Fixed warnings.
This commit is contained in:
@@ -172,7 +172,8 @@ void SVMSGDImpl::normalizeSamples(Mat &samples, Mat &average, float &multiplier)
|
||||
average = Mat(1, featuresCount, samples.type());
|
||||
for (int featureIndex = 0; featureIndex < featuresCount; featureIndex++)
|
||||
{
|
||||
average.at<float>(featureIndex) = mean(samples.col(featureIndex))[0];
|
||||
Scalar scalAverage = mean(samples.col(featureIndex))[0];
|
||||
average.at<float>(featureIndex) = static_cast<float>(scalAverage[0]);
|
||||
}
|
||||
|
||||
for (int sampleIndex = 0; sampleIndex < samplesCount; sampleIndex++)
|
||||
@@ -182,7 +183,7 @@ void SVMSGDImpl::normalizeSamples(Mat &samples, Mat &average, float &multiplier)
|
||||
|
||||
double normValue = norm(samples);
|
||||
|
||||
multiplier = sqrt(samples.total()) / normValue;
|
||||
multiplier = static_cast<float>(sqrt(samples.total()) / normValue);
|
||||
|
||||
samples *= multiplier;
|
||||
}
|
||||
@@ -228,11 +229,11 @@ float SVMSGDImpl::calcShift(InputArray _samples, InputArray _responses) const
|
||||
for (int samplesIndex = 0; samplesIndex < trainSamplesCount; samplesIndex++)
|
||||
{
|
||||
Mat currentSample = trainSamples.row(samplesIndex);
|
||||
float dotProduct = currentSample.dot(weights_);
|
||||
float dotProduct = static_cast<float>(currentSample.dot(weights_));
|
||||
|
||||
bool firstClass = isFirstClass(trainResponses.at<float>(samplesIndex));
|
||||
int index = firstClass ? 0:1;
|
||||
float signToMul = firstClass ? 1 : -1;
|
||||
int index = firstClass ? 0 : 1;
|
||||
float signToMul = firstClass ? 1.f : -1.f;
|
||||
float curDistance = dotProduct * signToMul;
|
||||
|
||||
if (curDistance < distanceToClasses[index])
|
||||
@@ -263,7 +264,7 @@ bool SVMSGDImpl::train(const Ptr<TrainData>& data, int)
|
||||
if ( areEmpty.first || areEmpty.second )
|
||||
{
|
||||
weights_ = Mat::zeros(1, featureCount, CV_32F);
|
||||
shift_ = areEmpty.first ? -1 : 1;
|
||||
shift_ = areEmpty.first ? -1.f : 1.f;
|
||||
return true;
|
||||
}
|
||||
|
||||
@@ -329,7 +330,7 @@ bool SVMSGDImpl::train(const Ptr<TrainData>& data, int)
|
||||
|
||||
if (params.marginType == SOFT_MARGIN)
|
||||
{
|
||||
shift_ = extendedWeights.at<float>(featureCount) - weights_.dot(average);
|
||||
shift_ = extendedWeights.at<float>(featureCount) - static_cast<float>(weights_.dot(average));
|
||||
}
|
||||
else
|
||||
{
|
||||
@@ -363,8 +364,8 @@ float SVMSGDImpl::predict( InputArray _samples, OutputArray _results, int ) cons
|
||||
for (int sampleIndex = 0; sampleIndex < nSamples; sampleIndex++)
|
||||
{
|
||||
Mat currentSample = samples.row(sampleIndex);
|
||||
float criterion = currentSample.dot(weights_) + shift_;
|
||||
results.at<float>(sampleIndex) = (criterion >= 0) ? 1 : -1;
|
||||
float criterion = static_cast<float>(currentSample.dot(weights_)) + shift_;
|
||||
results.at<float>(sampleIndex) = (criterion >= 0) ? 1.f : -1.f;
|
||||
}
|
||||
|
||||
return result;
|
||||
@@ -530,9 +531,9 @@ void SVMSGDImpl::setOptimalParameters(int svmsgdType, int marginType)
|
||||
params.svmsgdType = SGD;
|
||||
params.marginType = (marginType == SOFT_MARGIN) ? SOFT_MARGIN :
|
||||
(marginType == HARD_MARGIN) ? HARD_MARGIN : ILLEGAL_MARGIN_TYPE;
|
||||
params.lambda = 0.0001;
|
||||
params.gamma0 = 0.05;
|
||||
params.c = 1;
|
||||
params.lambda = 0.0001f;
|
||||
params.gamma0 = 0.05f;
|
||||
params.c = 1.f;
|
||||
params.termCrit = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100000, 0.00001);
|
||||
break;
|
||||
|
||||
@@ -540,9 +541,9 @@ void SVMSGDImpl::setOptimalParameters(int svmsgdType, int marginType)
|
||||
params.svmsgdType = ASGD;
|
||||
params.marginType = (marginType == SOFT_MARGIN) ? SOFT_MARGIN :
|
||||
(marginType == HARD_MARGIN) ? HARD_MARGIN : ILLEGAL_MARGIN_TYPE;
|
||||
params.lambda = 0.00001;
|
||||
params.gamma0 = 0.05;
|
||||
params.c = 0.75;
|
||||
params.lambda = 0.00001f;
|
||||
params.gamma0 = 0.05f;
|
||||
params.c = 0.75f;
|
||||
params.termCrit = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100000, 0.00001);
|
||||
break;
|
||||
|
||||
|
||||
Reference in New Issue
Block a user