Add k-means python test, fix loading images in calibration test
This commit is contained in:
parent
5625d79508
commit
56571561b4
@ -27,6 +27,7 @@ from test_houghcircles import houghcircles_test
|
||||
from test_houghlines import houghlines_test
|
||||
from test_gaussian_mix import gaussian_mix_test
|
||||
from test_facedetect import facedetect_test
|
||||
from test_kmeans import kmeans_test
|
||||
|
||||
# Python 3 moved urlopen to urllib.requests
|
||||
try:
|
||||
|
@ -23,7 +23,7 @@ class calibration_test(NewOpenCVTests):
|
||||
for i in range(1, 15):
|
||||
if i < 10:
|
||||
img_names.append('samples/data/left0{}.jpg'.format(str(i)))
|
||||
else:
|
||||
elif i != 10:
|
||||
img_names.append('samples/data/left{}.jpg'.format(str(i)))
|
||||
|
||||
square_size = 1.0
|
||||
|
73
modules/python/test/test_kmeans.py
Normal file
73
modules/python/test/test_kmeans.py
Normal file
@ -0,0 +1,73 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
K-means clusterization test
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
from numpy import random
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
|
||||
def make_gaussians(cluster_n, img_size):
|
||||
points = []
|
||||
ref_distrs = []
|
||||
sizes = []
|
||||
for i in xrange(cluster_n):
|
||||
mean = (0.1 + 0.8*random.rand(2)) * img_size
|
||||
a = (random.rand(2, 2)-0.5)*img_size*0.1
|
||||
cov = np.dot(a.T, a) + img_size*0.05*np.eye(2)
|
||||
n = 100 + random.randint(900)
|
||||
pts = random.multivariate_normal(mean, cov, n)
|
||||
points.append( pts )
|
||||
ref_distrs.append( (mean, cov) )
|
||||
sizes.append(n)
|
||||
points = np.float32( np.vstack(points) )
|
||||
return points, ref_distrs, sizes
|
||||
|
||||
def getMainLabelConfidence(labels, nLabels):
|
||||
|
||||
n = len(labels)
|
||||
labelsDict = dict.fromkeys(range(nLabels), 0)
|
||||
labelsConfDict = dict.fromkeys(range(nLabels))
|
||||
|
||||
for i in range(n):
|
||||
labelsDict[labels[i][0]] += 1
|
||||
|
||||
for i in range(nLabels):
|
||||
labelsConfDict[i] = float(labelsDict[i]) / n
|
||||
|
||||
return max(labelsConfDict.values())
|
||||
|
||||
class kmeans_test(NewOpenCVTests):
|
||||
|
||||
def test_kmeans(self):
|
||||
|
||||
np.random.seed(10)
|
||||
|
||||
cluster_n = 5
|
||||
img_size = 512
|
||||
|
||||
# generating bright palette
|
||||
colors = np.zeros((1, cluster_n, 3), np.uint8)
|
||||
colors[0,:] = 255
|
||||
colors[0,:,0] = np.arange(0, 180, 180.0/cluster_n)
|
||||
colors = cv2.cvtColor(colors, cv2.COLOR_HSV2BGR)[0]
|
||||
|
||||
points, _, clusterSizes = make_gaussians(cluster_n, img_size)
|
||||
|
||||
term_crit = (cv2.TERM_CRITERIA_EPS, 30, 0.1)
|
||||
ret, labels, centers = cv2.kmeans(points, cluster_n, None, term_crit, 10, 0)
|
||||
|
||||
self.assertEqual(len(centers), cluster_n)
|
||||
|
||||
offset = 0
|
||||
for i in range(cluster_n):
|
||||
confidence = getMainLabelConfidence(labels[offset : (offset + clusterSizes[i])], cluster_n)
|
||||
offset += clusterSizes[i]
|
||||
self.assertGreater(confidence, 0.9)
|
@ -36,7 +36,7 @@ class texture_flow_test(NewOpenCVTests):
|
||||
points = np.dstack( np.mgrid[d/2:w:d, d/2:h:d] ).reshape(-1, 2)
|
||||
|
||||
textureVectors = []
|
||||
|
||||
|
||||
for x, y in np.int32(points):
|
||||
textureVectors.append(np.int32(flow[y, x]*d))
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user