockDim.x + 2 * c_halfWin_x;
const int patchHeight = blockDim.y + 2 * c_halfWin_y;
int* I_patch = smem;
int* dIdx_patch = I_patch + patchWidth * patchHeight;
int* dIdy_patch = dIdx_patch + patchWidth * patchHeight;
const int xBase = blockIdx.x * blockDim.x;
const int yBase = blockIdx.y * blockDim.y;
for (int i = threadIdx.y; i < patchHeight; i += blockDim.y)
{
for (int j = threadIdx.x; j < patchWidth; j += blockDim.x)
{
float x = xBase - c_halfWin_x + j + 0.5f;
float y = yBase - c_halfWin_y + i + 0.5f;
I_patch[i * patchWidth + j] = tex2D(tex_Ib, x, y);
// Sharr Deriv
dIdx_patch[i * patchWidth + j] = 3 * tex2D(tex_Ib, x+1, y-1) + 10 * tex2D(tex_Ib, x+1, y) + 3 * tex2D(tex_Ib, x+1, y+1) -
(3 * tex2D(tex_Ib, x-1, y-1) + 10 * tex2D(tex_Ib, x-1, y) + 3 * tex2D(tex_Ib, x-1, y+1));
dIdy_patch[i * patchWidth + j] = 3 * tex2D(tex_Ib, x-1, y+1) + 10 * tex2D(tex_Ib, x, y+1) + 3 * tex2D(tex_Ib, x+1, y+1) -
(3 * tex2D(tex_Ib, x-1, y-1) + 10 * tex2D(tex_Ib, x, y-1) + 3 * tex2D(tex_Ib, x+1, y-1));
}
}
__syncthreads();
const int x = xBase + threadIdx.x;
const int y = yBase + threadIdx.y;
if (x >= cols || y >= rows)
return;
int A11i = 0;
int A12i = 0;
int A22i = 0;
for (int i = 0; i < c_winSize_y; ++i)
{
for (int j = 0; j < c_winSize_x; ++j)
{
int dIdx = dIdx_patch[(threadIdx.y + i) * patchWidth + (threadIdx.x + j)];
int dIdy = dIdy_patch[(threadIdx.y + i) * patchWidth + (threadIdx.x + j)];
A11i += dIdx * dIdx;
A12i += dIdx * dIdy;
A22i += dIdy * dIdy;
}
}
float A11 = A11i;
float A12 = A12i;
float A22 = A22i;
float D = A11 * A22 - A12 * A12;
if (D < numeric_limits<float>::epsilon())
{
if (calcErr)
err(y, x) = numeric_limits<float>::max();
return;
}
D = 1.f / D;
A11 *= D;
A12 *= D;
A22 *= D;
float2 nextPt;
nextPt.x = x + prevU(y/2, x/2) * 2.0f;
nextPt.y = y + prevV(y/2, x/2) * 2.0f;
for (int k = 0; k < c_iters; ++k)
{
if (nextPt.x < 0 || nextPt.x >= cols || nextPt.y < 0 || nextPt.y >= rows)
{
if (calcErr)
err(y, x) = numeric_limits<float>::max();
return;
}
int b1 = 0;
int b2 = 0;
for (int i = 0; i < c_winSize_y; ++i)
{
for (int j = 0; j < c_winSize_x; ++j)
{
int I = I_patch[(threadIdx.y + i) * patchWidth + threadIdx.x + j];
int J = tex2D(tex_Jf, nextPt.x - c_halfWin_x + j + 0.5f, nextPt.y - c_halfWin_y + i + 0.5f);
int diff = (J - I) * 32;
int dIdx = dIdx_patch[(threadIdx.y + i) * patchWidth + (threadIdx.x + j)];
int dIdy = dIdy_patch[(threadIdx.y + i) * patchWidth + (threadIdx.x + j)];
b1 += diff * dIdx;
b2 += diff * dIdy;
}
}
float2 delta;
delta.x = A12 * b2 - A22 * b1;
delta.y = A12 * b1 - A11 * b2;
nextPt.x += delta.x;
nextPt.y += delta.y;
if (::fabs(delta.x) < 0.01f && ::fabs(delta.y) < 0.01f)
break;
}
u(y, x) = nextPt.x - x;
v(y, x) = nextPt.y - y;
if (calcErr)
{
int errval = 0;
for (int i = 0; i < c_winSize_y; ++i)
{
for (int j = 0; j < c_winSize_x; ++j)
{
int I = I_patch[(threadIdx.y + i) * patchWidth + threadIdx.x + j];
int J = tex2D(tex_Jf, nextPt.x - c_halfWin_x + j + 0.5f, nextPt.y - c_halfWin_y + i + 0.5f);
errval += ::abs(J - I);
}
}
err(y, x) = static_cast<float>(errval) / (c_winSize_x * c_winSize_y);
}
}
void loadConstants(int2 winSize, int iters)
{
cudaSafeCall( cudaMemcpyToSymbol(c_winSize_x, &winSize.x, sizeof(int)) );
cudaSafeCall( cudaMemcpyToSymbol(c_winSize_y, &winSize.y, sizeof(int)) );
int2 halfWin = make_int2((winSize.x - 1) / 2, (winSize.y - 1) / 2);
cudaSafeCall( cudaMemcpyToSymbol(c_halfWin_x, &halfWin.x, sizeof(int)) );
cudaSafeCall( cudaMemcpyToSymbol(c_halfWin_y, &halfWin.y, sizeof(int)) );
cudaSafeCall( cudaMemcpyToSymbol(c_iters, &iters, sizeof(int)) );
}
void sparse1(PtrStepSzf I, PtrStepSzf J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
int level, dim3 block, dim3 patch, cudaStream_t stream)
{
typedef void (*func_t)(int rows, int cols, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
int level, dim3 block, cudaStream_t stream);
static const func_t funcs[5][5] =
{
{sparse_caller<1, 1, 1>, sparse_caller<1, 2, 1>, sparse_caller<1, 3, 1>, sparse_caller<1, 4, 1>, sparse_caller<1, 5, 1>},
{sparse_caller<1, 1, 2>, sparse_caller<1, 2, 2>, sparse_caller<1, 3, 2>, sparse_caller<1, 4, 2>, sparse_caller<1, 5, 2>},
{sparse_caller<1, 1, 3>, sparse_caller<1, 2, 3>, sparse_caller<1, 3, 3>, sparse_caller<1, 4, 3>, sparse_caller<1, 5, 3>},
{sparse_caller<1, 1, 4>, sparse_caller<1, 2, 4>, sparse_caller<1, 3, 4>, sparse_caller<1, 4, 4>, sparse_caller<1, 5, 4>},
{sparse_caller<1, 1, 5>, sparse_caller<1, 2, 5>, sparse_caller<1, 3, 5>, sparse_caller<1, 4, 5>, sparse_caller<1, 5, 5>}
};
bindTexture(&tex_If, I);
bindTexture(&tex_Jf, J);
funcs[patch.y - 1][patch.x - 1](I.rows, I.cols, prevPts, nextPts, status, err, ptcount,
level, block, stream);
}
void sparse4(PtrStepSz<float4> I, PtrStepSz<float4> J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
int level, dim3 block, dim3 patch, cudaStream_t stream)
{
typedef void (*func_t)(int rows, int cols, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
int level, dim3 block, cudaStream_t stream);
static const func_t funcs[5][5] =
{
{sparse_caller<4, 1, 1>, sparse_caller<4, 2, 1>, sparse_caller<4, 3, 1>, sparse_caller<4, 4, 1>, sparse_caller<4, 5, 1>},
{sparse_caller<4, 1, 2>, sparse_caller<4, 2, 2>, sparse_caller<4, 3, 2>, sparse_caller<4, 4, 2>, sparse_caller<4, 5, 2>},
{sparse_caller<4, 1, 3>, sparse_caller<4, 2, 3>, sparse_caller<4, 3, 3>, sparse_caller<4, 4, 3>, sparse_caller<4, 5, 3>},
{sparse_caller<4, 1, 4>, sparse_caller<4, 2, 4>, sparse_caller<4, 3, 4>, sparse_caller<4, 4, 4>, sparse_caller<4, 5, 4>},
{sparse_caller<4, 1, 5>, sparse_caller<4, 2, 5>, sparse_caller<4, 3, 5>, sparse_caller<4, 4, 5>, sparse_caller<4, 5, 5>}
};
bindTexture(&tex_If4, I);
bindTexture(&tex_Jf4, J);
funcs[patch.y - 1][patch.x - 1](I.rows, I.cols, prevPts, nextPts, status, err, ptcount,
level, block, stream);
}
void dense(PtrStepSzb I, PtrStepSzf J, PtrStepSzf u, PtrStepSzf v, PtrStepSzf prevU, PtrStepSzf prevV, PtrStepSzf err, int2 winSize, cudaStream_t stream)
{
dim3 block(16, 16);
dim3 grid(divUp(I.cols, block.x), divUp(I.rows, block.y));
bindTexture(&tex_Ib, I);
bindTexture(&tex_Jf, J);
int2 halfWin = make_int2((winSize.x - 1) / 2, (winSize.y - 1) / 2);
const int patchWidth = block.x + 2 * halfWin.x;
const int patchHeight = block.y + 2 * halfWin.y;
size_t smem_size = 3 * patchWidth * patchHeight * sizeof(int);
if (err.data)
{
denseKernel<true><<<grid, block, smem_size, stream>>>(u, v, prevU, prevV, err, I.rows, I.cols);
cudaSafeCall( cudaGetLastError() );
}
else
{
denseKernel<false><<<grid, block, smem_size, stream>>>(u, v, prevU, prevV, PtrStepf(), I.rows, I.cols);
cudaSafeCall( cudaGetLastError() );
}
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
}
#endif /* CUDA_DISABLER */

View File

@@ -0,0 +1,332 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#if !defined CUDA_DISABLER
#include "opencv2/core/cuda/common.hpp"
#include "opencv2/core/cuda/border_interpolate.hpp"
#include "opencv2/core/cuda/limits.hpp"
using namespace cv::cuda;
using namespace cv::cuda::device;
////////////////////////////////////////////////////////////
// centeredGradient
namespace tvl1flow
{
__global__ void centeredGradientKernel(const PtrStepSzf src, PtrStepf dx, PtrStepf dy)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x >= src.cols || y >= src.rows)
return;
dx(y, x) = 0.5f * (src(y, ::min(x + 1, src.cols - 1)) - src(y, ::max(x - 1, 0)));
dy(y, x) = 0.5f * (src(::min(y + 1, src.rows - 1), x) - src(::max(y - 1, 0), x));
}
void centeredGradient(PtrStepSzf src, PtrStepSzf dx, PtrStepSzf dy)
{
const dim3 block(32, 8);
const dim3 grid(divUp(src.cols, block.x), divUp(src.rows, block.y));
centeredGradientKernel<<<grid, block>>>(src, dx, dy);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
}
////////////////////////////////////////////////////////////
// warpBackward
namespace tvl1flow
{
static __device__ __forceinline__ float bicubicCoeff(float x_)
{
float x = fabsf(x_);
if (x <= 1.0f)
{
return x * x * (1.5f * x - 2.5f) + 1.0f;
}
else if (x < 2.0f)
{
return x * (x * (-0.5f * x + 2.5f) - 4.0f) + 2.0f;
}
else
{
return 0.0f;
}
}
texture<float, cudaTextureType2D, cudaReadModeElementType> tex_I1 (false, cudaFilterModePoint, cudaAddressModeClamp);
texture<float, cudaTextureType2D, cudaReadModeElementType> tex_I1x(false, cudaFilterModePoint, cudaAddressModeClamp);
texture<float, cudaTextureType2D, cudaReadModeElementType> tex_I1y(false, cudaFilterModePoint, cudaAddressModeClamp);
__global__ void warpBackwardKernel(const PtrStepSzf I0, const PtrStepf u1, const PtrStepf u2, PtrStepf I1w, PtrStepf I1wx, PtrStepf I1wy, PtrStepf grad, PtrStepf rho)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x >= I0.cols || y >= I0.rows)
return;
const float u1Val = u1(y, x);
const float u2Val = u2(y, x);
const float wx = x + u1Val;
const float wy = y + u2Val;
const int xmin = ::ceilf(wx - 2.0f);
const int xmax = ::floorf(wx + 2.0f);
const int ymin = ::ceilf(wy - 2.0f);
const int ymax = ::floorf(wy + 2.0f);
float sum = 0.0f;
float sumx = 0.0f;
float sumy = 0.0f;
float wsum = 0.0f;
for (int cy = ymin; cy <= ymax; ++cy)
{
for (int cx = xmin; cx <= xmax; ++cx)
{
const float w = bicubicCoeff(wx - cx) * bicubicCoeff(wy - cy);
sum += w * tex2D(tex_I1 , cx, cy);
sumx += w * tex2D(tex_I1x, cx, cy);
sumy += w * tex2D(tex_I1y, cx, cy);
wsum += w;
}
}
const float coeff = 1.0f / wsum;
const float I1wVal = sum * coeff;
const float I1wxVal = sumx * coeff;
const float I1wyVal = sumy * coeff;
I1w(y, x) = I1wVal;
I1wx(y, x) = I1wxVal;
I1wy(y, x) = I1wyVal;
const float Ix2 = I1wxVal * I1wxVal;
const float Iy2 = I1wyVal * I1wyVal;
// store the |Grad(I1)|^2
grad(y, x) = Ix2 + Iy2;
// compute the constant part of the rho function
const float I0Val = I0(y, x);
rho(y, x) = I1wVal - I1wxVal * u1Val - I1wyVal * u2Val - I0Val;
}
void warpBackward(PtrStepSzf I0, PtrStepSzf I1, PtrStepSzf I1x, PtrStepSzf I1y, PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf I1w, PtrStepSzf I1wx, PtrStepSzf I1wy, PtrStepSzf grad, PtrStepSzf rho)
{
const dim3 block(32, 8);
const dim3 grid(divUp(I0.cols, block.x), divUp(I0.rows, block.y));
bindTexture(&tex_I1 , I1);
bindTexture(&tex_I1x, I1x);
bindTexture(&tex_I1y, I1y);
warpBackwardKernel<<<grid, block>>>(I0, u1, u2, I1w, I1wx, I1wy, grad, rho);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
}
////////////////////////////////////////////////////////////
// estimateU
namespace tvl1flow
{
__device__ float divergence(const PtrStepf& v1, const PtrStepf& v2, int y, int x)
{
if (x > 0 && y > 0)
{
const float v1x = v1(y, x) - v1(y, x - 1);
const float v2y = v2(y, x) - v2(y - 1, x);
return v1x + v2y;
}
else
{
if (y > 0)
return v1(y, 0) + v2(y, 0) - v2(y - 1, 0);
else
{
if (x > 0)
return v1(0, x) - v1(0, x - 1) + v2(0, x);
else
return v1(0, 0) + v2(0, 0);
}
}
}
__global__ void estimateUKernel(const PtrStepSzf I1wx, const PtrStepf I1wy,
const PtrStepf grad, const PtrStepf rho_c,
const PtrStepf p11, const PtrStepf p12, const PtrStepf p21, const PtrStepf p22,
PtrStepf u1, PtrStepf u2, PtrStepf error,
const float l_t, const float theta)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x >= I1wx.cols || y >= I1wx.rows)
return;
const float I1wxVal = I1wx(y, x);
const float I1wyVal = I1wy(y, x);
const float gradVal = grad(y, x);
const float u1OldVal = u1(y, x);
const float u2OldVal = u2(y, x);
const float rho = rho_c(y, x) + (I1wxVal * u1OldVal + I1wyVal * u2OldVal);
// estimate the values of the variable (v1, v2) (thresholding operator TH)
float d1 = 0.0f;
float d2 = 0.0f;
if (rho < -l_t * gradVal)
{
d1 = l_t * I1wxVal;
d2 = l_t * I1wyVal;
}
else if (rho > l_t * gradVal)
{
d1 = -l_t * I1wxVal;
d2 = -l_t * I1wyVal;
}
else if (gradVal > numeric_limits<float>::epsilon())
{
const float fi = -rho / gradVal;
d1 = fi * I1wxVal;
d2 = fi * I1wyVal;
}
const float v1 = u1OldVal + d1;
const float v2 = u2OldVal + d2;
// compute the divergence of the dual variable (p1, p2)
const float div_p1 = divergence(p11, p12, y, x);
const float div_p2 = divergence(p21, p22, y, x);
// estimate the values of the optical flow (u1, u2)
const float u1NewVal = v1 + theta * div_p1;
const float u2NewVal = v2 + theta * div_p2;
u1(y, x) = u1NewVal;
u2(y, x) = u2NewVal;
const float n1 = (u1OldVal - u1NewVal) * (u1OldVal - u1NewVal);
const float n2 = (u2OldVal - u2NewVal) * (u2OldVal - u2NewVal);
error(y, x) = n1 + n2;
}
void estimateU(PtrStepSzf I1wx, PtrStepSzf I1wy,
PtrStepSzf grad, PtrStepSzf rho_c,
PtrStepSzf p11, PtrStepSzf p12, PtrStepSzf p21, PtrStepSzf p22,
PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf error,
float l_t, float theta)
{
const dim3 block(32, 8);
const dim3 grid(divUp(I1wx.cols, block.x), divUp(I1wx.rows, block.y));
estimateUKernel<<<grid, block>>>(I1wx, I1wy, grad, rho_c, p11, p12, p21, p22, u1, u2, error, l_t, theta);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
}
////////////////////////////////////////////////////////////
// estimateDualVariables
namespace tvl1flow
{
__global__ void estimateDualVariablesKernel(const PtrStepSzf u1, const PtrStepf u2, PtrStepf p11, PtrStepf p12, PtrStepf p21, PtrStepf p22, const float taut)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x >= u1.cols || y >= u1.rows)
return;
const float u1x = u1(y, ::min(x + 1, u1.cols - 1)) - u1(y, x);
const float u1y = u1(::min(y + 1, u1.rows - 1), x) - u1(y, x);
const float u2x = u2(y, ::min(x + 1, u1.cols - 1)) - u2(y, x);
const float u2y = u2(::min(y + 1, u1.rows - 1), x) - u2(y, x);
const float g1 = ::hypotf(u1x, u1y);
const float g2 = ::hypotf(u2x, u2y);
const float ng1 = 1.0f + taut * g1;
const float ng2 = 1.0f + taut * g2;
p11(y, x) = (p11(y, x) + taut * u1x) / ng1;
p12(y, x) = (p12(y, x) + taut * u1y) / ng1;
p21(y, x) = (p21(y, x) + taut * u2x) / ng2;
p22(y, x) = (p22(y, x) + taut * u2y) / ng2;
}
void estimateDualVariables(PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf p11, PtrStepSzf p12, PtrStepSzf p21, PtrStepSzf p22, float taut)
{
const dim3 block(32, 8);
const dim3 grid(divUp(u1.cols, block.x), divUp(u1.rows, block.y));
estimateDualVariablesKernel<<<grid, block>>>(u1, u2, p11, p12, p21, p22, taut);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
}
#endif // !defined CUDA_DISABLER

View File

@@ -0,0 +1,378 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#define MIN_SIZE 32
#define S(x) StreamAccessor::getStream(x)
// GPU resize() is fast, but it differs from the CPU analog. Disabling this flag
// leads to an inefficient code. It's for debug purposes only.
#define ENABLE_GPU_RESIZE 1
using namespace cv;
using namespace cv::cuda;
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
void cv::cuda::FarnebackOpticalFlow::operator ()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); }
#else
namespace cv { namespace cuda { namespace device { namespace optflow_farneback
{
void setPolynomialExpansionConsts(
int polyN, const float *g, const float *xg, const float *xxg,
float ig11, float ig03, float ig33, float ig55);
void polynomialExpansionGpu(const PtrStepSzf &src, int polyN, PtrStepSzf dst, cudaStream_t stream);
void setUpdateMatricesConsts();
void updateMatricesGpu(
const PtrStepSzf flowx, const PtrStepSzf flowy, const PtrStepSzf R0, const PtrStepSzf R1,
PtrStepSzf M, cudaStream_t stream);
void updateFlowGpu(
const PtrStepSzf M, PtrStepSzf flowx, PtrStepSzf flowy, cudaStream_t stream);
/*void boxFilterGpu(const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, cudaStream_t stream);*/
void boxFilter5Gpu(const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, cudaStream_t stream);
void boxFilter5Gpu_CC11(const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, cudaStream_t stream);
void setGaussianBlurKernel(const float *gKer, int ksizeHalf);
void gaussianBlurGpu(
const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, int borderType, cudaStream_t stream);
void gaussianBlur5Gpu(
const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, int borderType, cudaStream_t stream);
void gaussianBlur5Gpu_CC11(
const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, int borderType, cudaStream_t stream);
}}}} // namespace cv { namespace cuda { namespace cudev { namespace optflow_farneback
void cv::cuda::FarnebackOpticalFlow::prepareGaussian(
int n, double sigma, float *g, float *xg, float *xxg,
double &ig11, double &ig03, double &ig33, double &ig55)
{
double s = 0.;
for (int x = -n; x <= n; x++)
{
g[x] = (float)std::exp(-x*x/(2*sigma*sigma));
s += g[x];
}
s = 1./s;
for (int x = -n; x <= n; x++)
{
g[x] = (float)(g[x]*s);
xg[x] = (float)(x*g[x]);
xxg[x] = (float)(x*x*g[x]);
}
Mat_<double> G(6, 6);
G.setTo(0);
for (int y = -n; y <= n; y++)
{
for (int x = -n; x <= n; x++)
{
G(0,0) += g[y]*g[x];
G(1,1) += g[y]*g[x]*x*x;
G(3,3) += g[y]*g[x]*x*x*x*x;
G(5,5) += g[y]*g[x]*x*x*y*y;
}
}
//G[0][0] = 1.;
G(2,2) = G(0,3) = G(0,4) = G(3,0) = G(4,0) = G(1,1);
G(4,4) = G(3,3);
G(3,4) = G(4,3) = G(5,5);
// invG:
// [ x e e ]
// [ y ]
// [ y ]
// [ e z ]
// [ e z ]
// [ u ]
Mat_<double> invG = G.inv(DECOMP_CHOLESKY);
ig11 = invG(1,1);
ig03 = invG(0,3);
ig33 = invG(3,3);
ig55 = invG(5,5);
}
void cv::cuda::FarnebackOpticalFlow::setPolynomialExpansionConsts(int n, double sigma)
{
std::vector<float> buf(n*6 + 3);
float* g = &buf[0] + n;
float* xg = g + n*2 + 1;
float* xxg = xg + n*2 + 1;
if (sigma < FLT_EPSILON)
sigma = n*0.3;
double ig11, ig03, ig33, ig55;
prepareGaussian(n, sigma, g, xg, xxg, ig11, ig03, ig33, ig55);
device::optflow_farneback::setPolynomialExpansionConsts(n, g, xg, xxg, static_cast<float>(ig11), static_cast<float>(ig03), static_cast<float>(ig33), static_cast<float>(ig55));
}
void cv::cuda::FarnebackOpticalFlow::updateFlow_boxFilter(
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat &flowy,
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[])
{
if (deviceSupports(FEATURE_SET_COMPUTE_12))
device::optflow_farneback::boxFilter5Gpu(M, blockSize/2, bufM, S(streams[0]));
else
device::optflow_farneback::boxFilter5Gpu_CC11(M, blockSize/2, bufM, S(streams[0]));
swap(M, bufM);
for (int i = 1; i < 5; ++i)
streams[i].waitForCompletion();
device::optflow_farneback::updateFlowGpu(M, flowx, flowy, S(streams[0]));
if (updateMatrices)
device::optflow_farneback::updateMatricesGpu(flowx, flowy, R0, R1, M, S(streams[0]));
}
void cv::cuda::FarnebackOpticalFlow::updateFlow_gaussianBlur(
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat& flowy,
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[])
{
if (deviceSupports(FEATURE_SET_COMPUTE_12))
device::optflow_farneback::gaussianBlur5Gpu(
M, blockSize/2, bufM, BORDER_REPLICATE, S(streams[0]));
else
device::optflow_farneback::gaussianBlur5Gpu_CC11(
M, blockSize/2, bufM, BORDER_REPLICATE, S(streams[0]));
swap(M, bufM);
device::optflow_farneback::updateFlowGpu(M, flowx, flowy, S(streams[0]));
if (updateMatrices)
device::optflow_farneback::updateMatricesGpu(flowx, flowy, R0, R1, M, S(streams[0]));
}
void cv::cuda::FarnebackOpticalFlow::operator ()(
const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &s)
{
CV_Assert(frame0.channels() == 1 && frame1.channels() == 1);
CV_Assert(frame0.size() == frame1.size());
CV_Assert(polyN == 5 || polyN == 7);
CV_Assert(!fastPyramids || std::abs(pyrScale - 0.5) < 1e-6);
Stream streams[5];
if (S(s))
streams[0] = s;
Size size = frame0.size();
GpuMat prevFlowX, prevFlowY, curFlowX, curFlowY;
flowx.create(size, CV_32F);
flowy.create(size, CV_32F);
GpuMat flowx0 = flowx;
GpuMat flowy0 = flowy;
// Crop unnecessary levels
double scale = 1;
int numLevelsCropped = 0;
for (; numLevelsCropped < numLevels; numLevelsCropped++)
{
scale *= pyrScale;
if (size.width*scale < MIN_SIZE || size.height*scale < MIN_SIZE)
break;
}
frame0.convertTo(frames_[0], CV_32F, streams[0]);
frame1.convertTo(frames_[1], CV_32F, streams[1]);
if (fastPyramids)
{
// Build Gaussian pyramids using pyrDown()
pyramid0_.resize(numLevelsCropped + 1);
pyramid1_.resize(numLevelsCropped + 1);
pyramid0_[0] = frames_[0];
pyramid1_[0] = frames_[1];
for (int i = 1; i <= numLevelsCropped; ++i)
{
cuda::pyrDown(pyramid0_[i - 1], pyramid0_[i], streams[0]);
cuda::pyrDown(pyramid1_[i - 1], pyramid1_[i], streams[1]);
}
}
setPolynomialExpansionConsts(polyN, polySigma);
device::optflow_farneback::setUpdateMatricesConsts();
for (int k = numLevelsCropped; k >= 0; k--)
{
streams[0].waitForCompletion();
scale = 1;
for (int i = 0; i < k; i++)
scale *= pyrScale;
double sigma = (1./scale - 1) * 0.5;
int smoothSize = cvRound(sigma*5) | 1;
smoothSize = std::max(smoothSize, 3);
int width = cvRound(size.width*scale);
int height = cvRound(size.height*scale);
if (fastPyramids)
{
width = pyramid0_[k].cols;
height = pyramid0_[k].rows;
}
if (k > 0)
{
curFlowX.create(height, width, CV_32F);
curFlowY.create(height, width, CV_32F);
}
else
{
curFlowX = flowx0;
curFlowY = flowy0;
}
if (!prevFlowX.data)
{
if (flags & OPTFLOW_USE_INITIAL_FLOW)
{
cuda::resize(flowx0, curFlowX, Size(width, height), 0, 0, INTER_LINEAR, streams[0]);
cuda::resize(flowy0, curFlowY, Size(width, height), 0, 0, INTER_LINEAR, streams[1]);
curFlowX.convertTo(curFlowX, curFlowX.depth(), scale, streams[0]);
curFlowY.convertTo(curFlowY, curFlowY.depth(), scale, streams[1]);
}
else
{
curFlowX.setTo(0, streams[0]);
curFlowY.setTo(0, streams[1]);
}
}
else
{
cuda::resize(prevFlowX, curFlowX, Size(width, height), 0, 0, INTER_LINEAR, streams[0]);
cuda::resize(prevFlowY, curFlowY, Size(width, height), 0, 0, INTER_LINEAR, streams[1]);
curFlowX.convertTo(curFlowX, curFlowX.depth(), 1./pyrScale, streams[0]);
curFlowY.convertTo(curFlowY, curFlowY.depth(), 1./pyrScale, streams[1]);
}
GpuMat M = allocMatFromBuf(5*height, width, CV_32F, M_);
GpuMat bufM = allocMatFromBuf(5*height, width, CV_32F, bufM_);
GpuMat R[2] =
{
allocMatFromBuf(5*height, width, CV_32F, R_[0]),
allocMatFromBuf(5*height, width, CV_32F, R_[1])
};
if (fastPyramids)
{
device::optflow_farneback::polynomialExpansionGpu(pyramid0_[k], polyN, R[0], S(streams[0]));
device::optflow_farneback::polynomialExpansionGpu(pyramid1_[k], polyN, R[1], S(streams[1]));
}
else
{
GpuMat blurredFrame[2] =
{
allocMatFromBuf(size.height, size.width, CV_32F, blurredFrame_[0]),
allocMatFromBuf(size.height, size.width, CV_32F, blurredFrame_[1])
};
GpuMat pyrLevel[2] =
{
allocMatFromBuf(height, width, CV_32F, pyrLevel_[0]),
allocMatFromBuf(height, width, CV_32F, pyrLevel_[1])
};
Mat g = getGaussianKernel(smoothSize, sigma, CV_32F);
device::optflow_farneback::setGaussianBlurKernel(g.ptr<float>(smoothSize/2), smoothSize/2);
for (int i = 0; i < 2; i++)
{
device::optflow_farneback::gaussianBlurGpu(
frames_[i], smoothSize/2, blurredFrame[i], BORDER_REFLECT101, S(streams[i]));
cuda::resize(blurredFrame[i], pyrLevel[i], Size(width, height), 0.0, 0.0, INTER_LINEAR, streams[i]);
device::optflow_farneback::polynomialExpansionGpu(pyrLevel[i], polyN, R[i], S(streams[i]));
}
}
streams[1].waitForCompletion();
device::optflow_farneback::updateMatricesGpu(curFlowX, curFlowY, R[0], R[1], M, S(streams[0]));
if (flags & OPTFLOW_FARNEBACK_GAUSSIAN)
{
Mat g = getGaussianKernel(winSize, winSize/2*0.3f, CV_32F);
device::optflow_farneback::setGaussianBlurKernel(g.ptr<float>(winSize/2), winSize/2);
}
for (int i = 0; i < numIters; i++)
{
if (flags & OPTFLOW_FARNEBACK_GAUSSIAN)
updateFlow_gaussianBlur(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize, i < numIters-1, streams);
else
updateFlow_boxFilter(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize, i < numIters-1, streams);
}
prevFlowX = curFlowX;
prevFlowY = curFlowY;
}
flowx = curFlowX;
flowy = curFlowY;
if (!S(s))
streams[0].waitForCompletion();
}
#endif

View File

@@ -0,0 +1,113 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::cuda;
#if !defined (HAVE_CUDA) || !defined (HAVE_OPENCV_CUDALEGACY) || defined (CUDA_DISABLER)
void cv::cuda::interpolateFrames(const GpuMat&, const GpuMat&, const GpuMat&, const GpuMat&, const GpuMat&, const GpuMat&, float, GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); }
#else
void cv::cuda::interpolateFrames(const GpuMat& frame0, const GpuMat& frame1, const GpuMat& fu, const GpuMat& fv, const GpuMat& bu, const GpuMat& bv,
float pos, GpuMat& newFrame, GpuMat& buf, Stream& s)
{
CV_Assert(frame0.type() == CV_32FC1);
CV_Assert(frame1.size() == frame0.size() && frame1.type() == frame0.type());
CV_Assert(fu.size() == frame0.size() && fu.type() == frame0.type());
CV_Assert(fv.size() == frame0.size() && fv.type() == frame0.type());
CV_Assert(bu.size() == frame0.size() && bu.type() == frame0.type());
CV_Assert(bv.size() == frame0.size() && bv.type() == frame0.type());
newFrame.create(frame0.size(), frame0.type());
buf.create(6 * frame0.rows, frame0.cols, CV_32FC1);
buf.setTo(Scalar::all(0));
// occlusion masks
GpuMat occ0 = buf.rowRange(0 * frame0.rows, 1 * frame0.rows);
GpuMat occ1 = buf.rowRange(1 * frame0.rows, 2 * frame0.rows);
// interpolated forward flow
GpuMat fui = buf.rowRange(2 * frame0.rows, 3 * frame0.rows);
GpuMat fvi = buf.rowRange(3 * frame0.rows, 4 * frame0.rows);
// interpolated backward flow
GpuMat bui = buf.rowRange(4 * frame0.rows, 5 * frame0.rows);
GpuMat bvi = buf.rowRange(5 * frame0.rows, 6 * frame0.rows);
size_t step = frame0.step;
CV_Assert(frame1.step == step && fu.step == step && fv.step == step && bu.step == step && bv.step == step && newFrame.step == step && buf.step == step);
cudaStream_t stream = StreamAccessor::getStream(s);
NppStStreamHandler h(stream);
NppStInterpolationState state;
state.size = NcvSize32u(frame0.cols, frame0.rows);
state.nStep = static_cast<Ncv32u>(step);
state.pSrcFrame0 = const_cast<Ncv32f*>(frame0.ptr<Ncv32f>());
state.pSrcFrame1 = const_cast<Ncv32f*>(frame1.ptr<Ncv32f>());
state.pFU = const_cast<Ncv32f*>(fu.ptr<Ncv32f>());
state.pFV = const_cast<Ncv32f*>(fv.ptr<Ncv32f>());
state.pBU = const_cast<Ncv32f*>(bu.ptr<Ncv32f>());
state.pBV = const_cast<Ncv32f*>(bv.ptr<Ncv32f>());
state.pos = pos;
state.pNewFrame = newFrame.ptr<Ncv32f>();
state.ppBuffers[0] = occ0.ptr<Ncv32f>();
state.ppBuffers[1] = occ1.ptr<Ncv32f>();
state.ppBuffers[2] = fui.ptr<Ncv32f>();
state.ppBuffers[3] = fvi.ptr<Ncv32f>();
state.ppBuffers[4] = bui.ptr<Ncv32f>();
state.ppBuffers[5] = bvi.ptr<Ncv32f>();
ncvSafeCall( nppiStInterpolateFrames(&state) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
#endif /* HAVE_CUDA */

View File

@@ -0,0 +1,100 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::cuda;
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
void cv::cuda::createOpticalFlowNeedleMap(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&) { throw_no_cuda(); }
#else
namespace cv { namespace cuda { namespace device
{
namespace optical_flow
{
void NeedleMapAverage_gpu(PtrStepSzf u, PtrStepSzf v, PtrStepSzf u_avg, PtrStepSzf v_avg);
void CreateOpticalFlowNeedleMap_gpu(PtrStepSzf u_avg, PtrStepSzf v_avg, float* vertex_buffer, float* color_data, float max_flow, float xscale, float yscale);
}
}}}
void cv::cuda::createOpticalFlowNeedleMap(const GpuMat& u, const GpuMat& v, GpuMat& vertex, GpuMat& colors)
{
using namespace cv::cuda::device::optical_flow;
CV_Assert(u.type() == CV_32FC1);
CV_Assert(v.type() == u.type() && v.size() == u.size());
const int NEEDLE_MAP_SCALE = 16;
const int x_needles = u.cols / NEEDLE_MAP_SCALE;
const int y_needles = u.rows / NEEDLE_MAP_SCALE;
GpuMat u_avg(y_needles, x_needles, CV_32FC1);
GpuMat v_avg(y_needles, x_needles, CV_32FC1);
NeedleMapAverage_gpu(u, v, u_avg, v_avg);
const int NUM_VERTS_PER_ARROW = 6;
const int num_arrows = x_needles * y_needles * NUM_VERTS_PER_ARROW;
vertex.create(1, num_arrows, CV_32FC3);
colors.create(1, num_arrows, CV_32FC3);
colors.setTo(Scalar::all(1.0));
double uMax, vMax;
cuda::minMax(u_avg, 0, &uMax);
cuda::minMax(v_avg, 0, &vMax);
float max_flow = static_cast<float>(std::sqrt(uMax * uMax + vMax * vMax));
CreateOpticalFlowNeedleMap_gpu(u_avg, v_avg, vertex.ptr<float>(), colors.ptr<float>(), max_flow, 1.0f / u.cols, 1.0f / u.rows);
cuda::cvtColor(colors, colors, COLOR_HSV2RGB);
}
#endif /* HAVE_CUDA */

View File

@@ -0,0 +1,43 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"

View File

@@ -0,0 +1,62 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_PRECOMP_H__
#define __OPENCV_PRECOMP_H__
#include <limits>
#include "opencv2/cudaoptflow.hpp"
#include "opencv2/cudaarithm.hpp"
#include "opencv2/cudawarping.hpp"
#include "opencv2/cudaimgproc.hpp"
#include "opencv2/video.hpp"
#include "opencv2/core/private.cuda.hpp"
#include "opencv2/opencv_modules.hpp"
#ifdef HAVE_OPENCV_CUDALEGACY
# include "opencv2/cudalegacy/private.hpp"
#endif
#endif /* __OPENCV_PRECOMP_H__ */

View File

@@ -0,0 +1,250 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::cuda;
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
cv::cuda::PyrLKOpticalFlow::PyrLKOpticalFlow() { throw_no_cuda(); }
void cv::cuda::PyrLKOpticalFlow::sparse(const GpuMat&, const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat*) { throw_no_cuda(); }
void cv::cuda::PyrLKOpticalFlow::dense(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat*) { throw_no_cuda(); }
void cv::cuda::PyrLKOpticalFlow::releaseMemory() {}
#else /* !defined (HAVE_CUDA) */
namespace pyrlk
{
void loadConstants(int2 winSize, int iters);
void sparse1(PtrStepSzf I, PtrStepSzf J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
int level, dim3 block, dim3 patch, cudaStream_t stream = 0);
void sparse4(PtrStepSz<float4> I, PtrStepSz<float4> J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
int level, dim3 block, dim3 patch, cudaStream_t stream = 0);
void dense(PtrStepSzb I, PtrStepSzf J, PtrStepSzf u, PtrStepSzf v, PtrStepSzf prevU, PtrStepSzf prevV,
PtrStepSzf err, int2 winSize, cudaStream_t stream = 0);
}
cv::cuda::PyrLKOpticalFlow::PyrLKOpticalFlow()
{
winSize = Size(21, 21);
maxLevel = 3;
iters = 30;
useInitialFlow = false;
}
namespace
{
void calcPatchSize(cv::Size winSize, dim3& block, dim3& patch)
{
if (winSize.width > 32 && winSize.width > 2 * winSize.height)
{
block.x = deviceSupports(FEATURE_SET_COMPUTE_12) ? 32 : 16;
block.y = 8;
}
else
{
block.x = 16;
block.y = deviceSupports(FEATURE_SET_COMPUTE_12) ? 16 : 8;
}
patch.x = (winSize.width + block.x - 1) / block.x;
patch.y = (winSize.height + block.y - 1) / block.y;
block.z = patch.z = 1;
}
}
void cv::cuda::PyrLKOpticalFlow::sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts, GpuMat& status, GpuMat* err)
{
if (prevPts.empty())
{
nextPts.release();
status.release();
if (err) err->release();
return;
}
dim3 block, patch;
calcPatchSize(winSize, block, patch);
CV_Assert(prevImg.channels() == 1 || prevImg.channels() == 3 || prevImg.channels() == 4);
CV_Assert(prevImg.size() == nextImg.size() && prevImg.type() == nextImg.type());
CV_Assert(maxLevel >= 0);
CV_Assert(winSize.width > 2 && winSize.height > 2);
CV_Assert(patch.x > 0 && patch.x < 6 && patch.y > 0 && patch.y < 6);
CV_Assert(prevPts.rows == 1 && prevPts.type() == CV_32FC2);
if (useInitialFlow)
CV_Assert(nextPts.size() == prevPts.size() && nextPts.type() == CV_32FC2);
else
ensureSizeIsEnough(1, prevPts.cols, prevPts.type(), nextPts);
GpuMat temp1 = (useInitialFlow ? nextPts : prevPts).reshape(1);
GpuMat temp2 = nextPts.reshape(1);
cuda::multiply(temp1, Scalar::all(1.0 / (1 << maxLevel) / 2.0), temp2);
ensureSizeIsEnough(1, prevPts.cols, CV_8UC1, status);
status.setTo(Scalar::all(1));
if (err)
ensureSizeIsEnough(1, prevPts.cols, CV_32FC1, *err);
// build the image pyramids.
prevPyr_.resize(maxLevel + 1);
nextPyr_.resize(maxLevel + 1);
int cn = prevImg.channels();
if (cn == 1 || cn == 4)
{
prevImg.convertTo(prevPyr_[0], CV_32F);
nextImg.convertTo(nextPyr_[0], CV_32F);
}
else
{
cuda::cvtColor(prevImg, buf_, COLOR_BGR2BGRA);
buf_.convertTo(prevPyr_[0], CV_32F);
cuda::cvtColor(nextImg, buf_, COLOR_BGR2BGRA);
buf_.convertTo(nextPyr_[0], CV_32F);
}
for (int level = 1; level <= maxLevel; ++level)
{
cuda::pyrDown(prevPyr_[level - 1], prevPyr_[level]);
cuda::pyrDown(nextPyr_[level - 1], nextPyr_[level]);
}
pyrlk::loadConstants(make_int2(winSize.width, winSize.height), iters);
for (int level = maxLevel; level >= 0; level--)
{
if (cn == 1)
{
pyrlk::sparse1(prevPyr_[level], nextPyr_[level],
prevPts.ptr<float2>(), nextPts.ptr<float2>(), status.ptr(), level == 0 && err ? err->ptr<float>() : 0, prevPts.cols,
level, block, patch);
}
else
{
pyrlk::sparse4(prevPyr_[level], nextPyr_[level],
prevPts.ptr<float2>(), nextPts.ptr<float2>(), status.ptr(), level == 0 && err ? err->ptr<float>() : 0, prevPts.cols,
level, block, patch);
}
}
}
void cv::cuda::PyrLKOpticalFlow::dense(const GpuMat& prevImg, const GpuMat& nextImg, GpuMat& u, GpuMat& v, GpuMat* err)
{
CV_Assert(prevImg.type() == CV_8UC1);
CV_Assert(prevImg.size() == nextImg.size() && prevImg.type() == nextImg.type());
CV_Assert(maxLevel >= 0);
CV_Assert(winSize.width > 2 && winSize.height > 2);
if (err)
err->create(prevImg.size(), CV_32FC1);
// build the image pyramids.
prevPyr_.resize(maxLevel + 1);
nextPyr_.resize(maxLevel + 1);
prevPyr_[0] = prevImg;
nextImg.convertTo(nextPyr_[0], CV_32F);
for (int level = 1; level <= maxLevel; ++level)
{
cuda::pyrDown(prevPyr_[level - 1], prevPyr_[level]);
cuda::pyrDown(nextPyr_[level - 1], nextPyr_[level]);
}
ensureSizeIsEnough(prevImg.size(), CV_32FC1, uPyr_[0]);
ensureSizeIsEnough(prevImg.size(), CV_32FC1, vPyr_[0]);
ensureSizeIsEnough(prevImg.size(), CV_32FC1, uPyr_[1]);
ensureSizeIsEnough(prevImg.size(), CV_32FC1, vPyr_[1]);
uPyr_[0].setTo(Scalar::all(0));
vPyr_[0].setTo(Scalar::all(0));
uPyr_[1].setTo(Scalar::all(0));
vPyr_[1].setTo(Scalar::all(0));
int2 winSize2i = make_int2(winSize.width, winSize.height);
pyrlk::loadConstants(winSize2i, iters);
PtrStepSzf derr = err ? *err : PtrStepSzf();
int idx = 0;
for (int level = maxLevel; level >= 0; level--)
{
int idx2 = (idx + 1) & 1;
pyrlk::dense(prevPyr_[level], nextPyr_[level], uPyr_[idx], vPyr_[idx], uPyr_[idx2], vPyr_[idx2],
level == 0 ? derr : PtrStepSzf(), winSize2i);
if (level > 0)
idx = idx2;
}
uPyr_[idx].copyTo(u);
vPyr_[idx].copyTo(v);
}
void cv::cuda::PyrLKOpticalFlow::releaseMemory()
{
prevPyr_.clear();
nextPyr_.clear();
buf_.release();
uPyr_[0].release();
vPyr_[0].release();
uPyr_[1].release();
vPyr_[1].release();
}
#endif /* !defined (HAVE_CUDA) */

View File

@@ -0,0 +1,259 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
cv::cuda::OpticalFlowDual_TVL1_GPU::OpticalFlowDual_TVL1_GPU() { throw_no_cuda(); }
void cv::cuda::OpticalFlowDual_TVL1_GPU::operator ()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&) { throw_no_cuda(); }
void cv::cuda::OpticalFlowDual_TVL1_GPU::collectGarbage() {}
void cv::cuda::OpticalFlowDual_TVL1_GPU::procOneScale(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&) { throw_no_cuda(); }
#else
using namespace cv;
using namespace cv::cuda;
cv::cuda::OpticalFlowDual_TVL1_GPU::OpticalFlowDual_TVL1_GPU()
{
tau = 0.25;
lambda = 0.15;
theta = 0.3;
nscales = 5;
warps = 5;
epsilon = 0.01;
iterations = 300;
scaleStep = 0.8;
useInitialFlow = false;
}
void cv::cuda::OpticalFlowDual_TVL1_GPU::operator ()(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy)
{
CV_Assert( I0.type() == CV_8UC1 || I0.type() == CV_32FC1 );
CV_Assert( I0.size() == I1.size() );
CV_Assert( I0.type() == I1.type() );
CV_Assert( !useInitialFlow || (flowx.size() == I0.size() && flowx.type() == CV_32FC1 && flowy.size() == flowx.size() && flowy.type() == flowx.type()) );
CV_Assert( nscales > 0 );
// allocate memory for the pyramid structure
I0s.resize(nscales);
I1s.resize(nscales);
u1s.resize(nscales);
u2s.resize(nscales);
I0.convertTo(I0s[0], CV_32F, I0.depth() == CV_8U ? 1.0 : 255.0);
I1.convertTo(I1s[0], CV_32F, I1.depth() == CV_8U ? 1.0 : 255.0);
if (!useInitialFlow)
{
flowx.create(I0.size(), CV_32FC1);
flowy.create(I0.size(), CV_32FC1);
}
u1s[0] = flowx;
u2s[0] = flowy;
I1x_buf.create(I0.size(), CV_32FC1);
I1y_buf.create(I0.size(), CV_32FC1);
I1w_buf.create(I0.size(), CV_32FC1);
I1wx_buf.create(I0.size(), CV_32FC1);
I1wy_buf.create(I0.size(), CV_32FC1);
grad_buf.create(I0.size(), CV_32FC1);
rho_c_buf.create(I0.size(), CV_32FC1);
p11_buf.create(I0.size(), CV_32FC1);
p12_buf.create(I0.size(), CV_32FC1);
p21_buf.create(I0.size(), CV_32FC1);
p22_buf.create(I0.size(), CV_32FC1);
diff_buf.create(I0.size(), CV_32FC1);
// create the scales
for (int s = 1; s < nscales; ++s)
{
cuda::resize(I0s[s-1], I0s[s], Size(), scaleStep, scaleStep);
cuda::resize(I1s[s-1], I1s[s], Size(), scaleStep, scaleStep);
if (I0s[s].cols < 16 || I0s[s].rows < 16)
{
nscales = s;
break;
}
if (useInitialFlow)
{
cuda::resize(u1s[s-1], u1s[s], Size(), scaleStep, scaleStep);
cuda::resize(u2s[s-1], u2s[s], Size(), scaleStep, scaleStep);
cuda::multiply(u1s[s], Scalar::all(scaleStep), u1s[s]);
cuda::multiply(u2s[s], Scalar::all(scaleStep), u2s[s]);
}
else
{
u1s[s].create(I0s[s].size(), CV_32FC1);
u2s[s].create(I0s[s].size(), CV_32FC1);
}
}
if (!useInitialFlow)
{
u1s[nscales-1].setTo(Scalar::all(0));
u2s[nscales-1].setTo(Scalar::all(0));
}
// pyramidal structure for computing the optical flow
for (int s = nscales - 1; s >= 0; --s)
{
// compute the optical flow at the current scale
procOneScale(I0s[s], I1s[s], u1s[s], u2s[s]);
// if this was the last scale, finish now
if (s == 0)
break;
// otherwise, upsample the optical flow
// zoom the optical flow for the next finer scale
cuda::resize(u1s[s], u1s[s - 1], I0s[s - 1].size());
cuda::resize(u2s[s], u2s[s - 1], I0s[s - 1].size());
// scale the optical flow with the appropriate zoom factor
cuda::multiply(u1s[s - 1], Scalar::all(1/scaleStep), u1s[s - 1]);
cuda::multiply(u2s[s - 1], Scalar::all(1/scaleStep), u2s[s - 1]);
}
}
namespace tvl1flow
{
void centeredGradient(PtrStepSzf src, PtrStepSzf dx, PtrStepSzf dy);
void warpBackward(PtrStepSzf I0, PtrStepSzf I1, PtrStepSzf I1x, PtrStepSzf I1y, PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf I1w, PtrStepSzf I1wx, PtrStepSzf I1wy, PtrStepSzf grad, PtrStepSzf rho);
void estimateU(PtrStepSzf I1wx, PtrStepSzf I1wy,
PtrStepSzf grad, PtrStepSzf rho_c,
PtrStepSzf p11, PtrStepSzf p12, PtrStepSzf p21, PtrStepSzf p22,
PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf error,
float l_t, float theta);
void estimateDualVariables(PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf p11, PtrStepSzf p12, PtrStepSzf p21, PtrStepSzf p22, float taut);
}
void cv::cuda::OpticalFlowDual_TVL1_GPU::procOneScale(const GpuMat& I0, const GpuMat& I1, GpuMat& u1, GpuMat& u2)
{
using namespace tvl1flow;
const double scaledEpsilon = epsilon * epsilon * I0.size().area();
CV_DbgAssert( I1.size() == I0.size() );
CV_DbgAssert( I1.type() == I0.type() );
CV_DbgAssert( u1.size() == I0.size() );
CV_DbgAssert( u2.size() == u1.size() );
GpuMat I1x = I1x_buf(Rect(0, 0, I0.cols, I0.rows));
GpuMat I1y = I1y_buf(Rect(0, 0, I0.cols, I0.rows));
centeredGradient(I1, I1x, I1y);
GpuMat I1w = I1w_buf(Rect(0, 0, I0.cols, I0.rows));
GpuMat I1wx = I1wx_buf(Rect(0, 0, I0.cols, I0.rows));
GpuMat I1wy = I1wy_buf(Rect(0, 0, I0.cols, I0.rows));
GpuMat grad = grad_buf(Rect(0, 0, I0.cols, I0.rows));
GpuMat rho_c = rho_c_buf(Rect(0, 0, I0.cols, I0.rows));
GpuMat p11 = p11_buf(Rect(0, 0, I0.cols, I0.rows));
GpuMat p12 = p12_buf(Rect(0, 0, I0.cols, I0.rows));
GpuMat p21 = p21_buf(Rect(0, 0, I0.cols, I0.rows));
GpuMat p22 = p22_buf(Rect(0, 0, I0.cols, I0.rows));
p11.setTo(Scalar::all(0));
p12.setTo(Scalar::all(0));
p21.setTo(Scalar::all(0));
p22.setTo(Scalar::all(0));
GpuMat diff = diff_buf(Rect(0, 0, I0.cols, I0.rows));
const float l_t = static_cast<float>(lambda * theta);
const float taut = static_cast<float>(tau / theta);
for (int warpings = 0; warpings < warps; ++warpings)
{
warpBackward(I0, I1, I1x, I1y, u1, u2, I1w, I1wx, I1wy, grad, rho_c);
double error = std::numeric_limits<double>::max();
for (int n = 0; error > scaledEpsilon && n < iterations; ++n)
{
estimateU(I1wx, I1wy, grad, rho_c, p11, p12, p21, p22, u1, u2, diff, l_t, static_cast<float>(theta));
if (epsilon > 0)
error = cuda::sum(diff, norm_buf)[0];
estimateDualVariables(u1, u2, p11, p12, p21, p22, taut);
}
}
}
void cv::cuda::OpticalFlowDual_TVL1_GPU::collectGarbage()
{
I0s.clear();
I1s.clear();
u1s.clear();
u2s.clear();
I1x_buf.release();
I1y_buf.release();
I1w_buf.release();
I1wx_buf.release();
I1wy_buf.release();
grad_buf.release();
rho_c_buf.release();
p11_buf.release();
p12_buf.release();
p21_buf.release();
p22_buf.release();
diff_buf.release();
norm_buf.release();
}
#endif // !defined HAVE_CUDA || defined(CUDA_DISABLER)