moved some old stuff to the legacy module; merge "compat_c.h" headers and moved to the legacy as well. moved implementation of many non-critical/obsolete inline functions and methods to .cpp to improve Opencv build time
This commit is contained in:
327
modules/legacy/src/blobtrackpostprockalman.cpp
Normal file
327
modules/legacy/src/blobtrackpostprockalman.cpp
Normal file
@@ -0,0 +1,327 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
/*======================= KALMAN FILTER =========================*/
|
||||
/* State vector is (x,y,w,h,dx,dy,dw,dh). */
|
||||
/* Measurement is (x,y,w,h). */
|
||||
|
||||
/* Dynamic matrix A: */
|
||||
const float A8[] = { 1, 0, 0, 0, 1, 0, 0, 0,
|
||||
0, 1, 0, 0, 0, 1, 0, 0,
|
||||
0, 0, 1, 0, 0, 0, 1, 0,
|
||||
0, 0, 0, 1, 0, 0, 0, 1,
|
||||
0, 0, 0, 0, 1, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 1, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 1, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 1};
|
||||
|
||||
/* Measurement matrix H: */
|
||||
const float H8[] = { 1, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 1, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 1, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 1, 0, 0, 0, 0};
|
||||
|
||||
/* Matrices for zero size velocity: */
|
||||
/* Dinamic matrix A: */
|
||||
const float A6[] = { 1, 0, 0, 0, 1, 0,
|
||||
0, 1, 0, 0, 0, 1,
|
||||
0, 0, 1, 0, 0, 0,
|
||||
0, 0, 0, 1, 0, 0,
|
||||
0, 0, 0, 0, 1, 0,
|
||||
0, 0, 0, 0, 0, 1};
|
||||
|
||||
/* Measurement matrix H: */
|
||||
const float H6[] = { 1, 0, 0, 0, 0, 0,
|
||||
0, 1, 0, 0, 0, 0,
|
||||
0, 0, 1, 0, 0, 0,
|
||||
0, 0, 0, 1, 0, 0};
|
||||
|
||||
#define STATE_NUM 6
|
||||
#define A A6
|
||||
#define H H6
|
||||
|
||||
class CvBlobTrackPostProcKalman:public CvBlobTrackPostProcOne
|
||||
{
|
||||
|
||||
private:
|
||||
CvBlob m_Blob;
|
||||
CvKalman* m_pKalman;
|
||||
int m_Frame;
|
||||
float m_ModelNoise;
|
||||
float m_DataNoisePos;
|
||||
float m_DataNoiseSize;
|
||||
|
||||
public:
|
||||
CvBlobTrackPostProcKalman();
|
||||
~CvBlobTrackPostProcKalman();
|
||||
CvBlob* Process(CvBlob* pBlob);
|
||||
void Release();
|
||||
virtual void ParamUpdate();
|
||||
}; /* class CvBlobTrackPostProcKalman */
|
||||
|
||||
|
||||
CvBlobTrackPostProcKalman::CvBlobTrackPostProcKalman()
|
||||
{
|
||||
m_ModelNoise = 1e-6f;
|
||||
m_DataNoisePos = 1e-6f;
|
||||
m_DataNoiseSize = 1e-1f;
|
||||
|
||||
#if STATE_NUM>6
|
||||
m_DataNoiseSize *= (float)pow(20.,2.);
|
||||
#else
|
||||
m_DataNoiseSize /= (float)pow(20.,2.);
|
||||
#endif
|
||||
|
||||
AddParam("ModelNoise",&m_ModelNoise);
|
||||
AddParam("DataNoisePos",&m_DataNoisePos);
|
||||
AddParam("DataNoiseSize",&m_DataNoiseSize);
|
||||
|
||||
m_Frame = 0;
|
||||
m_pKalman = cvCreateKalman(STATE_NUM,4);
|
||||
memcpy( m_pKalman->transition_matrix->data.fl, A, sizeof(A));
|
||||
memcpy( m_pKalman->measurement_matrix->data.fl, H, sizeof(H));
|
||||
|
||||
cvSetIdentity( m_pKalman->process_noise_cov, cvRealScalar(m_ModelNoise) );
|
||||
cvSetIdentity( m_pKalman->measurement_noise_cov, cvRealScalar(m_DataNoisePos) );
|
||||
CV_MAT_ELEM(*m_pKalman->measurement_noise_cov, float, 2,2) = m_DataNoiseSize;
|
||||
CV_MAT_ELEM(*m_pKalman->measurement_noise_cov, float, 3,3) = m_DataNoiseSize;
|
||||
cvSetIdentity( m_pKalman->error_cov_post, cvRealScalar(1));
|
||||
cvZero(m_pKalman->state_post);
|
||||
cvZero(m_pKalman->state_pre);
|
||||
|
||||
SetModuleName("Kalman");
|
||||
}
|
||||
|
||||
CvBlobTrackPostProcKalman::~CvBlobTrackPostProcKalman()
|
||||
{
|
||||
cvReleaseKalman(&m_pKalman);
|
||||
}
|
||||
|
||||
void CvBlobTrackPostProcKalman::ParamUpdate()
|
||||
{
|
||||
cvSetIdentity( m_pKalman->process_noise_cov, cvRealScalar(m_ModelNoise) );
|
||||
cvSetIdentity( m_pKalman->measurement_noise_cov, cvRealScalar(m_DataNoisePos) );
|
||||
CV_MAT_ELEM(*m_pKalman->measurement_noise_cov, float, 2,2) = m_DataNoiseSize;
|
||||
CV_MAT_ELEM(*m_pKalman->measurement_noise_cov, float, 3,3) = m_DataNoiseSize;
|
||||
}
|
||||
|
||||
CvBlob* CvBlobTrackPostProcKalman::Process(CvBlob* pBlob)
|
||||
{
|
||||
CvBlob* pBlobRes = &m_Blob;
|
||||
float Z[4];
|
||||
CvMat Zmat = cvMat(4,1,CV_32F,Z);
|
||||
m_Blob = pBlob[0];
|
||||
|
||||
if(m_Frame < 2)
|
||||
{ /* First call: */
|
||||
m_pKalman->state_post->data.fl[0+4] = CV_BLOB_X(pBlob)-m_pKalman->state_post->data.fl[0];
|
||||
m_pKalman->state_post->data.fl[1+4] = CV_BLOB_Y(pBlob)-m_pKalman->state_post->data.fl[1];
|
||||
if(m_pKalman->DP>6)
|
||||
{
|
||||
m_pKalman->state_post->data.fl[2+4] = CV_BLOB_WX(pBlob)-m_pKalman->state_post->data.fl[2];
|
||||
m_pKalman->state_post->data.fl[3+4] = CV_BLOB_WY(pBlob)-m_pKalman->state_post->data.fl[3];
|
||||
}
|
||||
m_pKalman->state_post->data.fl[0] = CV_BLOB_X(pBlob);
|
||||
m_pKalman->state_post->data.fl[1] = CV_BLOB_Y(pBlob);
|
||||
m_pKalman->state_post->data.fl[2] = CV_BLOB_WX(pBlob);
|
||||
m_pKalman->state_post->data.fl[3] = CV_BLOB_WY(pBlob);
|
||||
}
|
||||
else
|
||||
{ /* Nonfirst call: */
|
||||
cvKalmanPredict(m_pKalman,0);
|
||||
Z[0] = CV_BLOB_X(pBlob);
|
||||
Z[1] = CV_BLOB_Y(pBlob);
|
||||
Z[2] = CV_BLOB_WX(pBlob);
|
||||
Z[3] = CV_BLOB_WY(pBlob);
|
||||
cvKalmanCorrect(m_pKalman,&Zmat);
|
||||
cvMatMulAdd(m_pKalman->measurement_matrix, m_pKalman->state_post, NULL, &Zmat);
|
||||
CV_BLOB_X(pBlobRes) = Z[0];
|
||||
CV_BLOB_Y(pBlobRes) = Z[1];
|
||||
// CV_BLOB_WX(pBlobRes) = Z[2];
|
||||
// CV_BLOB_WY(pBlobRes) = Z[3];
|
||||
}
|
||||
m_Frame++;
|
||||
return pBlobRes;
|
||||
}
|
||||
|
||||
void CvBlobTrackPostProcKalman::Release()
|
||||
{
|
||||
delete this;
|
||||
}
|
||||
|
||||
CvBlobTrackPostProcOne* cvCreateModuleBlobTrackPostProcKalmanOne()
|
||||
{
|
||||
return (CvBlobTrackPostProcOne*) new CvBlobTrackPostProcKalman;
|
||||
}
|
||||
|
||||
CvBlobTrackPostProc* cvCreateModuleBlobTrackPostProcKalman()
|
||||
{
|
||||
return cvCreateBlobTrackPostProcList(cvCreateModuleBlobTrackPostProcKalmanOne);
|
||||
}
|
||||
/*======================= KALMAN FILTER =========================*/
|
||||
|
||||
|
||||
|
||||
/*======================= KALMAN PREDICTOR =========================*/
|
||||
class CvBlobTrackPredictKalman:public CvBlobTrackPredictor
|
||||
{
|
||||
|
||||
private:
|
||||
CvBlob m_BlobPredict;
|
||||
CvKalman* m_pKalman;
|
||||
int m_Frame;
|
||||
float m_ModelNoise;
|
||||
float m_DataNoisePos;
|
||||
float m_DataNoiseSize;
|
||||
|
||||
public:
|
||||
CvBlobTrackPredictKalman();
|
||||
~CvBlobTrackPredictKalman();
|
||||
CvBlob* Predict();
|
||||
void Update(CvBlob* pBlob);
|
||||
virtual void ParamUpdate();
|
||||
void Release()
|
||||
{
|
||||
delete this;
|
||||
}
|
||||
}; /* class CvBlobTrackPredictKalman */
|
||||
|
||||
|
||||
void CvBlobTrackPredictKalman::ParamUpdate()
|
||||
{
|
||||
cvSetIdentity( m_pKalman->process_noise_cov, cvRealScalar(m_ModelNoise) );
|
||||
cvSetIdentity( m_pKalman->measurement_noise_cov, cvRealScalar(m_DataNoisePos) );
|
||||
CV_MAT_ELEM(*m_pKalman->measurement_noise_cov, float, 2,2) = m_DataNoiseSize;
|
||||
CV_MAT_ELEM(*m_pKalman->measurement_noise_cov, float, 3,3) = m_DataNoiseSize;
|
||||
}
|
||||
|
||||
CvBlobTrackPredictKalman::CvBlobTrackPredictKalman()
|
||||
{
|
||||
m_ModelNoise = 1e-6f;
|
||||
m_DataNoisePos = 1e-6f;
|
||||
m_DataNoiseSize = 1e-1f;
|
||||
|
||||
#if STATE_NUM>6
|
||||
m_DataNoiseSize *= (float)pow(20.,2.);
|
||||
#else
|
||||
m_DataNoiseSize /= (float)pow(20.,2.);
|
||||
#endif
|
||||
|
||||
AddParam("ModelNoise",&m_ModelNoise);
|
||||
AddParam("DataNoisePos",&m_DataNoisePos);
|
||||
AddParam("DataNoiseSize",&m_DataNoiseSize);
|
||||
|
||||
m_Frame = 0;
|
||||
m_pKalman = cvCreateKalman(STATE_NUM,4);
|
||||
memcpy( m_pKalman->transition_matrix->data.fl, A, sizeof(A));
|
||||
memcpy( m_pKalman->measurement_matrix->data.fl, H, sizeof(H));
|
||||
|
||||
cvSetIdentity( m_pKalman->process_noise_cov, cvRealScalar(m_ModelNoise) );
|
||||
cvSetIdentity( m_pKalman->measurement_noise_cov, cvRealScalar(m_DataNoisePos) );
|
||||
CV_MAT_ELEM(*m_pKalman->measurement_noise_cov, float, 2,2) = m_DataNoiseSize;
|
||||
CV_MAT_ELEM(*m_pKalman->measurement_noise_cov, float, 3,3) = m_DataNoiseSize;
|
||||
cvSetIdentity( m_pKalman->error_cov_post, cvRealScalar(1));
|
||||
cvZero(m_pKalman->state_post);
|
||||
cvZero(m_pKalman->state_pre);
|
||||
|
||||
SetModuleName("Kalman");
|
||||
}
|
||||
|
||||
CvBlobTrackPredictKalman::~CvBlobTrackPredictKalman()
|
||||
{
|
||||
cvReleaseKalman(&m_pKalman);
|
||||
}
|
||||
|
||||
CvBlob* CvBlobTrackPredictKalman::Predict()
|
||||
{
|
||||
if(m_Frame >= 2)
|
||||
{
|
||||
cvKalmanPredict(m_pKalman,0);
|
||||
m_BlobPredict.x = m_pKalman->state_pre->data.fl[0];
|
||||
m_BlobPredict.y = m_pKalman->state_pre->data.fl[1];
|
||||
m_BlobPredict.w = m_pKalman->state_pre->data.fl[2];
|
||||
m_BlobPredict.h = m_pKalman->state_pre->data.fl[3];
|
||||
}
|
||||
return &m_BlobPredict;
|
||||
}
|
||||
|
||||
void CvBlobTrackPredictKalman::Update(CvBlob* pBlob)
|
||||
{
|
||||
float Z[4];
|
||||
CvMat Zmat = cvMat(4,1,CV_32F,Z);
|
||||
m_BlobPredict = pBlob[0];
|
||||
|
||||
if(m_Frame < 2)
|
||||
{ /* First call: */
|
||||
m_pKalman->state_post->data.fl[0+4] = CV_BLOB_X(pBlob)-m_pKalman->state_post->data.fl[0];
|
||||
m_pKalman->state_post->data.fl[1+4] = CV_BLOB_Y(pBlob)-m_pKalman->state_post->data.fl[1];
|
||||
if(m_pKalman->DP>6)
|
||||
{
|
||||
m_pKalman->state_post->data.fl[2+4] = CV_BLOB_WX(pBlob)-m_pKalman->state_post->data.fl[2];
|
||||
m_pKalman->state_post->data.fl[3+4] = CV_BLOB_WY(pBlob)-m_pKalman->state_post->data.fl[3];
|
||||
}
|
||||
m_pKalman->state_post->data.fl[0] = CV_BLOB_X(pBlob);
|
||||
m_pKalman->state_post->data.fl[1] = CV_BLOB_Y(pBlob);
|
||||
m_pKalman->state_post->data.fl[2] = CV_BLOB_WX(pBlob);
|
||||
m_pKalman->state_post->data.fl[3] = CV_BLOB_WY(pBlob);
|
||||
}
|
||||
else
|
||||
{ /* Nonfirst call: */
|
||||
Z[0] = CV_BLOB_X(pBlob);
|
||||
Z[1] = CV_BLOB_Y(pBlob);
|
||||
Z[2] = CV_BLOB_WX(pBlob);
|
||||
Z[3] = CV_BLOB_WY(pBlob);
|
||||
cvKalmanCorrect(m_pKalman,&Zmat);
|
||||
}
|
||||
|
||||
cvKalmanPredict(m_pKalman,0);
|
||||
|
||||
m_Frame++;
|
||||
|
||||
} /* Update. */
|
||||
|
||||
CvBlobTrackPredictor* cvCreateModuleBlobTrackPredictKalman()
|
||||
{
|
||||
return (CvBlobTrackPredictor*) new CvBlobTrackPredictKalman;
|
||||
}
|
||||
/*======================= KALMAN PREDICTOR =========================*/
|
||||
|
Reference in New Issue
Block a user