Merge pull request #3364 from mshabunin:doxygen-docs-24

This commit is contained in:
Vadim Pisarevsky
2014-10-30 10:42:24 +00:00
18 changed files with 515 additions and 131 deletions

View File

@@ -48,6 +48,8 @@
#include <opencv2/core/core.hpp>
/*! @file */
namespace cv
{
template<typename T>
@@ -429,6 +431,7 @@ cv::Affine3<Y> cv::Affine3<T>::cast() const
return Affine3<Y>(matrix);
}
/** @cond IGNORED */
template<typename T> inline
cv::Affine3<T> cv::operator*(const cv::Affine3<T>& affine1, const cv::Affine3<T>& affine2)
{
@@ -446,6 +449,7 @@ V cv::operator*(const cv::Affine3<T>& affine, const V& v)
r.z = m.val[8] * v.x + m.val[9] * v.y + m.val[10] * v.z + m.val[11];
return r;
}
/** @endcond */
static inline
cv::Vec3f cv::operator*(const cv::Affine3f& affine, const cv::Vec3f& v)

View File

@@ -716,9 +716,6 @@ public:
};
/*!
\typedef
*/
typedef Complex<float> Complexf;
typedef Complex<double> Complexd;
@@ -885,11 +882,6 @@ public:
};
/*!
\typedef
shorter aliases for the most popular cv::Point_<>, cv::Size_<> and cv::Rect_<> specializations
*/
typedef Point_<int> Point2i;
typedef Point2i Point;
typedef Size_<int> Size2i;
@@ -1623,8 +1615,6 @@ public:
cv::Mat::step that is used to actually compute address of a matrix element. cv::Mat::step is needed because the matrix can be
a part of another matrix or because there can some padding space in the end of each row for a proper alignment.
\image html roi.png
Given these parameters, address of the matrix element M_{ij} is computed as following:
addr(M_{ij})=M.data + M.step*i + j*M.elemSize()
@@ -2266,7 +2256,7 @@ CV_EXPORTS_W void absdiff(InputArray src1, InputArray src2, OutputArray dst);
//! set mask elements for those array elements which are within the element-specific bounding box (dst = lowerb <= src && src < upperb)
CV_EXPORTS_W void inRange(InputArray src, InputArray lowerb,
InputArray upperb, OutputArray dst);
//! compares elements of two arrays (dst = src1 <cmpop> src2)
//! compares elements of two arrays (dst = src1 \<cmpop\> src2)
CV_EXPORTS_W void compare(InputArray src1, InputArray src2, OutputArray dst, int cmpop);
//! computes per-element minimum of two arrays (dst = min(src1, src2))
CV_EXPORTS_W void min(InputArray src1, InputArray src2, OutputArray dst);
@@ -2731,7 +2721,7 @@ CV_EXPORTS_W Size getTextSize(const string& text, int fontFace,
While cv::Mat is sufficient in most cases, cv::Mat_ can be more convenient if you use a lot of element
access operations and if you know matrix type at compile time.
Note that cv::Mat::at<_Tp>(int y, int x) and cv::Mat_<_Tp>::operator ()(int y, int x) do absolutely the
Note that cv::Mat::at\<_Tp\>(int y, int x) and cv::Mat_\<_Tp\>::operator ()(int y, int x) do absolutely the
same thing and run at the same speed, but the latter is certainly shorter:
\code
@@ -3443,6 +3433,7 @@ public:
void convertTo( SparseMat& m, int rtype, double alpha=1 ) const;
//! converts sparse matrix to dense n-dim matrix with optional type conversion and scaling.
/*!
\param m Destination matrix
\param rtype The output matrix data type. When it is =-1, the output array will have the same data type as (*this)
\param alpha The scale factor
\param beta The optional delta added to the scaled values before the conversion

View File

@@ -512,6 +512,7 @@ namespace cv { namespace gpu
return *this;
}
/** @cond IGNORED */
template <class T> inline GpuMat::operator PtrStepSz<T>() const
{
return PtrStepSz<T>(rows, cols, (T*)data, step);
@@ -531,6 +532,7 @@ namespace cv { namespace gpu
{
return PtrStep_<T>(static_cast< DevMem2D_<T> >(*this));
}
/** @endcond */
inline GpuMat createContinuous(int rows, int cols, int type)
{

View File

@@ -365,7 +365,7 @@ template<typename _Tp, int m, int n> inline double Matx<_Tp, m, n>::ddot(const M
}
/** @cond IGNORED */
template<typename _Tp, int m, int n> inline
Matx<_Tp,m,n> Matx<_Tp,m,n>::diag(const typename Matx<_Tp,m,n>::diag_type& d)
{
@@ -374,6 +374,7 @@ Matx<_Tp,m,n> Matx<_Tp,m,n>::diag(const typename Matx<_Tp,m,n>::diag_type& d)
M(i,i) = d(i, 0);
return M;
}
/** @endcond */
template<typename _Tp, int m, int n> inline
Matx<_Tp,m,n> Matx<_Tp,m,n>::randu(_Tp a, _Tp b)