Add 2 new tests, bugfixed in old tests
This commit is contained in:
@@ -95,7 +95,8 @@ class Boost(LetterStatModel):
|
||||
new_responses = self.unroll_responses(responses)
|
||||
var_types = np.array([cv2.ml.VAR_NUMERICAL] * var_n + [cv2.ml.VAR_CATEGORICAL, cv2.ml.VAR_CATEGORICAL], np.uint8)
|
||||
|
||||
self.model.setMaxDepth(5)
|
||||
self.model.setWeakCount(15)
|
||||
self.model.setMaxDepth(10)
|
||||
self.model.train(cv2.ml.TrainData_create(new_samples, cv2.ml.ROW_SAMPLE, new_responses.astype(int), varType = var_types))
|
||||
|
||||
def predict(self, samples):
|
||||
@@ -112,7 +113,8 @@ class SVM(LetterStatModel):
|
||||
def train(self, samples, responses):
|
||||
self.model.setType(cv2.ml.SVM_C_SVC)
|
||||
self.model.setC(1)
|
||||
self.model.setKernel(cv2.ml.SVM_LINEAR)
|
||||
self.model.setKernel(cv2.ml.SVM_RBF)
|
||||
self.model.setGamma(.1)
|
||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses.astype(int))
|
||||
|
||||
def predict(self, samples):
|
||||
@@ -131,10 +133,10 @@ class MLP(LetterStatModel):
|
||||
|
||||
self.model.setLayerSizes(layer_sizes)
|
||||
self.model.setTrainMethod(cv2.ml.ANN_MLP_BACKPROP)
|
||||
self.model.setBackpropMomentumScale(0)
|
||||
self.model.setBackpropMomentumScale(0.0)
|
||||
self.model.setBackpropWeightScale(0.001)
|
||||
self.model.setTermCriteria((cv2.TERM_CRITERIA_COUNT, 300, 0.01))
|
||||
self.model.setActivationFunction(cv2.ml.ANN_MLP_SIGMOID_SYM)
|
||||
self.model.setTermCriteria((cv2.TERM_CRITERIA_COUNT, 20, 0.01))
|
||||
self.model.setActivationFunction(cv2.ml.ANN_MLP_SIGMOID_SYM, 2, 1)
|
||||
|
||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, np.float32(new_responses))
|
||||
|
||||
|
Reference in New Issue
Block a user