Merge remote-tracking branch 'upstream/master' into rho

This commit is contained in:
Olexa Bilaniuk 2014-12-05 15:56:33 -05:00
commit 51963f95dd
176 changed files with 15736 additions and 2133 deletions

View File

@ -171,10 +171,6 @@ if(CMAKE_COMPILER_IS_GNUCXX)
endif()
endif()
if(ENABLE_NEON)
add_extra_compiler_option(-mfpu=neon)
endif()
# Profiling?
if(ENABLE_PROFILING)
add_extra_compiler_option("-pg -g")

View File

@ -146,46 +146,76 @@ if(BUILD_DOCS AND HAVE_SPHINX)
endif()
# ========= Doxygen docs =========
macro(make_reference result modules_list black_list)
set(_res)
foreach(m ${${modules_list}})
list(FIND ${black_list} ${m} _pos)
if(${_pos} EQUAL -1)
set(_res "${_res} @ref ${m} | ${m} \n")
endif()
endforeach()
set(${result} ${_res})
endmacro()
if(BUILD_DOCS AND HAVE_DOXYGEN)
# documented modules list
set(candidates)
list(APPEND candidates ${BASE_MODULES} ${EXTRA_MODULES})
# blacklisted modules
ocv_list_filterout(candidates "^ts$")
# not documented modules list
list(APPEND blacklist "ts" "java" "python2" "python3" "world")
# gathering headers
set(all_headers) # files and dirs to process
set(all_images) # image search paths
set(reflist) # modules reference
foreach(m ${candidates})
set(reflist "${reflist} \n- @subpage ${m}")
set(all_headers ${all_headers} "${OPENCV_MODULE_opencv_${m}_HEADERS}")
set(docs_dir "${OPENCV_MODULE_opencv_${m}_LOCATION}/doc")
if(EXISTS ${docs_dir})
set(all_images ${all_images} ${docs_dir})
set(all_headers ${all_headers} ${docs_dir})
set(paths_include)
set(paths_doc)
set(paths_bib)
set(deps)
foreach(m ${BASE_MODULES} ${EXTRA_MODULES})
list(FIND blacklist ${m} _pos)
if(${_pos} EQUAL -1)
# include folder
set(header_dir "${OPENCV_MODULE_opencv_${m}_LOCATION}/include")
if(EXISTS "${header_dir}")
list(APPEND paths_include "${header_dir}")
list(APPEND deps ${header_dir})
endif()
# doc folder
set(docs_dir "${OPENCV_MODULE_opencv_${m}_LOCATION}/doc")
if(EXISTS "${docs_dir}")
list(APPEND paths_doc "${docs_dir}")
list(APPEND deps ${docs_dir})
endif()
# BiBTeX file
set(bib_file "${docs_dir}/${m}.bib")
if(EXISTS "${bib_file}")
set(paths_bib "${paths_bib} ${bib_file}")
list(APPEND deps ${bib_file})
endif()
endif()
endforeach()
# additional config
set(doxyfile "${CMAKE_CURRENT_BINARY_DIR}/Doxyfile")
set(rootfile "${CMAKE_CURRENT_BINARY_DIR}/root.markdown")
set(all_headers ${all_headers} ${rootfile})
string(REGEX REPLACE ";" " \\\\\\n" CMAKE_DOXYGEN_INPUT_LIST "${all_headers}")
string(REGEX REPLACE ";" " \\\\\\n" CMAKE_DOXYGEN_IMAGE_PATH "${all_images}")
set(bibfile "${CMAKE_CURRENT_SOURCE_DIR}/opencv.bib")
string(REPLACE ";" " \\\n" CMAKE_DOXYGEN_INPUT_LIST "${rootfile} ; ${paths_include} ; ${paths_doc}")
string(REPLACE ";" " \\\n" CMAKE_DOXYGEN_IMAGE_PATH "${paths_doc}")
string(REPLACE ";" " \\\n" CMAKE_DOXYGEN_EXAMPLE_PATH "${CMAKE_SOURCE_DIR}/samples/cpp ; ${paths_doc}")
set(CMAKE_DOXYGEN_LAYOUT "${CMAKE_CURRENT_SOURCE_DIR}/DoxygenLayout.xml")
set(CMAKE_DOXYGEN_OUTPUT_PATH "doxygen")
set(CMAKE_DOXYGEN_MODULES_REFERENCE "${reflist}")
set(CMAKE_DOXYGEN_EXAMPLE_PATH "${CMAKE_SOURCE_DIR}/samples/cpp")
set(CMAKE_EXTRA_BIB_FILES "${bibfile} ${paths_bib}")
# generate references
make_reference(CMAKE_DOXYGEN_MAIN_REFERENCE BASE_MODULES blacklist)
make_reference(CMAKE_DOXYGEN_EXTRA_REFERENCE EXTRA_MODULES blacklist)
# writing file
configure_file(Doxyfile.in ${doxyfile} @ONLY)
configure_file(root.markdown.in ${rootfile} @ONLY)
configure_file(mymath.sty "${CMAKE_DOXYGEN_OUTPUT_PATH}/html/mymath.sty" @ONLY)
configure_file(mymath.sty "${CMAKE_DOXYGEN_OUTPUT_PATH}/latex/mymath.sty" @ONLY)
add_custom_target(doxygen
COMMAND ${DOXYGEN_BUILD} ${doxyfile}
DEPENDS ${doxyfile} ${all_headers} ${all_images})
DEPENDS ${doxyfile} ${rootfile} ${bibfile} ${deps})
endif()
if(HAVE_DOC_GENERATOR)

View File

@ -85,7 +85,7 @@ SHOW_FILES = YES
SHOW_NAMESPACES = YES
FILE_VERSION_FILTER =
LAYOUT_FILE = @CMAKE_DOXYGEN_LAYOUT@
CITE_BIB_FILES =
CITE_BIB_FILES = @CMAKE_EXTRA_BIB_FILES@
QUIET = YES
WARNINGS = YES
WARN_IF_UNDOCUMENTED = YES
@ -99,8 +99,8 @@ FILE_PATTERNS =
RECURSIVE = YES
EXCLUDE =
EXCLUDE_SYMLINKS = NO
EXCLUDE_PATTERNS =
EXCLUDE_SYMBOLS = cv::DataType<*>
EXCLUDE_PATTERNS = *.inl.hpp *.impl.hpp *_detail.hpp */cudev/**/detail/*.hpp
EXCLUDE_SYMBOLS = cv::DataType<*> int
EXAMPLE_PATH = @CMAKE_DOXYGEN_EXAMPLE_PATH@
EXAMPLE_PATTERNS = *
EXAMPLE_RECURSIVE = YES
@ -119,7 +119,7 @@ REFERENCES_LINK_SOURCE = YES
SOURCE_TOOLTIPS = YES
USE_HTAGS = NO
VERBATIM_HEADERS = NO
ALPHABETICAL_INDEX = NO
ALPHABETICAL_INDEX = YES
COLS_IN_ALPHA_INDEX = 5
IGNORE_PREFIX =
GENERATE_HTML = YES
@ -159,8 +159,8 @@ QHG_LOCATION =
GENERATE_ECLIPSEHELP = NO
ECLIPSE_DOC_ID = org.doxygen.Project
DISABLE_INDEX = NO
GENERATE_TREEVIEW = YES
ENUM_VALUES_PER_LINE = 0
GENERATE_TREEVIEW = NO
ENUM_VALUES_PER_LINE = 1
TREEVIEW_WIDTH = 250
EXT_LINKS_IN_WINDOW = YES
FORMULA_FONTSIZE = 14
@ -222,6 +222,7 @@ INCLUDE_FILE_PATTERNS =
PREDEFINED = __cplusplus=1 \
HAVE_IPP_A=1 \
CVAPI(x)=x \
CV_DOXYGEN= \
CV_EXPORTS= \
CV_EXPORTS_W= \
CV_EXPORTS_W_SIMPLE= \
@ -241,7 +242,8 @@ PREDEFINED = __cplusplus=1 \
CV_INLINE= \
CV_NORETURN= \
CV_DEFAULT(x)=" = x" \
CV_NEON=1
CV_NEON=1 \
FLANN_DEPRECATED=
EXPAND_AS_DEFINED =
SKIP_FUNCTION_MACROS = YES
TAGFILES =

View File

@ -0,0 +1,2 @@
# doxygen citelist build workaround
citelist : .*Unexpected new line character.*

View File

@ -1,12 +1,16 @@
MathJax.Hub.Config({
TeX: {
Macros: {
matTT: [ "\\[ \\left|\\begin{array}{ccc} #1 & #2 & #3\\\\ #4 & #5 & #6\\\\ #7 & #8 & #9 \\end{array}\\right| \\]", 9],
fork: ["\\left\\{ \\begin{array}{l l} #1 & \\mbox{#2}\\\\ #3 & \\mbox{#4}\\\\ \\end{array} \\right.", 4],
forkthree: ["\\left\\{ \\begin{array}{l l} #1 & \\mbox{#2}\\\\ #3 & \\mbox{#4}\\\\ #5 & \\mbox{#6}\\\\ \\end{array} \\right.", 6],
vecthree: ["\\begin{bmatrix} #1\\\\ #2\\\\ #3 \\end{bmatrix}", 3],
vecthreethree: ["\\begin{bmatrix} #1 & #2 & #3\\\\ #4 & #5 & #6\\\\ #7 & #8 & #9 \\end{bmatrix}", 9]
}
}
});
MathJax.Hub.Config(
{
TeX: {
Macros: {
matTT: [ "\\[ \\left|\\begin{array}{ccc} #1 & #2 & #3\\\\ #4 & #5 & #6\\\\ #7 & #8 & #9 \\end{array}\\right| \\]", 9],
fork: ["\\left\\{ \\begin{array}{l l} #1 & \\mbox{#2}\\\\ #3 & \\mbox{#4}\\\\ \\end{array} \\right.", 4],
forkthree: ["\\left\\{ \\begin{array}{l l} #1 & \\mbox{#2}\\\\ #3 & \\mbox{#4}\\\\ #5 & \\mbox{#6}\\\\ \\end{array} \\right.", 6],
vecthree: ["\\begin{bmatrix} #1\\\\ #2\\\\ #3 \\end{bmatrix}", 3],
vecthreethree: ["\\begin{bmatrix} #1 & #2 & #3\\\\ #4 & #5 & #6\\\\ #7 & #8 & #9 \\end{bmatrix}", 9],
hdotsfor: ["\\dots", 1],
mathbbm: ["\\mathbb{#1}", 1]
}
}
}
);

View File

@ -3,6 +3,7 @@
\usepackage{euler}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{bbm}
\newcommand{\matTT}[9]{
\[

File diff suppressed because it is too large Load Diff

View File

@ -58,7 +58,7 @@ Below is the code which are commented in detail :
upper_blue = np.array([130,255,255])
# Threshold the HSV image to get only blue colors
mask = cv2.inRange(hsv, lower_green, upper_green)
mask = cv2.inRange(hsv, lower_blue, upper_blue)
# Bitwise-AND mask and original image
res = cv2.bitwise_and(frame,frame, mask= mask)

View File

@ -1,7 +1,16 @@
OpenCV modules {#mainpage}
==============
- @subpage intro
- @subpage core
@subpage intro
<!-- @CMAKE_DOXYGEN_MODULES_REFERENCE@ -->
### Main modules
Module name | Folder
-------------- | -------------
@CMAKE_DOXYGEN_MAIN_REFERENCE@
### Extra modules
Module name | Folder
-------------- | -------------
@CMAKE_DOXYGEN_EXTRA_REFERENCE@

View File

@ -3,6 +3,12 @@
#include <camera_properties.h>
/** @defgroup androidcamera Android Camera Support
*/
//! @addtogroup androidcamera
//! @{
class CameraActivity
{
public:
@ -44,4 +50,6 @@ private:
int frameHeight;
};
//! @}
#endif

View File

@ -1,6 +1,9 @@
#ifndef CAMERA_PROPERTIES_H
#define CAMERA_PROPERTIES_H
//! @addtogroup androidcamera
//! @{
enum {
ANDROID_CAMERA_PROPERTY_FRAMEWIDTH = 0,
ANDROID_CAMERA_PROPERTY_FRAMEHEIGHT = 1,
@ -67,4 +70,6 @@ enum {
ANDROID_CAMERA_FOCUS_DISTANCE_FAR_INDEX
};
//! @}
#endif // CAMERA_PROPERTIES_H

File diff suppressed because it is too large Load Diff

View File

@ -50,6 +50,10 @@
extern "C" {
#endif
/** @addtogroup calib3d_c
@{
*/
/****************************************************************************************\
* Camera Calibration, Pose Estimation and Stereo *
\****************************************************************************************/
@ -371,6 +375,8 @@ CVAPI(void) cvReprojectImageTo3D( const CvArr* disparityImage,
CvArr* _3dImage, const CvMat* Q,
int handleMissingValues CV_DEFAULT(0) );
/** @} calib3d_c */
#ifdef __cplusplus
} // extern "C"

View File

@ -11,7 +11,7 @@ libraries. The following modules are available:
- @ref core - a compact module defining basic data structures, including the dense
multi-dimensional array Mat and basic functions used by all other modules.
- **imgproc** - an image processing module that includes linear and non-linear image filtering,
- @ref imgproc - an image processing module that includes linear and non-linear image filtering,
geometrical image transformations (resize, affine and perspective warping, generic table-based
remapping), color space conversion, histograms, and so on.
- **video** - a video analysis module that includes motion estimation, background subtraction,

View File

@ -75,6 +75,9 @@
@defgroup core_opengl OpenGL interoperability
@defgroup core_ipp Intel IPP Asynchronous C/C++ Converters
@defgroup core_optim Optimization Algorithms
@defgroup core_directx DirectX interoperability
@defgroup core_eigen Eigen support
@defgroup core_opencl OpenCL support
@}
*/
@ -194,22 +197,27 @@ enum KmeansFlags {
KMEANS_USE_INITIAL_LABELS = 1
};
enum { FILLED = -1,
LINE_4 = 4,
LINE_8 = 8,
LINE_AA = 16
};
//! type of line
enum LineTypes {
FILLED = -1,
LINE_4 = 4, //!< 4-connected line
LINE_8 = 8, //!< 8-connected line
LINE_AA = 16 //!< antialiased line
};
enum { FONT_HERSHEY_SIMPLEX = 0,
FONT_HERSHEY_PLAIN = 1,
FONT_HERSHEY_DUPLEX = 2,
FONT_HERSHEY_COMPLEX = 3,
FONT_HERSHEY_TRIPLEX = 4,
FONT_HERSHEY_COMPLEX_SMALL = 5,
FONT_HERSHEY_SCRIPT_SIMPLEX = 6,
FONT_HERSHEY_SCRIPT_COMPLEX = 7,
FONT_ITALIC = 16
};
//! Only a subset of Hershey fonts
//! <http://sources.isc.org/utils/misc/hershey-font.txt> are supported
enum HersheyFonts {
FONT_HERSHEY_SIMPLEX = 0, //!< normal size sans-serif font
FONT_HERSHEY_PLAIN = 1, //!< small size sans-serif font
FONT_HERSHEY_DUPLEX = 2, //!< normal size sans-serif font (more complex than FONT_HERSHEY_SIMPLEX)
FONT_HERSHEY_COMPLEX = 3, //!< normal size serif font
FONT_HERSHEY_TRIPLEX = 4, //!< normal size serif font (more complex than FONT_HERSHEY_COMPLEX)
FONT_HERSHEY_COMPLEX_SMALL = 5, //!< smaller version of FONT_HERSHEY_COMPLEX
FONT_HERSHEY_SCRIPT_SIMPLEX = 6, //!< hand-writing style font
FONT_HERSHEY_SCRIPT_COMPLEX = 7, //!< more complex variant of FONT_HERSHEY_SCRIPT_SIMPLEX
FONT_ITALIC = 16 //!< flag for italic font
};
enum ReduceTypes { REDUCE_SUM = 0, //!< the output is the sum of all rows/columns of the matrix.
REDUCE_AVG = 1, //!< the output is the mean vector of all rows/columns of the matrix.
@ -2696,78 +2704,6 @@ CV_EXPORTS_W double kmeans( InputArray data, int K, InputOutputArray bestLabels,
//! @} core_cluster
//! @addtogroup imgproc_drawing
//! @{
/*! @brief Line iterator
The class is used to iterate over all the pixels on the raster line
segment connecting two specified points.
The class LineIterator is used to get each pixel of a raster line. It
can be treated as versatile implementation of the Bresenham algorithm
where you can stop at each pixel and do some extra processing, for
example, grab pixel values along the line or draw a line with an effect
(for example, with XOR operation).
The number of pixels along the line is stored in LineIterator::count.
The method LineIterator::pos returns the current position in the image:
@code{.cpp}
// grabs pixels along the line (pt1, pt2)
// from 8-bit 3-channel image to the buffer
LineIterator it(img, pt1, pt2, 8);
LineIterator it2 = it;
vector<Vec3b> buf(it.count);
for(int i = 0; i < it.count; i++, ++it)
buf[i] = *(const Vec3b)*it;
// alternative way of iterating through the line
for(int i = 0; i < it2.count; i++, ++it2)
{
Vec3b val = img.at<Vec3b>(it2.pos());
CV_Assert(buf[i] == val);
}
@endcode
*/
class CV_EXPORTS LineIterator
{
public:
/** @brief intializes the iterator
creates iterators for the line connecting pt1 and pt2
the line will be clipped on the image boundaries
the line is 8-connected or 4-connected
If leftToRight=true, then the iteration is always done
from the left-most point to the right most,
not to depend on the ordering of pt1 and pt2 parameters
*/
LineIterator( const Mat& img, Point pt1, Point pt2,
int connectivity = 8, bool leftToRight = false );
/** @brief returns pointer to the current pixel
*/
uchar* operator *();
/** @brief prefix increment operator (++it). shifts iterator to the next pixel
*/
LineIterator& operator ++();
/** @brief postfix increment operator (it++). shifts iterator to the next pixel
*/
LineIterator operator ++(int);
/** @brief returns coordinates of the current pixel
*/
Point pos() const;
uchar* ptr;
const uchar* ptr0;
int step, elemSize;
int err, count;
int minusDelta, plusDelta;
int minusStep, plusStep;
};
//! @} imgproc_drawing
//! @addtogroup core_basic
//! @{
@ -2806,7 +2742,6 @@ public:
};
//////////////////////////////////////// Algorithm ////////////////////////////////////
class CV_EXPORTS Algorithm;

View File

@ -51,13 +51,6 @@
#include "opencv2/core.hpp"
#include "opencv2/core/cuda_types.hpp"
/**
@defgroup cuda CUDA-accelerated Computer Vision
@{
@defgroup cuda_struct Data structures
@}
*/
namespace cv { namespace cuda {
//! @addtogroup cuda_struct
@ -65,8 +58,28 @@ namespace cv { namespace cuda {
//////////////////////////////// GpuMat ///////////////////////////////
//! Smart pointer for GPU memory with reference counting.
//! Its interface is mostly similar with cv::Mat.
/** @brief Base storage class for GPU memory with reference counting.
Its interface matches the Mat interface with the following limitations:
- no arbitrary dimensions support (only 2D)
- no functions that return references to their data (because references on GPU are not valid for
CPU)
- no expression templates technique support
Beware that the latter limitation may lead to overloaded matrix operators that cause memory
allocations. The GpuMat class is convertible to cuda::PtrStepSz and cuda::PtrStep so it can be
passed directly to the kernel.
@note In contrast with Mat, in most cases GpuMat::isContinuous() == false . This means that rows are
aligned to a size depending on the hardware. Single-row GpuMat is always a continuous matrix.
@note You are not recommended to leave static or global GpuMat variables allocated, that is, to rely
on its destructor. The destruction order of such variables and CUDA context is undefined. GPU memory
release function returns error if the CUDA context has been destroyed before.
@sa Mat
*/
class CV_EXPORTS GpuMat
{
public:
@ -277,11 +290,28 @@ public:
Allocator* allocator;
};
//! creates continuous matrix
/** @brief Creates a continuous matrix.
@param rows Row count.
@param cols Column count.
@param type Type of the matrix.
@param arr Destination matrix. This parameter changes only if it has a proper type and area (
\f$\texttt{rows} \times \texttt{cols}\f$ ).
Matrix is called continuous if its elements are stored continuously, that is, without gaps at the
end of each row.
*/
CV_EXPORTS void createContinuous(int rows, int cols, int type, OutputArray arr);
//! ensures that size of the given matrix is not less than (rows, cols) size
//! and matrix type is match specified one too
/** @brief Ensures that the size of a matrix is big enough and the matrix has a proper type.
@param rows Minimum desired number of rows.
@param cols Minimum desired number of columns.
@param type Desired matrix type.
@param arr Destination matrix.
The function does not reallocate memory if the matrix has proper attributes already.
*/
CV_EXPORTS void ensureSizeIsEnough(int rows, int cols, int type, OutputArray arr);
CV_EXPORTS GpuMat allocMatFromBuf(int rows, int cols, int type, GpuMat& mat);
@ -292,10 +322,21 @@ CV_EXPORTS void setBufferPoolConfig(int deviceId, size_t stackSize, int stackCou
//////////////////////////////// CudaMem ////////////////////////////////
//! CudaMem is limited cv::Mat with page locked memory allocation.
//! Page locked memory is only needed for async and faster coping to GPU.
//! It is convertable to cv::Mat header without reference counting
//! so you can use it with other opencv functions.
/** @brief Class with reference counting wrapping special memory type allocation functions from CUDA.
Its interface is also Mat-like but with additional memory type parameters.
- **PAGE_LOCKED** sets a page locked memory type used commonly for fast and asynchronous
uploading/downloading data from/to GPU.
- **SHARED** specifies a zero copy memory allocation that enables mapping the host memory to GPU
address space, if supported.
- **WRITE_COMBINED** sets the write combined buffer that is not cached by CPU. Such buffers are
used to supply GPU with data when GPU only reads it. The advantage is a better CPU cache
utilization.
@note Allocation size of such memory types is usually limited. For more details, see *CUDA 2.2
Pinned Memory APIs* document or *CUDA C Programming Guide*.
*/
class CV_EXPORTS CudaMem
{
public:
@ -335,7 +376,13 @@ public:
//! returns matrix header with disabled reference counting for CudaMem data.
Mat createMatHeader() const;
//! maps host memory into device address space and returns GpuMat header for it. Throws exception if not supported by hardware.
/** @brief Maps CPU memory to GPU address space and creates the cuda::GpuMat header without reference counting
for it.
This can be done only if memory was allocated with the SHARED flag and if it is supported by the
hardware. Laptops often share video and CPU memory, so address spaces can be mapped, which
eliminates an extra copy.
*/
GpuMat createGpuMatHeader() const;
// Please see cv::Mat for descriptions
@ -363,17 +410,28 @@ public:
AllocType alloc_type;
};
//! page-locks the matrix m memory and maps it for the device(s)
/** @brief Page-locks the memory of matrix and maps it for the device(s).
@param m Input matrix.
*/
CV_EXPORTS void registerPageLocked(Mat& m);
//! unmaps the memory of matrix m, and makes it pageable again
/** @brief Unmaps the memory of matrix and makes it pageable again.
@param m Input matrix.
*/
CV_EXPORTS void unregisterPageLocked(Mat& m);
///////////////////////////////// Stream //////////////////////////////////
//! Encapculates Cuda Stream. Provides interface for async coping.
//! Passed to each function that supports async kernel execution.
//! Reference counting is enabled.
/** @brief This class encapsulates a queue of asynchronous calls.
@note Currently, you may face problems if an operation is enqueued twice with different data. Some
functions use the constant GPU memory, and next call may update the memory before the previous one
has been finished. But calling different operations asynchronously is safe because each operation
has its own constant buffer. Memory copy/upload/download/set operations to the buffers you hold are
also safe. :
*/
class CV_EXPORTS Stream
{
typedef void (Stream::*bool_type)() const;
@ -385,16 +443,26 @@ public:
//! creates a new asynchronous stream
Stream();
//! queries an asynchronous stream for completion status
/** @brief Returns true if the current stream queue is finished. Otherwise, it returns false.
*/
bool queryIfComplete() const;
//! waits for stream tasks to complete
/** @brief Blocks the current CPU thread until all operations in the stream are complete.
*/
void waitForCompletion();
//! makes a compute stream wait on an event
/** @brief Makes a compute stream wait on an event.
*/
void waitEvent(const Event& event);
//! adds a callback to be called on the host after all currently enqueued items in the stream have completed
/** @brief Adds a callback to be called on the host after all currently enqueued items in the stream have
completed.
@note Callbacks must not make any CUDA API calls. Callbacks must not perform any synchronization
that may depend on outstanding device work or other callbacks that are not mandated to run earlier.
Callbacks without a mandated order (in independent streams) execute in undefined order and may be
serialized.
*/
void enqueueHostCallback(StreamCallback callback, void* userData);
//! return Stream object for default CUDA stream
@ -446,21 +514,41 @@ private:
friend struct EventAccessor;
};
//! @} cuda_struct
//////////////////////////////// Initialization & Info ////////////////////////
//! this is the only function that do not throw exceptions if the library is compiled without CUDA
//! @addtogroup cuda_init
//! @{
/** @brief Returns the number of installed CUDA-enabled devices.
Use this function before any other CUDA functions calls. If OpenCV is compiled without CUDA support,
this function returns 0.
*/
CV_EXPORTS int getCudaEnabledDeviceCount();
//! set device to be used for GPU executions for the calling host thread
/** @brief Sets a device and initializes it for the current thread.
@param device System index of a CUDA device starting with 0.
If the call of this function is omitted, a default device is initialized at the fist CUDA usage.
*/
CV_EXPORTS void setDevice(int device);
//! returns which device is currently being used for the calling host thread
/** @brief Returns the current device index set by cuda::setDevice or initialized by default.
*/
CV_EXPORTS int getDevice();
//! explicitly destroys and cleans up all resources associated with the current device in the current process
//! any subsequent API call to this device will reinitialize the device
/** @brief Explicitly destroys and cleans up all resources associated with the current device in the current
process.
Any subsequent API call to this device will reinitialize the device.
*/
CV_EXPORTS void resetDevice();
/** @brief Enumeration providing CUDA computing features.
*/
enum FeatureSet
{
FEATURE_SET_COMPUTE_10 = 10,
@ -482,12 +570,27 @@ enum FeatureSet
//! checks whether current device supports the given feature
CV_EXPORTS bool deviceSupports(FeatureSet feature_set);
//! information about what GPU archs this OpenCV CUDA module was compiled for
/** @brief Class providing a set of static methods to check what NVIDIA\* card architecture the CUDA module was
built for.
According to the CUDA C Programming Guide Version 3.2: "PTX code produced for some specific compute
capability can always be compiled to binary code of greater or equal compute capability".
*/
class CV_EXPORTS TargetArchs
{
public:
/** @brief The following method checks whether the module was built with the support of the given feature:
@param feature_set Features to be checked. See :ocvcuda::FeatureSet.
*/
static bool builtWith(FeatureSet feature_set);
/** @brief There is a set of methods to check whether the module contains intermediate (PTX) or binary CUDA
code for the given architecture(s):
@param major Major compute capability version.
@param minor Minor compute capability version.
*/
static bool has(int major, int minor);
static bool hasPtx(int major, int minor);
static bool hasBin(int major, int minor);
@ -498,17 +601,25 @@ public:
static bool hasEqualOrGreaterBin(int major, int minor);
};
//! information about the given GPU.
/** @brief Class providing functionality for querying the specified GPU properties.
*/
class CV_EXPORTS DeviceInfo
{
public:
//! creates DeviceInfo object for the current GPU
DeviceInfo();
//! creates DeviceInfo object for the given GPU
/** @brief The constructors.
@param device_id System index of the CUDA device starting with 0.
Constructs the DeviceInfo object for the specified device. If device_id parameter is missed, it
constructs an object for the current device.
*/
DeviceInfo(int device_id);
//! device number.
/** @brief Returns system index of the CUDA device starting with 0.
*/
int deviceID() const;
//! ASCII string identifying device
@ -680,10 +791,19 @@ public:
size_t freeMemory() const;
size_t totalMemory() const;
//! checks whether device supports the given feature
/** @brief Provides information on CUDA feature support.
@param feature_set Features to be checked. See cuda::FeatureSet.
This function returns true if the device has the specified CUDA feature. Otherwise, it returns false
*/
bool supports(FeatureSet feature_set) const;
//! checks whether the CUDA module can be run on the given device
/** @brief Checks the CUDA module and device compatibility.
This function returns true if the CUDA module can be run on the specified device. Otherwise, it
returns false .
*/
bool isCompatible() const;
private:
@ -693,7 +813,7 @@ private:
CV_EXPORTS void printCudaDeviceInfo(int device);
CV_EXPORTS void printShortCudaDeviceInfo(int device);
//! @}
//! @} cuda_init
}} // namespace cv { namespace cuda {

View File

@ -66,6 +66,11 @@ namespace cv
class Stream;
class Event;
/** @brief Class that enables getting cudaStream_t from cuda::Stream
because it is the only public header that depends on the CUDA Runtime API. Including it
brings a dependency to your code.
*/
struct StreamAccessor
{
CV_EXPORTS static cudaStream_t getStream(const Stream& stream);

View File

@ -89,6 +89,11 @@ namespace cv
size_t size;
};
/** @brief Structure similar to cuda::PtrStepSz but containing only a pointer and row step.
Width and height fields are excluded due to performance reasons. The structure is intended
for internal use or for users who write device code.
*/
template <typename T> struct PtrStep : public DevPtr<T>
{
__CV_CUDA_HOST_DEVICE__ PtrStep() : step(0) {}
@ -104,6 +109,12 @@ namespace cv
__CV_CUDA_HOST_DEVICE__ const T& operator ()(int y, int x) const { return ptr(y)[x]; }
};
/** @brief Lightweight class encapsulating pitched memory on a GPU and passed to nvcc-compiled code (CUDA
kernels).
Typically, it is used internally by OpenCV and by users who write device code. You can call
its members from both host and device code.
*/
template <typename T> struct PtrStepSz : public PtrStep<T>
{
__CV_CUDA_HOST_DEVICE__ PtrStepSz() : cols(0), rows(0) {}

View File

@ -353,43 +353,6 @@ inline unsigned RNG::next()
return (unsigned)state;
}
///////////////////////////////////////// LineIterator ////////////////////////////////////////
inline
uchar* LineIterator::operator *()
{
return ptr;
}
inline
LineIterator& LineIterator::operator ++()
{
int mask = err < 0 ? -1 : 0;
err += minusDelta + (plusDelta & mask);
ptr += minusStep + (plusStep & mask);
return *this;
}
inline
LineIterator LineIterator::operator ++(int)
{
LineIterator it = *this;
++(*this);
return it;
}
inline
Point LineIterator::pos() const
{
Point p;
p.y = (int)((ptr - ptr0)/step);
p.x = (int)(((ptr - ptr0) - p.y*step)/elemSize);
return p;
}
//! returns the next unifomly-distributed random number of the specified type
template<typename _Tp> static inline _Tp randu()
{

View File

@ -804,6 +804,36 @@ public:
//! @{
/** @brief struct returned by cv::moments
The spatial moments \f$\texttt{Moments::m}_{ji}\f$ are computed as:
\f[\texttt{m} _{ji}= \sum _{x,y} \left ( \texttt{array} (x,y) \cdot x^j \cdot y^i \right )\f]
The central moments \f$\texttt{Moments::mu}_{ji}\f$ are computed as:
\f[\texttt{mu} _{ji}= \sum _{x,y} \left ( \texttt{array} (x,y) \cdot (x - \bar{x} )^j \cdot (y - \bar{y} )^i \right )\f]
where \f$(\bar{x}, \bar{y})\f$ is the mass center:
\f[\bar{x} = \frac{\texttt{m}_{10}}{\texttt{m}_{00}} , \; \bar{y} = \frac{\texttt{m}_{01}}{\texttt{m}_{00}}\f]
The normalized central moments \f$\texttt{Moments::nu}_{ij}\f$ are computed as:
\f[\texttt{nu} _{ji}= \frac{\texttt{mu}_{ji}}{\texttt{m}_{00}^{(i+j)/2+1}} .\f]
@note
\f$\texttt{mu}_{00}=\texttt{m}_{00}\f$, \f$\texttt{nu}_{00}=1\f$
\f$\texttt{nu}_{10}=\texttt{mu}_{10}=\texttt{mu}_{01}=\texttt{mu}_{10}=0\f$ , hence the values are not
stored.
The moments of a contour are defined in the same way but computed using the Green's formula (see
<http://en.wikipedia.org/wiki/Green_theorem>). So, due to a limited raster resolution, the moments
computed for a contour are slightly different from the moments computed for the same rasterized
contour.
@note
Since the contour moments are computed using Green formula, you may get seemingly odd results for
contours with self-intersections, e.g. a zero area (m00) for butterfly-shaped contours.
*/
class CV_EXPORTS_W_MAP Moments
{

View File

@ -3115,7 +3115,7 @@ bool Kernel::compileWorkGroupSize(size_t wsz[]) const
size_t retsz = 0;
cl_device_id dev = (cl_device_id)Device::getDefault().ptr();
return clGetKernelWorkGroupInfo(p->handle, dev, CL_KERNEL_COMPILE_WORK_GROUP_SIZE,
sizeof(wsz[0]*3), wsz, &retsz) == CL_SUCCESS;
sizeof(wsz[0])*3, wsz, &retsz) == CL_SUCCESS;
}
size_t Kernel::localMemSize() const

View File

@ -0,0 +1,85 @@
CUDA Module Introduction {#cuda_intro}
========================
General Information
-------------------
The OpenCV CUDA module is a set of classes and functions to utilize CUDA computational capabilities.
It is implemented using NVIDIA\* CUDA\* Runtime API and supports only NVIDIA GPUs. The OpenCV CUDA
module includes utility functions, low-level vision primitives, and high-level algorithms. The
utility functions and low-level primitives provide a powerful infrastructure for developing fast
vision algorithms taking advantage of CUDA whereas the high-level functionality includes some
state-of-the-art algorithms (such as stereo correspondence, face and people detectors, and others)
ready to be used by the application developers.
The CUDA module is designed as a host-level API. This means that if you have pre-compiled OpenCV
CUDA binaries, you are not required to have the CUDA Toolkit installed or write any extra code to
make use of the CUDA.
The OpenCV CUDA module is designed for ease of use and does not require any knowledge of CUDA.
Though, such a knowledge will certainly be useful to handle non-trivial cases or achieve the highest
performance. It is helpful to understand the cost of various operations, what the GPU does, what the
preferred data formats are, and so on. The CUDA module is an effective instrument for quick
implementation of CUDA-accelerated computer vision algorithms. However, if your algorithm involves
many simple operations, then, for the best possible performance, you may still need to write your
own kernels to avoid extra write and read operations on the intermediate results.
To enable CUDA support, configure OpenCV using CMake with WITH\_CUDA=ON . When the flag is set and
if CUDA is installed, the full-featured OpenCV CUDA module is built. Otherwise, the module is still
built but at runtime all functions from the module throw Exception with CV\_GpuNotSupported error
code, except for cuda::getCudaEnabledDeviceCount(). The latter function returns zero GPU count in
this case. Building OpenCV without CUDA support does not perform device code compilation, so it does
not require the CUDA Toolkit installed. Therefore, using the cuda::getCudaEnabledDeviceCount()
function, you can implement a high-level algorithm that will detect GPU presence at runtime and
choose an appropriate implementation (CPU or GPU) accordingly.
Compilation for Different NVIDIA\* Platforms
--------------------------------------------
NVIDIA\* compiler enables generating binary code (cubin and fatbin) and intermediate code (PTX).
Binary code often implies a specific GPU architecture and generation, so the compatibility with
other GPUs is not guaranteed. PTX is targeted for a virtual platform that is defined entirely by the
set of capabilities or features. Depending on the selected virtual platform, some of the
instructions are emulated or disabled, even if the real hardware supports all the features.
At the first call, the PTX code is compiled to binary code for the particular GPU using a JIT
compiler. When the target GPU has a compute capability (CC) lower than the PTX code, JIT fails. By
default, the OpenCV CUDA module includes:
\*
Binaries for compute capabilities 1.3 and 2.0 (controlled by CUDA\_ARCH\_BIN in CMake)
\*
PTX code for compute capabilities 1.1 and 1.3 (controlled by CUDA\_ARCH\_PTX in CMake)
This means that for devices with CC 1.3 and 2.0 binary images are ready to run. For all newer
platforms, the PTX code for 1.3 is JIT'ed to a binary image. For devices with CC 1.1 and 1.2, the
PTX for 1.1 is JIT'ed. For devices with CC 1.0, no code is available and the functions throw
Exception. For platforms where JIT compilation is performed first, the run is slow.
On a GPU with CC 1.0, you can still compile the CUDA module and most of the functions will run
flawlessly. To achieve this, add "1.0" to the list of binaries, for example,
CUDA\_ARCH\_BIN="1.0 1.3 2.0" . The functions that cannot be run on CC 1.0 GPUs throw an exception.
You can always determine at runtime whether the OpenCV GPU-built binaries (or PTX code) are
compatible with your GPU. The function cuda::DeviceInfo::isCompatible returns the compatibility
status (true/false).
Utilizing Multiple GPUs
-----------------------
In the current version, each of the OpenCV CUDA algorithms can use only a single GPU. So, to utilize
multiple GPUs, you have to manually distribute the work between GPUs. Switching active devie can be
done using cuda::setDevice() function. For more details please read Cuda C Programming Guide.
While developing algorithms for multiple GPUs, note a data passing overhead. For primitive functions
and small images, it can be significant, which may eliminate all the advantages of having multiple
GPUs. But for high-level algorithms, consider using multi-GPU acceleration. For example, the Stereo
Block Matching algorithm has been successfully parallelized using the following algorithm:
1. Split each image of the stereo pair into two horizontal overlapping stripes.
2. Process each pair of stripes (from the left and right images) on a separate Fermi\* GPU.
3. Merge the results into a single disparity map.
With this algorithm, a dual GPU gave a 180% performance increase comparing to the single Fermi GPU.
For a source code example, see <https://github.com/Itseez/opencv/tree/master/samples/gpu/>.

View File

@ -49,10 +49,25 @@
#include "opencv2/core/cuda.hpp"
/**
@defgroup cuda CUDA-accelerated Computer Vision
@ref cuda_intro "Introduction page"
@{
@defgroup cuda_init Initalization and Information
@defgroup cuda_struct Data Structures
@defgroup cuda_calib3d Camera Calibration and 3D Reconstruction
@defgroup cuda_objdetect Object Detection
@}
*/
namespace cv { namespace cuda {
//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////
//! @addtogroup cuda_objdetect
//! @{
struct CV_EXPORTS HOGConfidence
{
double scale;
@ -61,31 +76,92 @@ struct CV_EXPORTS HOGConfidence
std::vector<double> part_scores[4];
};
/** @brief The class implements Histogram of Oriented Gradients (@cite Dalal2005) object detector.
Interfaces of all methods are kept similar to the CPU HOG descriptor and detector analogues as much
as possible.
@note
- An example applying the HOG descriptor for people detection can be found at
opencv_source_code/samples/cpp/peopledetect.cpp
- A CUDA example applying the HOG descriptor for people detection can be found at
opencv_source_code/samples/gpu/hog.cpp
- (Python) An example applying the HOG descriptor for people detection can be found at
opencv_source_code/samples/python2/peopledetect.py
*/
struct CV_EXPORTS HOGDescriptor
{
enum { DEFAULT_WIN_SIGMA = -1 };
enum { DEFAULT_NLEVELS = 64 };
enum { DESCR_FORMAT_ROW_BY_ROW, DESCR_FORMAT_COL_BY_COL };
/** @brief Creates the HOG descriptor and detector.
@param win_size Detection window size. Align to block size and block stride.
@param block_size Block size in pixels. Align to cell size. Only (16,16) is supported for now.
@param block_stride Block stride. It must be a multiple of cell size.
@param cell_size Cell size. Only (8, 8) is supported for now.
@param nbins Number of bins. Only 9 bins per cell are supported for now.
@param win_sigma Gaussian smoothing window parameter.
@param threshold_L2hys L2-Hys normalization method shrinkage.
@param gamma_correction Flag to specify whether the gamma correction preprocessing is required or
not.
@param nlevels Maximum number of detection window increases.
*/
HOGDescriptor(Size win_size=Size(64, 128), Size block_size=Size(16, 16),
Size block_stride=Size(8, 8), Size cell_size=Size(8, 8),
int nbins=9, double win_sigma=DEFAULT_WIN_SIGMA,
double threshold_L2hys=0.2, bool gamma_correction=true,
int nlevels=DEFAULT_NLEVELS);
/** @brief Returns the number of coefficients required for the classification.
*/
size_t getDescriptorSize() const;
/** @brief Returns the block histogram size.
*/
size_t getBlockHistogramSize() const;
/** @brief Sets coefficients for the linear SVM classifier.
*/
void setSVMDetector(const std::vector<float>& detector);
/** @brief Returns coefficients of the classifier trained for people detection (for default window size).
*/
static std::vector<float> getDefaultPeopleDetector();
/** @brief Returns coefficients of the classifier trained for people detection (for 48x96 windows).
*/
static std::vector<float> getPeopleDetector48x96();
/** @brief Returns coefficients of the classifier trained for people detection (for 64x128 windows).
*/
static std::vector<float> getPeopleDetector64x128();
/** @brief Performs object detection without a multi-scale window.
@param img Source image. CV_8UC1 and CV_8UC4 types are supported for now.
@param found_locations Left-top corner points of detected objects boundaries.
@param hit_threshold Threshold for the distance between features and SVM classifying plane.
Usually it is 0 and should be specfied in the detector coefficients (as the last free
coefficient). But if the free coefficient is omitted (which is allowed), you can specify it
manually here.
@param win_stride Window stride. It must be a multiple of block stride.
@param padding Mock parameter to keep the CPU interface compatibility. It must be (0,0).
*/
void detect(const GpuMat& img, std::vector<Point>& found_locations,
double hit_threshold=0, Size win_stride=Size(),
Size padding=Size());
/** @brief Performs object detection with a multi-scale window.
@param img Source image. See cuda::HOGDescriptor::detect for type limitations.
@param found_locations Detected objects boundaries.
@param hit_threshold Threshold for the distance between features and SVM classifying plane. See
cuda::HOGDescriptor::detect for details.
@param win_stride Window stride. It must be a multiple of block stride.
@param padding Mock parameter to keep the CPU interface compatibility. It must be (0,0).
@param scale0 Coefficient of the detection window increase.
@param group_threshold Coefficient to regulate the similarity threshold. When detected, some
objects can be covered by many rectangles. 0 means not to perform grouping. See groupRectangles .
*/
void detectMultiScale(const GpuMat& img, std::vector<Rect>& found_locations,
double hit_threshold=0, Size win_stride=Size(),
Size padding=Size(), double scale0=1.05,
@ -98,6 +174,17 @@ struct CV_EXPORTS HOGDescriptor
double hit_threshold, Size win_stride, Size padding,
std::vector<HOGConfidence> &conf_out, int group_threshold);
/** @brief Returns block descriptors computed for the whole image.
@param img Source image. See cuda::HOGDescriptor::detect for type limitations.
@param win_stride Window stride. It must be a multiple of block stride.
@param descriptors 2D array of descriptors.
@param descr_format Descriptor storage format:
- **DESCR_FORMAT_ROW_BY_ROW** - Row-major order.
- **DESCR_FORMAT_COL_BY_COL** - Column-major order.
The function is mainly used to learn the classifier.
*/
void getDescriptors(const GpuMat& img, Size win_stride,
GpuMat& descriptors,
int descr_format=DESCR_FORMAT_COL_BY_COL);
@ -145,20 +232,82 @@ protected:
//////////////////////////// CascadeClassifier ////////////////////////////
// The cascade classifier class for object detection: supports old haar and new lbp xlm formats and nvbin for haar cascades olny.
/** @brief Cascade classifier class used for object detection. Supports HAAR and LBP cascades. :
@note
- A cascade classifier example can be found at
opencv_source_code/samples/gpu/cascadeclassifier.cpp
- A Nvidea API specific cascade classifier example can be found at
opencv_source_code/samples/gpu/cascadeclassifier_nvidia_api.cpp
*/
class CV_EXPORTS CascadeClassifier_CUDA
{
public:
CascadeClassifier_CUDA();
/** @brief Loads the classifier from a file. Cascade type is detected automatically by constructor parameter.
@param filename Name of the file from which the classifier is loaded. Only the old haar classifier
(trained by the haar training application) and NVIDIA's nvbin are supported for HAAR and only new
type of OpenCV XML cascade supported for LBP.
*/
CascadeClassifier_CUDA(const String& filename);
~CascadeClassifier_CUDA();
/** @brief Checks whether the classifier is loaded or not.
*/
bool empty() const;
/** @brief Loads the classifier from a file. The previous content is destroyed.
@param filename Name of the file from which the classifier is loaded. Only the old haar classifier
(trained by the haar training application) and NVIDIA's nvbin are supported for HAAR and only new
type of OpenCV XML cascade supported for LBP.
*/
bool load(const String& filename);
/** @brief Destroys the loaded classifier.
*/
void release();
/* returns number of detected objects */
/** @overload */
int detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, double scaleFactor = 1.2, int minNeighbors = 4, Size minSize = Size());
/** @brief Detects objects of different sizes in the input image.
@param image Matrix of type CV_8U containing an image where objects should be detected.
@param objectsBuf Buffer to store detected objects (rectangles). If it is empty, it is allocated
with the default size. If not empty, the function searches not more than N objects, where
N = sizeof(objectsBufer's data)/sizeof(cv::Rect).
@param maxObjectSize Maximum possible object size. Objects larger than that are ignored. Used for
second signature and supported only for LBP cascades.
@param scaleFactor Parameter specifying how much the image size is reduced at each image scale.
@param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have
to retain it.
@param minSize Minimum possible object size. Objects smaller than that are ignored.
The detected objects are returned as a list of rectangles.
The function returns the number of detected objects, so you can retrieve them as in the following
example:
@code
cuda::CascadeClassifier_CUDA cascade_gpu(...);
Mat image_cpu = imread(...)
GpuMat image_gpu(image_cpu);
GpuMat objbuf;
int detections_number = cascade_gpu.detectMultiScale( image_gpu,
objbuf, 1.2, minNeighbors);
Mat obj_host;
// download only detected number of rectangles
objbuf.colRange(0, detections_number).download(obj_host);
Rect* faces = obj_host.ptr<Rect>();
for(int i = 0; i < detections_num; ++i)
cv::rectangle(image_cpu, faces[i], Scalar(255));
imshow("Faces", image_cpu);
@endcode
@sa CascadeClassifier::detectMultiScale
*/
int detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, Size maxObjectSize, Size minSize = Size(), double scaleFactor = 1.1, int minNeighbors = 4);
bool findLargestObject;
@ -174,8 +323,13 @@ private:
friend class CascadeClassifier_CUDA_LBP;
};
//! @} cuda_objdetect
//////////////////////////// Labeling ////////////////////////////
//! @addtogroup cuda
//! @{
//!performs labeling via graph cuts of a 2D regular 4-connected graph.
CV_EXPORTS void graphcut(GpuMat& terminals, GpuMat& leftTransp, GpuMat& rightTransp, GpuMat& top, GpuMat& bottom, GpuMat& labels,
GpuMat& buf, Stream& stream = Stream::Null());
@ -192,8 +346,13 @@ CV_EXPORTS void connectivityMask(const GpuMat& image, GpuMat& mask, const cv::Sc
//! performs connected componnents labeling.
CV_EXPORTS void labelComponents(const GpuMat& mask, GpuMat& components, int flags = 0, Stream& stream = Stream::Null());
//! @}
//////////////////////////// Calib3d ////////////////////////////
//! @addtogroup cuda_calib3d
//! @{
CV_EXPORTS void transformPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec,
GpuMat& dst, Stream& stream = Stream::Null());
@ -201,13 +360,34 @@ CV_EXPORTS void projectPoints(const GpuMat& src, const Mat& rvec, const Mat& tve
const Mat& camera_mat, const Mat& dist_coef, GpuMat& dst,
Stream& stream = Stream::Null());
/** @brief Finds the object pose from 3D-2D point correspondences.
@param object Single-row matrix of object points.
@param image Single-row matrix of image points.
@param camera_mat 3x3 matrix of intrinsic camera parameters.
@param dist_coef Distortion coefficients. See undistortPoints for details.
@param rvec Output 3D rotation vector.
@param tvec Output 3D translation vector.
@param use_extrinsic_guess Flag to indicate that the function must use rvec and tvec as an
initial transformation guess. It is not supported for now.
@param num_iters Maximum number of RANSAC iterations.
@param max_dist Euclidean distance threshold to detect whether point is inlier or not.
@param min_inlier_count Flag to indicate that the function must stop if greater or equal number
of inliers is achieved. It is not supported for now.
@param inliers Output vector of inlier indices.
*/
CV_EXPORTS void solvePnPRansac(const Mat& object, const Mat& image, const Mat& camera_mat,
const Mat& dist_coef, Mat& rvec, Mat& tvec, bool use_extrinsic_guess=false,
int num_iters=100, float max_dist=8.0, int min_inlier_count=100,
std::vector<int>* inliers=NULL);
//! @}
//////////////////////////// VStab ////////////////////////////
//! @addtogroup cuda
//! @{
//! removes points (CV_32FC2, single row matrix) with zero mask value
CV_EXPORTS void compactPoints(GpuMat &points0, GpuMat &points1, const GpuMat &mask);
@ -215,6 +395,8 @@ CV_EXPORTS void calcWobbleSuppressionMaps(
int left, int idx, int right, Size size, const Mat &ml, const Mat &mr,
GpuMat &mapx, GpuMat &mapy);
//! @}
}} // namespace cv { namespace cuda {
#endif /* __OPENCV_CUDA_HPP__ */

File diff suppressed because it is too large Load Diff

View File

@ -50,11 +50,33 @@
#include "opencv2/core/cuda.hpp"
#include "opencv2/video/background_segm.hpp"
/**
@addtogroup cuda
@{
@defgroup cudabgsegm Background Segmentation
@}
*/
namespace cv { namespace cuda {
//! @addtogroup cudabgsegm
//! @{
////////////////////////////////////////////////////
// MOG
/** @brief Gaussian Mixture-based Background/Foreground Segmentation Algorithm.
The class discriminates between foreground and background pixels by building and maintaining a model
of the background. Any pixel which does not fit this model is then deemed to be foreground. The
class implements algorithm described in @cite MOG2001 .
@sa BackgroundSubtractorMOG
@note
- An example on gaussian mixture based background/foreground segmantation can be found at
opencv_source_code/samples/gpu/bgfg_segm.cpp
*/
class CV_EXPORTS BackgroundSubtractorMOG : public cv::BackgroundSubtractor
{
public:
@ -78,6 +100,14 @@ public:
virtual void setNoiseSigma(double noiseSigma) = 0;
};
/** @brief Creates mixture-of-gaussian background subtractor
@param history Length of the history.
@param nmixtures Number of Gaussian mixtures.
@param backgroundRatio Background ratio.
@param noiseSigma Noise strength (standard deviation of the brightness or each color channel). 0
means some automatic value.
*/
CV_EXPORTS Ptr<cuda::BackgroundSubtractorMOG>
createBackgroundSubtractorMOG(int history = 200, int nmixtures = 5,
double backgroundRatio = 0.7, double noiseSigma = 0);
@ -85,6 +115,14 @@ CV_EXPORTS Ptr<cuda::BackgroundSubtractorMOG>
////////////////////////////////////////////////////
// MOG2
/** @brief Gaussian Mixture-based Background/Foreground Segmentation Algorithm.
The class discriminates between foreground and background pixels by building and maintaining a model
of the background. Any pixel which does not fit this model is then deemed to be foreground. The
class implements algorithm described in @cite Zivkovic2004 .
@sa BackgroundSubtractorMOG2
*/
class CV_EXPORTS BackgroundSubtractorMOG2 : public cv::BackgroundSubtractorMOG2
{
public:
@ -96,6 +134,15 @@ public:
virtual void getBackgroundImage(OutputArray backgroundImage, Stream& stream) const = 0;
};
/** @brief Creates MOG2 Background Subtractor
@param history Length of the history.
@param varThreshold Threshold on the squared Mahalanobis distance between the pixel and the model
to decide whether a pixel is well described by the background model. This parameter does not
affect the background update.
@param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the
speed a bit, so if you do not need this feature, set the parameter to false.
*/
CV_EXPORTS Ptr<cuda::BackgroundSubtractorMOG2>
createBackgroundSubtractorMOG2(int history = 500, double varThreshold = 16,
bool detectShadows = true);
@ -103,6 +150,12 @@ CV_EXPORTS Ptr<cuda::BackgroundSubtractorMOG2>
////////////////////////////////////////////////////
// GMG
/** @brief Background/Foreground Segmentation Algorithm.
The class discriminates between foreground and background pixels by building and maintaining a model
of the background. Any pixel which does not fit this model is then deemed to be foreground. The
class implements algorithm described in @cite Gold2012 .
*/
class CV_EXPORTS BackgroundSubtractorGMG : public cv::BackgroundSubtractor
{
public:
@ -140,54 +193,71 @@ public:
virtual void setMaxVal(double val) = 0;
};
/** @brief Creates GMG Background Subtractor
@param initializationFrames Number of frames of video to use to initialize histograms.
@param decisionThreshold Value above which pixel is determined to be FG.
*/
CV_EXPORTS Ptr<cuda::BackgroundSubtractorGMG>
createBackgroundSubtractorGMG(int initializationFrames = 120, double decisionThreshold = 0.8);
////////////////////////////////////////////////////
// FGD
/**
* Foreground Object Detection from Videos Containing Complex Background.
* Liyuan Li, Weimin Huang, Irene Y.H. Gu, and Qi Tian.
* ACM MM2003 9p
/** @brief The class discriminates between foreground and background pixels by building and maintaining a model
of the background.
Any pixel which does not fit this model is then deemed to be foreground. The class implements
algorithm described in @cite FGD2003 .
@sa BackgroundSubtractor
*/
class CV_EXPORTS BackgroundSubtractorFGD : public cv::BackgroundSubtractor
{
public:
/** @brief Returns the output foreground regions calculated by findContours.
@param foreground_regions Output array (CPU memory).
*/
virtual void getForegroundRegions(OutputArrayOfArrays foreground_regions) = 0;
};
struct CV_EXPORTS FGDParams
{
int Lc; // Quantized levels per 'color' component. Power of two, typically 32, 64 or 128.
int N1c; // Number of color vectors used to model normal background color variation at a given pixel.
int N2c; // Number of color vectors retained at given pixel. Must be > N1c, typically ~ 5/3 of N1c.
// Used to allow the first N1c vectors to adapt over time to changing background.
int Lc; //!< Quantized levels per 'color' component. Power of two, typically 32, 64 or 128.
int N1c; //!< Number of color vectors used to model normal background color variation at a given pixel.
int N2c; //!< Number of color vectors retained at given pixel. Must be > N1c, typically ~ 5/3 of N1c.
//!< Used to allow the first N1c vectors to adapt over time to changing background.
int Lcc; // Quantized levels per 'color co-occurrence' component. Power of two, typically 16, 32 or 64.
int N1cc; // Number of color co-occurrence vectors used to model normal background color variation at a given pixel.
int N2cc; // Number of color co-occurrence vectors retained at given pixel. Must be > N1cc, typically ~ 5/3 of N1cc.
// Used to allow the first N1cc vectors to adapt over time to changing background.
int Lcc; //!< Quantized levels per 'color co-occurrence' component. Power of two, typically 16, 32 or 64.
int N1cc; //!< Number of color co-occurrence vectors used to model normal background color variation at a given pixel.
int N2cc; //!< Number of color co-occurrence vectors retained at given pixel. Must be > N1cc, typically ~ 5/3 of N1cc.
//!< Used to allow the first N1cc vectors to adapt over time to changing background.
bool is_obj_without_holes; // If TRUE we ignore holes within foreground blobs. Defaults to TRUE.
int perform_morphing; // Number of erode-dilate-erode foreground-blob cleanup iterations.
// These erase one-pixel junk blobs and merge almost-touching blobs. Default value is 1.
bool is_obj_without_holes; //!< If TRUE we ignore holes within foreground blobs. Defaults to TRUE.
int perform_morphing; //!< Number of erode-dilate-erode foreground-blob cleanup iterations.
//!< These erase one-pixel junk blobs and merge almost-touching blobs. Default value is 1.
float alpha1; // How quickly we forget old background pixel values seen. Typically set to 0.1.
float alpha2; // "Controls speed of feature learning". Depends on T. Typical value circa 0.005.
float alpha3; // Alternate to alpha2, used (e.g.) for quicker initial convergence. Typical value 0.1.
float alpha1; //!< How quickly we forget old background pixel values seen. Typically set to 0.1.
float alpha2; //!< "Controls speed of feature learning". Depends on T. Typical value circa 0.005.
float alpha3; //!< Alternate to alpha2, used (e.g.) for quicker initial convergence. Typical value 0.1.
float delta; // Affects color and color co-occurrence quantization, typically set to 2.
float T; // A percentage value which determines when new features can be recognized as new background. (Typically 0.9).
float minArea; // Discard foreground blobs whose bounding box is smaller than this threshold.
float delta; //!< Affects color and color co-occurrence quantization, typically set to 2.
float T; //!< A percentage value which determines when new features can be recognized as new background. (Typically 0.9).
float minArea; //!< Discard foreground blobs whose bounding box is smaller than this threshold.
// default Params
//! default Params
FGDParams();
};
/** @brief Creates FGD Background Subtractor
@param params Algorithm's parameters. See @cite FGD2003 for explanation.
*/
CV_EXPORTS Ptr<cuda::BackgroundSubtractorFGD>
createBackgroundSubtractorFGD(const FGDParams& params = FGDParams());
//! @}
}} // namespace cv { namespace cuda {
#endif /* __OPENCV_CUDABGSEGM_HPP__ */

View File

@ -50,8 +50,18 @@
#include "opencv2/core/cuda.hpp"
/**
@addtogroup cuda
@{
@defgroup cudacodec Video Encoding/Decoding
@}
*/
namespace cv { namespace cudacodec {
//! @addtogroup cudacodec
//! @{
////////////////////////////////// Video Encoding //////////////////////////////////
// Works only under Windows.
@ -68,35 +78,53 @@ enum SurfaceFormat
SF_GRAY = SF_BGR
};
/** @brief Different parameters for CUDA video encoder.
*/
struct CV_EXPORTS EncoderParams
{
int P_Interval; // NVVE_P_INTERVAL,
int IDR_Period; // NVVE_IDR_PERIOD,
int DynamicGOP; // NVVE_DYNAMIC_GOP,
int RCType; // NVVE_RC_TYPE,
int AvgBitrate; // NVVE_AVG_BITRATE,
int PeakBitrate; // NVVE_PEAK_BITRATE,
int QP_Level_Intra; // NVVE_QP_LEVEL_INTRA,
int QP_Level_InterP; // NVVE_QP_LEVEL_INTER_P,
int QP_Level_InterB; // NVVE_QP_LEVEL_INTER_B,
int DeblockMode; // NVVE_DEBLOCK_MODE,
int ProfileLevel; // NVVE_PROFILE_LEVEL,
int ForceIntra; // NVVE_FORCE_INTRA,
int ForceIDR; // NVVE_FORCE_IDR,
int ClearStat; // NVVE_CLEAR_STAT,
int DIMode; // NVVE_SET_DEINTERLACE,
int Presets; // NVVE_PRESETS,
int DisableCabac; // NVVE_DISABLE_CABAC,
int NaluFramingType; // NVVE_CONFIGURE_NALU_FRAMING_TYPE
int DisableSPSPPS; // NVVE_DISABLE_SPS_PPS
int P_Interval; //!< NVVE_P_INTERVAL,
int IDR_Period; //!< NVVE_IDR_PERIOD,
int DynamicGOP; //!< NVVE_DYNAMIC_GOP,
int RCType; //!< NVVE_RC_TYPE,
int AvgBitrate; //!< NVVE_AVG_BITRATE,
int PeakBitrate; //!< NVVE_PEAK_BITRATE,
int QP_Level_Intra; //!< NVVE_QP_LEVEL_INTRA,
int QP_Level_InterP; //!< NVVE_QP_LEVEL_INTER_P,
int QP_Level_InterB; //!< NVVE_QP_LEVEL_INTER_B,
int DeblockMode; //!< NVVE_DEBLOCK_MODE,
int ProfileLevel; //!< NVVE_PROFILE_LEVEL,
int ForceIntra; //!< NVVE_FORCE_INTRA,
int ForceIDR; //!< NVVE_FORCE_IDR,
int ClearStat; //!< NVVE_CLEAR_STAT,
int DIMode; //!< NVVE_SET_DEINTERLACE,
int Presets; //!< NVVE_PRESETS,
int DisableCabac; //!< NVVE_DISABLE_CABAC,
int NaluFramingType; //!< NVVE_CONFIGURE_NALU_FRAMING_TYPE
int DisableSPSPPS; //!< NVVE_DISABLE_SPS_PPS
EncoderParams();
/** @brief Constructors.
@param configFile Config file name.
Creates default parameters or reads parameters from config file.
*/
explicit EncoderParams(const String& configFile);
/** @brief Reads parameters from config file.
@param configFile Config file name.
*/
void load(const String& configFile);
/** @brief Saves parameters to config file.
@param configFile Config file name.
*/
void save(const String& configFile) const;
};
/** @brief Callbacks for CUDA video encoder.
*/
class CV_EXPORTS EncoderCallBack
{
public:
@ -109,41 +137,109 @@ public:
virtual ~EncoderCallBack() {}
//! callback function to signal the start of bitstream that is to be encoded
//! callback must allocate host buffer for CUDA encoder and return pointer to it and it's size
/** @brief Callback function to signal the start of bitstream that is to be encoded.
Callback must allocate buffer for CUDA encoder and return pointer to it and it's size.
*/
virtual uchar* acquireBitStream(int* bufferSize) = 0;
//! callback function to signal that the encoded bitstream is ready to be written to file
/** @brief Callback function to signal that the encoded bitstream is ready to be written to file.
*/
virtual void releaseBitStream(unsigned char* data, int size) = 0;
//! callback function to signal that the encoding operation on the frame has started
/** @brief Callback function to signal that the encoding operation on the frame has started.
@param frameNumber
@param picType Specify frame type (I-Frame, P-Frame or B-Frame).
*/
virtual void onBeginFrame(int frameNumber, PicType picType) = 0;
//! callback function signals that the encoding operation on the frame has finished
/** @brief Callback function signals that the encoding operation on the frame has finished.
@param frameNumber
@param picType Specify frame type (I-Frame, P-Frame or B-Frame).
*/
virtual void onEndFrame(int frameNumber, PicType picType) = 0;
};
/** @brief Video writer interface.
The implementation uses H264 video codec.
@note Currently only Windows platform is supported.
@note
- An example on how to use the videoWriter class can be found at
opencv_source_code/samples/gpu/video_writer.cpp
*/
class CV_EXPORTS VideoWriter
{
public:
virtual ~VideoWriter() {}
//! writes the next frame from GPU memory
/** @brief Writes the next video frame.
@param frame The written frame.
@param lastFrame Indicates that it is end of stream. The parameter can be ignored.
The method write the specified image to video file. The image must have the same size and the same
surface format as has been specified when opening the video writer.
*/
virtual void write(InputArray frame, bool lastFrame = false) = 0;
virtual EncoderParams getEncoderParams() const = 0;
};
//! create VideoWriter for specified output file (only AVI file format is supported)
/** @brief Creates video writer.
@param fileName Name of the output video file. Only AVI file format is supported.
@param frameSize Size of the input video frames.
@param fps Framerate of the created video stream.
@param format Surface format of input frames ( SF_UYVY , SF_YUY2 , SF_YV12 , SF_NV12 ,
SF_IYUV , SF_BGR or SF_GRAY). BGR or gray frames will be converted to YV12 format before
encoding, frames with other formats will be used as is.
The constructors initialize video writer. FFMPEG is used to write videos. User can implement own
multiplexing with cudacodec::EncoderCallBack .
*/
CV_EXPORTS Ptr<VideoWriter> createVideoWriter(const String& fileName, Size frameSize, double fps, SurfaceFormat format = SF_BGR);
/** @overload
@param fileName Name of the output video file. Only AVI file format is supported.
@param frameSize Size of the input video frames.
@param fps Framerate of the created video stream.
@param params Encoder parameters. See cudacodec::EncoderParams .
@param format Surface format of input frames ( SF_UYVY , SF_YUY2 , SF_YV12 , SF_NV12 ,
SF_IYUV , SF_BGR or SF_GRAY). BGR or gray frames will be converted to YV12 format before
encoding, frames with other formats will be used as is.
*/
CV_EXPORTS Ptr<VideoWriter> createVideoWriter(const String& fileName, Size frameSize, double fps, const EncoderParams& params, SurfaceFormat format = SF_BGR);
//! create VideoWriter for user-defined callbacks
/** @overload
@param encoderCallback Callbacks for video encoder. See cudacodec::EncoderCallBack . Use it if you
want to work with raw video stream.
@param frameSize Size of the input video frames.
@param fps Framerate of the created video stream.
@param format Surface format of input frames ( SF_UYVY , SF_YUY2 , SF_YV12 , SF_NV12 ,
SF_IYUV , SF_BGR or SF_GRAY). BGR or gray frames will be converted to YV12 format before
encoding, frames with other formats will be used as is.
*/
CV_EXPORTS Ptr<VideoWriter> createVideoWriter(const Ptr<EncoderCallBack>& encoderCallback, Size frameSize, double fps, SurfaceFormat format = SF_BGR);
/** @overload
@param encoderCallback Callbacks for video encoder. See cudacodec::EncoderCallBack . Use it if you
want to work with raw video stream.
@param frameSize Size of the input video frames.
@param fps Framerate of the created video stream.
@param params Encoder parameters. See cudacodec::EncoderParams .
@param format Surface format of input frames ( SF_UYVY , SF_YUY2 , SF_YV12 , SF_NV12 ,
SF_IYUV , SF_BGR or SF_GRAY). BGR or gray frames will be converted to YV12 format before
encoding, frames with other formats will be used as is.
*/
CV_EXPORTS Ptr<VideoWriter> createVideoWriter(const Ptr<EncoderCallBack>& encoderCallback, Size frameSize, double fps, const EncoderParams& params, SurfaceFormat format = SF_BGR);
////////////////////////////////// Video Decoding //////////////////////////////////////////
/** @brief Video codecs supported by cudacodec::VideoReader .
*/
enum Codec
{
MPEG1 = 0,
@ -155,13 +251,15 @@ enum Codec
H264_SVC,
H264_MVC,
Uncompressed_YUV420 = (('I'<<24)|('Y'<<16)|('U'<<8)|('V')), // Y,U,V (4:2:0)
Uncompressed_YV12 = (('Y'<<24)|('V'<<16)|('1'<<8)|('2')), // Y,V,U (4:2:0)
Uncompressed_NV12 = (('N'<<24)|('V'<<16)|('1'<<8)|('2')), // Y,UV (4:2:0)
Uncompressed_YUYV = (('Y'<<24)|('U'<<16)|('Y'<<8)|('V')), // YUYV/YUY2 (4:2:2)
Uncompressed_UYVY = (('U'<<24)|('Y'<<16)|('V'<<8)|('Y')) // UYVY (4:2:2)
Uncompressed_YUV420 = (('I'<<24)|('Y'<<16)|('U'<<8)|('V')), //!< Y,U,V (4:2:0)
Uncompressed_YV12 = (('Y'<<24)|('V'<<16)|('1'<<8)|('2')), //!< Y,V,U (4:2:0)
Uncompressed_NV12 = (('N'<<24)|('V'<<16)|('1'<<8)|('2')), //!< Y,UV (4:2:0)
Uncompressed_YUYV = (('Y'<<24)|('U'<<16)|('Y'<<8)|('V')), //!< YUYV/YUY2 (4:2:2)
Uncompressed_UYVY = (('U'<<24)|('Y'<<16)|('V'<<8)|('Y')) //!< UYVY (4:2:2)
};
/** @brief Chroma formats supported by cudacodec::VideoReader .
*/
enum ChromaFormat
{
Monochrome = 0,
@ -170,6 +268,8 @@ enum ChromaFormat
YUV444
};
/** @brief Struct providing information about video file format. :
*/
struct FormatInfo
{
Codec codec;
@ -178,29 +278,65 @@ struct FormatInfo
int height;
};
/** @brief Video reader interface.
@note
- An example on how to use the videoReader class can be found at
opencv_source_code/samples/gpu/video_reader.cpp
*/
class CV_EXPORTS VideoReader
{
public:
virtual ~VideoReader() {}
/** @brief Grabs, decodes and returns the next video frame.
If no frames has been grabbed (there are no more frames in video file), the methods return false .
The method throws Exception if error occurs.
*/
virtual bool nextFrame(OutputArray frame) = 0;
/** @brief Returns information about video file format.
*/
virtual FormatInfo format() const = 0;
};
/** @brief Interface for video demultiplexing. :
User can implement own demultiplexing by implementing this interface.
*/
class CV_EXPORTS RawVideoSource
{
public:
virtual ~RawVideoSource() {}
/** @brief Returns next packet with RAW video frame.
@param data Pointer to frame data.
@param size Size in bytes of current frame.
@param endOfFile Indicates that it is end of stream.
*/
virtual bool getNextPacket(unsigned char** data, int* size, bool* endOfFile) = 0;
/** @brief Returns information about video file format.
*/
virtual FormatInfo format() const = 0;
};
/** @brief Creates video reader.
@param filename Name of the input video file.
FFMPEG is used to read videos. User can implement own demultiplexing with cudacodec::RawVideoSource
*/
CV_EXPORTS Ptr<VideoReader> createVideoReader(const String& filename);
/** @overload
@param source RAW video source implemented by user.
*/
CV_EXPORTS Ptr<VideoReader> createVideoReader(const Ptr<RawVideoSource>& source);
//! @}
}} // namespace cv { namespace cudacodec {
#endif /* __OPENCV_CUDACODEC_HPP__ */

View File

@ -50,150 +50,175 @@
#include "opencv2/core/cuda.hpp"
#include "opencv2/cudafilters.hpp"
/**
@addtogroup cuda
@{
@defgroup cudafeatures2d Feature Detection and Description
@}
*/
namespace cv { namespace cuda {
//! @addtogroup cudafeatures2d
//! @{
/** @brief Brute-force descriptor matcher.
For each descriptor in the first set, this matcher finds the closest descriptor in the second set
by trying each one. This descriptor matcher supports masking permissible matches between descriptor
sets.
The class BFMatcher_CUDA has an interface similar to the class DescriptorMatcher. It has two groups
of match methods: for matching descriptors of one image with another image or with an image set.
Also, all functions have an alternative to save results either to the GPU memory or to the CPU
memory.
@sa DescriptorMatcher, BFMatcher
*/
class CV_EXPORTS BFMatcher_CUDA
{
public:
explicit BFMatcher_CUDA(int norm = cv::NORM_L2);
// Add descriptors to train descriptor collection
//! Add descriptors to train descriptor collection
void add(const std::vector<GpuMat>& descCollection);
// Get train descriptors collection
//! Get train descriptors collection
const std::vector<GpuMat>& getTrainDescriptors() const;
// Clear train descriptors collection
//! Clear train descriptors collection
void clear();
// Return true if there are not train descriptors in collection
//! Return true if there are not train descriptors in collection
bool empty() const;
// Return true if the matcher supports mask in match methods
//! Return true if the matcher supports mask in match methods
bool isMaskSupported() const;
// Find one best match for each query descriptor
//! Find one best match for each query descriptor
void matchSingle(const GpuMat& query, const GpuMat& train,
GpuMat& trainIdx, GpuMat& distance,
const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());
// Download trainIdx and distance and convert it to CPU vector with DMatch
//! Download trainIdx and distance and convert it to CPU vector with DMatch
static void matchDownload(const GpuMat& trainIdx, const GpuMat& distance, std::vector<DMatch>& matches);
// Convert trainIdx and distance to vector with DMatch
//! Convert trainIdx and distance to vector with DMatch
static void matchConvert(const Mat& trainIdx, const Mat& distance, std::vector<DMatch>& matches);
// Find one best match for each query descriptor
//! Find one best match for each query descriptor
void match(const GpuMat& query, const GpuMat& train, std::vector<DMatch>& matches, const GpuMat& mask = GpuMat());
// Make gpu collection of trains and masks in suitable format for matchCollection function
//! Make gpu collection of trains and masks in suitable format for matchCollection function
void makeGpuCollection(GpuMat& trainCollection, GpuMat& maskCollection, const std::vector<GpuMat>& masks = std::vector<GpuMat>());
// Find one best match from train collection for each query descriptor
//! Find one best match from train collection for each query descriptor
void matchCollection(const GpuMat& query, const GpuMat& trainCollection,
GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance,
const GpuMat& masks = GpuMat(), Stream& stream = Stream::Null());
// Download trainIdx, imgIdx and distance and convert it to vector with DMatch
//! Download trainIdx, imgIdx and distance and convert it to vector with DMatch
static void matchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, std::vector<DMatch>& matches);
// Convert trainIdx, imgIdx and distance to vector with DMatch
//! Convert trainIdx, imgIdx and distance to vector with DMatch
static void matchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, std::vector<DMatch>& matches);
// Find one best match from train collection for each query descriptor.
//! Find one best match from train collection for each query descriptor.
void match(const GpuMat& query, std::vector<DMatch>& matches, const std::vector<GpuMat>& masks = std::vector<GpuMat>());
// Find k best matches for each query descriptor (in increasing order of distances)
//! Find k best matches for each query descriptor (in increasing order of distances)
void knnMatchSingle(const GpuMat& query, const GpuMat& train,
GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k,
const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());
// Download trainIdx and distance and convert it to vector with DMatch
// compactResult is used when mask is not empty. If compactResult is false matches
// vector will have the same size as queryDescriptors rows. If compactResult is true
// matches vector will not contain matches for fully masked out query descriptors.
//! Download trainIdx and distance and convert it to vector with DMatch
//! compactResult is used when mask is not empty. If compactResult is false matches
//! vector will have the same size as queryDescriptors rows. If compactResult is true
//! matches vector will not contain matches for fully masked out query descriptors.
static void knnMatchDownload(const GpuMat& trainIdx, const GpuMat& distance,
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
// Convert trainIdx and distance to vector with DMatch
//! Convert trainIdx and distance to vector with DMatch
static void knnMatchConvert(const Mat& trainIdx, const Mat& distance,
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
// Find k best matches for each query descriptor (in increasing order of distances).
// compactResult is used when mask is not empty. If compactResult is false matches
// vector will have the same size as queryDescriptors rows. If compactResult is true
// matches vector will not contain matches for fully masked out query descriptors.
//! Find k best matches for each query descriptor (in increasing order of distances).
//! compactResult is used when mask is not empty. If compactResult is false matches
//! vector will have the same size as queryDescriptors rows. If compactResult is true
//! matches vector will not contain matches for fully masked out query descriptors.
void knnMatch(const GpuMat& query, const GpuMat& train,
std::vector< std::vector<DMatch> >& matches, int k, const GpuMat& mask = GpuMat(),
bool compactResult = false);
// Find k best matches from train collection for each query descriptor (in increasing order of distances)
//! Find k best matches from train collection for each query descriptor (in increasing order of distances)
void knnMatch2Collection(const GpuMat& query, const GpuMat& trainCollection,
GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance,
const GpuMat& maskCollection = GpuMat(), Stream& stream = Stream::Null());
// Download trainIdx and distance and convert it to vector with DMatch
// compactResult is used when mask is not empty. If compactResult is false matches
// vector will have the same size as queryDescriptors rows. If compactResult is true
// matches vector will not contain matches for fully masked out query descriptors.
//! Download trainIdx and distance and convert it to vector with DMatch
//! compactResult is used when mask is not empty. If compactResult is false matches
//! vector will have the same size as queryDescriptors rows. If compactResult is true
//! matches vector will not contain matches for fully masked out query descriptors.
//! @see BFMatcher_CUDA::knnMatchDownload
static void knnMatch2Download(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance,
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
// Convert trainIdx and distance to vector with DMatch
//! Convert trainIdx and distance to vector with DMatch
//! @see BFMatcher_CUDA::knnMatchConvert
static void knnMatch2Convert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance,
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
// Find k best matches for each query descriptor (in increasing order of distances).
// compactResult is used when mask is not empty. If compactResult is false matches
// vector will have the same size as queryDescriptors rows. If compactResult is true
// matches vector will not contain matches for fully masked out query descriptors.
//! Find k best matches for each query descriptor (in increasing order of distances).
//! compactResult is used when mask is not empty. If compactResult is false matches
//! vector will have the same size as queryDescriptors rows. If compactResult is true
//! matches vector will not contain matches for fully masked out query descriptors.
void knnMatch(const GpuMat& query, std::vector< std::vector<DMatch> >& matches, int k,
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), bool compactResult = false);
// Find best matches for each query descriptor which have distance less than maxDistance.
// nMatches.at<int>(0, queryIdx) will contain matches count for queryIdx.
// carefully nMatches can be greater than trainIdx.cols - it means that matcher didn't find all matches,
// because it didn't have enough memory.
// If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nTrain / 100), 10),
// otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches
// Matches doesn't sorted.
//! Find best matches for each query descriptor which have distance less than maxDistance.
//! nMatches.at<int>(0, queryIdx) will contain matches count for queryIdx.
//! carefully nMatches can be greater than trainIdx.cols - it means that matcher didn't find all matches,
//! because it didn't have enough memory.
//! If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nTrain / 100), 10),
//! otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches
//! Matches doesn't sorted.
void radiusMatchSingle(const GpuMat& query, const GpuMat& train,
GpuMat& trainIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance,
const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());
// Download trainIdx, nMatches and distance and convert it to vector with DMatch.
// matches will be sorted in increasing order of distances.
// compactResult is used when mask is not empty. If compactResult is false matches
// vector will have the same size as queryDescriptors rows. If compactResult is true
// matches vector will not contain matches for fully masked out query descriptors.
//! Download trainIdx, nMatches and distance and convert it to vector with DMatch.
//! matches will be sorted in increasing order of distances.
//! compactResult is used when mask is not empty. If compactResult is false matches
//! vector will have the same size as queryDescriptors rows. If compactResult is true
//! matches vector will not contain matches for fully masked out query descriptors.
static void radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& distance, const GpuMat& nMatches,
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
// Convert trainIdx, nMatches and distance to vector with DMatch.
//! Convert trainIdx, nMatches and distance to vector with DMatch.
static void radiusMatchConvert(const Mat& trainIdx, const Mat& distance, const Mat& nMatches,
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
// Find best matches for each query descriptor which have distance less than maxDistance
// in increasing order of distances).
//! Find best matches for each query descriptor which have distance less than maxDistance
//! in increasing order of distances).
void radiusMatch(const GpuMat& query, const GpuMat& train,
std::vector< std::vector<DMatch> >& matches, float maxDistance,
const GpuMat& mask = GpuMat(), bool compactResult = false);
// Find best matches for each query descriptor which have distance less than maxDistance.
// If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nQuery / 100), 10),
// otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches
// Matches doesn't sorted.
//! Find best matches for each query descriptor which have distance less than maxDistance.
//! If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nQuery / 100), 10),
//! otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches
//! Matches doesn't sorted.
void radiusMatchCollection(const GpuMat& query, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance,
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), Stream& stream = Stream::Null());
// Download trainIdx, imgIdx, nMatches and distance and convert it to vector with DMatch.
// matches will be sorted in increasing order of distances.
// compactResult is used when mask is not empty. If compactResult is false matches
// vector will have the same size as queryDescriptors rows. If compactResult is true
// matches vector will not contain matches for fully masked out query descriptors.
//! Download trainIdx, imgIdx, nMatches and distance and convert it to vector with DMatch.
//! matches will be sorted in increasing order of distances.
//! compactResult is used when mask is not empty. If compactResult is false matches
//! vector will have the same size as queryDescriptors rows. If compactResult is true
//! matches vector will not contain matches for fully masked out query descriptors.
static void radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, const GpuMat& nMatches,
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
// Convert trainIdx, nMatches and distance to vector with DMatch.
//! Convert trainIdx, nMatches and distance to vector with DMatch.
static void radiusMatchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, const Mat& nMatches,
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
// Find best matches from train collection for each query descriptor which have distance less than
// maxDistance (in increasing order of distances).
//! Find best matches from train collection for each query descriptor which have distance less than
//! maxDistance (in increasing order of distances).
void radiusMatch(const GpuMat& query, std::vector< std::vector<DMatch> >& matches, float maxDistance,
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), bool compactResult = false);
@ -203,6 +228,8 @@ private:
std::vector<GpuMat> trainDescCollection;
};
/** @brief Class used for corner detection using the FAST algorithm. :
*/
class CV_EXPORTS FAST_CUDA
{
public:
@ -213,23 +240,45 @@ public:
ROWS_COUNT
};
// all features have same size
//! all features have same size
static const int FEATURE_SIZE = 7;
/** @brief Constructor.
@param threshold Threshold on difference between intensity of the central pixel and pixels on a
circle around this pixel.
@param nonmaxSuppression If it is true, non-maximum suppression is applied to detected corners
(keypoints).
@param keypointsRatio Inner buffer size for keypoints store is determined as (keypointsRatio \*
image_width \* image_height).
*/
explicit FAST_CUDA(int threshold, bool nonmaxSuppression = true, double keypointsRatio = 0.05);
//! finds the keypoints using FAST detector
//! supports only CV_8UC1 images
/** @brief Finds the keypoints using FAST detector.
@param image Image where keypoints (corners) are detected. Only 8-bit grayscale images are
supported.
@param mask Optional input mask that marks the regions where we should detect features.
@param keypoints The output vector of keypoints. Can be stored both in CPU and GPU memory. For GPU
memory:
- keypoints.ptr\<Vec2s\>(LOCATION_ROW)[i] will contain location of i'th point
- keypoints.ptr\<float\>(RESPONSE_ROW)[i] will contain response of i'th point (if non-maximum
suppression is applied)
*/
void operator ()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints);
/** @overload */
void operator ()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints);
//! download keypoints from device to host memory
/** @brief Download keypoints from GPU to CPU memory.
*/
static void downloadKeypoints(const GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints);
//! convert keypoints to KeyPoint vector
/** @brief Converts keypoints from CUDA representation to vector of KeyPoint.
*/
static void convertKeypoints(const Mat& h_keypoints, std::vector<KeyPoint>& keypoints);
//! release temporary buffer's memory
/** @brief Releases inner buffer memory.
*/
void release();
bool nonmaxSuppression;
@ -239,13 +288,22 @@ public:
//! max keypoints = keypointsRatio * img.size().area()
double keypointsRatio;
//! find keypoints and compute it's response if nonmaxSuppression is true
//! return count of detected keypoints
/** @brief Find keypoints and compute it's response if nonmaxSuppression is true.
@param image Image where keypoints (corners) are detected. Only 8-bit grayscale images are
supported.
@param mask Optional input mask that marks the regions where we should detect features.
The function returns count of detected keypoints.
*/
int calcKeyPointsLocation(const GpuMat& image, const GpuMat& mask);
//! get final array of keypoints
//! performs nonmax suppression if needed
//! return final count of keypoints
/** @brief Gets final array of keypoints.
@param keypoints The output vector of keypoints.
The function performs non-max suppression if needed and returns final count of keypoints.
*/
int getKeyPoints(GpuMat& keypoints);
private:
@ -257,6 +315,8 @@ private:
GpuMat d_keypoints_;
};
/** @brief Class for extracting ORB features and descriptors from an image. :
*/
class CV_EXPORTS ORB_CUDA
{
public:
@ -276,28 +336,51 @@ public:
DEFAULT_FAST_THRESHOLD = 20
};
//! Constructor
/** @brief Constructor.
@param nFeatures The number of desired features.
@param scaleFactor Coefficient by which we divide the dimensions from one scale pyramid level to
the next.
@param nLevels The number of levels in the scale pyramid.
@param edgeThreshold How far from the boundary the points should be.
@param firstLevel The level at which the image is given. If 1, that means we will also look at the
image scaleFactor times bigger.
@param WTA_K
@param scoreType
@param patchSize
*/
explicit ORB_CUDA(int nFeatures = 500, float scaleFactor = 1.2f, int nLevels = 8, int edgeThreshold = 31,
int firstLevel = 0, int WTA_K = 2, int scoreType = 0, int patchSize = 31);
//! Compute the ORB features on an image
//! image - the image to compute the features (supports only CV_8UC1 images)
//! mask - the mask to apply
//! keypoints - the resulting keypoints
/** @overload */
void operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints);
/** @overload */
void operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints);
//! Compute the ORB features and descriptors on an image
//! image - the image to compute the features (supports only CV_8UC1 images)
//! mask - the mask to apply
//! keypoints - the resulting keypoints
//! descriptors - descriptors array
/** @brief Detects keypoints and computes descriptors for them.
@param image Input 8-bit grayscale image.
@param mask Optional input mask that marks the regions where we should detect features.
@param keypoints The input/output vector of keypoints. Can be stored both in CPU and GPU memory.
For GPU memory:
- keypoints.ptr\<float\>(X_ROW)[i] contains x coordinate of the i'th feature.
- keypoints.ptr\<float\>(Y_ROW)[i] contains y coordinate of the i'th feature.
- keypoints.ptr\<float\>(RESPONSE_ROW)[i] contains the response of the i'th feature.
- keypoints.ptr\<float\>(ANGLE_ROW)[i] contains orientation of the i'th feature.
- keypoints.ptr\<float\>(OCTAVE_ROW)[i] contains the octave of the i'th feature.
- keypoints.ptr\<float\>(SIZE_ROW)[i] contains the size of the i'th feature.
@param descriptors Computed descriptors. if blurForDescriptor is true, image will be blurred
before descriptors calculation.
*/
void operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints, GpuMat& descriptors);
/** @overload */
void operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints, GpuMat& descriptors);
//! download keypoints from device to host memory
/** @brief Download keypoints from GPU to CPU memory.
*/
static void downloadKeyPoints(const GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints);
//! convert keypoints to KeyPoint vector
/** @brief Converts keypoints from CUDA representation to vector of KeyPoint.
*/
static void convertKeyPoints(const Mat& d_keypoints, std::vector<KeyPoint>& keypoints);
//! returns the descriptor size in bytes
@ -309,7 +392,8 @@ public:
fastDetector_.nonmaxSuppression = nonmaxSuppression;
}
//! release temporary buffer's memory
/** @brief Releases inner buffer memory.
*/
void release();
//! if true, image will be blurred before descriptors calculation
@ -335,10 +419,10 @@ private:
int scoreType_;
int patchSize_;
// The number of desired features per scale
//! The number of desired features per scale
std::vector<size_t> n_features_per_level_;
// Points to compute BRIEF descriptors from
//! Points to compute BRIEF descriptors from
GpuMat pattern_;
std::vector<GpuMat> imagePyr_;
@ -356,6 +440,8 @@ private:
GpuMat d_keypoints_;
};
//! @}
}} // namespace cv { namespace cuda {
#endif /* __OPENCV_CUDAFEATURES2D_HPP__ */

View File

@ -50,65 +50,189 @@
#include "opencv2/core/cuda.hpp"
#include "opencv2/imgproc.hpp"
/**
@addtogroup cuda
@{
@defgroup cudafilters Image Filtering
Functions and classes described in this section are used to perform various linear or non-linear
filtering operations on 2D images.
@note
- An example containing all basic morphology operators like erode and dilate can be found at
opencv_source_code/samples/gpu/morphology.cpp
@}
*/
namespace cv { namespace cuda {
//! @addtogroup cudafilters
//! @{
/** @brief Common interface for all CUDA filters :
*/
class CV_EXPORTS Filter : public Algorithm
{
public:
/** @brief Applies the specified filter to the image.
@param src Input image.
@param dst Output image.
@param stream Stream for the asynchronous version.
*/
virtual void apply(InputArray src, OutputArray dst, Stream& stream = Stream::Null()) = 0;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
// Box Filter
//! creates a normalized 2D box filter
//! supports CV_8UC1, CV_8UC4 types
/** @brief Creates a normalized 2D box filter.
@param srcType Input image type. Only CV_8UC1 and CV_8UC4 are supported for now.
@param dstType Output image type. Only the same type as src is supported for now.
@param ksize Kernel size.
@param anchor Anchor point. The default value Point(-1, -1) means that the anchor is at the kernel
center.
@param borderMode Pixel extrapolation method. For details, see borderInterpolate .
@param borderVal Default border value.
@sa boxFilter
*/
CV_EXPORTS Ptr<Filter> createBoxFilter(int srcType, int dstType, Size ksize, Point anchor = Point(-1,-1),
int borderMode = BORDER_DEFAULT, Scalar borderVal = Scalar::all(0));
////////////////////////////////////////////////////////////////////////////////////////////////////
// Linear Filter
//! Creates a non-separable linear 2D filter
//! supports 1 and 4 channel CV_8U, CV_16U and CV_32F input
/** @brief Creates a non-separable linear 2D filter.
@param srcType Input image type. Supports CV_8U , CV_16U and CV_32F one and four channel image.
@param dstType Output image type. Only the same type as src is supported for now.
@param kernel 2D array of filter coefficients.
@param anchor Anchor point. The default value Point(-1, -1) means that the anchor is at the kernel
center.
@param borderMode Pixel extrapolation method. For details, see borderInterpolate .
@param borderVal Default border value.
@sa filter2D
*/
CV_EXPORTS Ptr<Filter> createLinearFilter(int srcType, int dstType, InputArray kernel, Point anchor = Point(-1,-1),
int borderMode = BORDER_DEFAULT, Scalar borderVal = Scalar::all(0));
////////////////////////////////////////////////////////////////////////////////////////////////////
// Laplacian Filter
//! creates a Laplacian operator
//! supports only ksize = 1 and ksize = 3
/** @brief Creates a Laplacian operator.
@param srcType Input image type. Supports CV_8U , CV_16U and CV_32F one and four channel image.
@param dstType Output image type. Only the same type as src is supported for now.
@param ksize Aperture size used to compute the second-derivative filters (see getDerivKernels). It
must be positive and odd. Only ksize = 1 and ksize = 3 are supported.
@param scale Optional scale factor for the computed Laplacian values. By default, no scaling is
applied (see getDerivKernels ).
@param borderMode Pixel extrapolation method. For details, see borderInterpolate .
@param borderVal Default border value.
@sa Laplacian
*/
CV_EXPORTS Ptr<Filter> createLaplacianFilter(int srcType, int dstType, int ksize = 1, double scale = 1,
int borderMode = BORDER_DEFAULT, Scalar borderVal = Scalar::all(0));
////////////////////////////////////////////////////////////////////////////////////////////////////
// Separable Linear Filter
//! creates a separable linear filter
/** @brief Creates a separable linear filter.
@param srcType Source array type.
@param dstType Destination array type.
@param rowKernel Horizontal filter coefficients. Support kernels with size \<= 32 .
@param columnKernel Vertical filter coefficients. Support kernels with size \<= 32 .
@param anchor Anchor position within the kernel. Negative values mean that anchor is positioned at
the aperture center.
@param rowBorderMode Pixel extrapolation method in the vertical direction For details, see
borderInterpolate.
@param columnBorderMode Pixel extrapolation method in the horizontal direction.
@sa sepFilter2D
*/
CV_EXPORTS Ptr<Filter> createSeparableLinearFilter(int srcType, int dstType, InputArray rowKernel, InputArray columnKernel,
Point anchor = Point(-1,-1), int rowBorderMode = BORDER_DEFAULT, int columnBorderMode = -1);
////////////////////////////////////////////////////////////////////////////////////////////////////
// Deriv Filter
//! creates a generalized Deriv operator
/** @brief Creates a generalized Deriv operator.
@param srcType Source image type.
@param dstType Destination array type.
@param dx Derivative order in respect of x.
@param dy Derivative order in respect of y.
@param ksize Aperture size. See getDerivKernels for details.
@param normalize Flag indicating whether to normalize (scale down) the filter coefficients or not.
See getDerivKernels for details.
@param scale Optional scale factor for the computed derivative values. By default, no scaling is
applied. For details, see getDerivKernels .
@param rowBorderMode Pixel extrapolation method in the vertical direction. For details, see
borderInterpolate.
@param columnBorderMode Pixel extrapolation method in the horizontal direction.
*/
CV_EXPORTS Ptr<Filter> createDerivFilter(int srcType, int dstType, int dx, int dy,
int ksize, bool normalize = false, double scale = 1,
int rowBorderMode = BORDER_DEFAULT, int columnBorderMode = -1);
//! creates a Sobel operator
/** @brief Creates a Sobel operator.
@param srcType Source image type.
@param dstType Destination array type.
@param dx Derivative order in respect of x.
@param dy Derivative order in respect of y.
@param ksize Size of the extended Sobel kernel. Possible values are 1, 3, 5 or 7.
@param scale Optional scale factor for the computed derivative values. By default, no scaling is
applied. For details, see getDerivKernels .
@param rowBorderMode Pixel extrapolation method in the vertical direction. For details, see
borderInterpolate.
@param columnBorderMode Pixel extrapolation method in the horizontal direction.
@sa Sobel
*/
CV_EXPORTS Ptr<Filter> createSobelFilter(int srcType, int dstType, int dx, int dy, int ksize = 3,
double scale = 1, int rowBorderMode = BORDER_DEFAULT, int columnBorderMode = -1);
//! creates a vertical or horizontal Scharr operator
/** @brief Creates a vertical or horizontal Scharr operator.
@param srcType Source image type.
@param dstType Destination array type.
@param dx Order of the derivative x.
@param dy Order of the derivative y.
@param scale Optional scale factor for the computed derivative values. By default, no scaling is
applied. See getDerivKernels for details.
@param rowBorderMode Pixel extrapolation method in the vertical direction. For details, see
borderInterpolate.
@param columnBorderMode Pixel extrapolation method in the horizontal direction.
@sa Scharr
*/
CV_EXPORTS Ptr<Filter> createScharrFilter(int srcType, int dstType, int dx, int dy,
double scale = 1, int rowBorderMode = BORDER_DEFAULT, int columnBorderMode = -1);
////////////////////////////////////////////////////////////////////////////////////////////////////
// Gaussian Filter
//! creates a Gaussian filter
/** @brief Creates a Gaussian filter.
@param srcType Source image type.
@param dstType Destination array type.
@param ksize Aperture size. See getGaussianKernel for details.
@param sigma1 Gaussian sigma in the horizontal direction. See getGaussianKernel for details.
@param sigma2 Gaussian sigma in the vertical direction. If 0, then
\f$\texttt{sigma2}\leftarrow\texttt{sigma1}\f$ .
@param rowBorderMode Pixel extrapolation method in the vertical direction. For details, see
borderInterpolate.
@param columnBorderMode Pixel extrapolation method in the horizontal direction.
@sa GaussianBlur
*/
CV_EXPORTS Ptr<Filter> createGaussianFilter(int srcType, int dstType, Size ksize,
double sigma1, double sigma2 = 0,
int rowBorderMode = BORDER_DEFAULT, int columnBorderMode = -1);
@ -116,19 +240,49 @@ CV_EXPORTS Ptr<Filter> createGaussianFilter(int srcType, int dstType, Size ksize
////////////////////////////////////////////////////////////////////////////////////////////////////
// Morphology Filter
//! creates a 2D morphological filter
//! supports CV_8UC1 and CV_8UC4 types
/** @brief Creates a 2D morphological filter.
@param op Type of morphological operation. The following types are possible:
- **MORPH_ERODE** erode
- **MORPH_DILATE** dilate
- **MORPH_OPEN** opening
- **MORPH_CLOSE** closing
- **MORPH_GRADIENT** morphological gradient
- **MORPH_TOPHAT** "top hat"
- **MORPH_BLACKHAT** "black hat"
@param srcType Input/output image type. Only CV_8UC1 and CV_8UC4 are supported.
@param kernel 2D 8-bit structuring element for the morphological operation.
@param anchor Anchor position within the structuring element. Negative values mean that the anchor
is at the center.
@param iterations Number of times erosion and dilation to be applied.
@sa morphologyEx
*/
CV_EXPORTS Ptr<Filter> createMorphologyFilter(int op, int srcType, InputArray kernel, Point anchor = Point(-1, -1), int iterations = 1);
////////////////////////////////////////////////////////////////////////////////////////////////////
// Image Rank Filter
//! result pixel value is the maximum of pixel values under the rectangular mask region
/** @brief Creates the maximum filter.
@param srcType Input/output image type. Only CV_8UC1 and CV_8UC4 are supported.
@param ksize Kernel size.
@param anchor Anchor point. The default value (-1) means that the anchor is at the kernel center.
@param borderMode Pixel extrapolation method. For details, see borderInterpolate .
@param borderVal Default border value.
*/
CV_EXPORTS Ptr<Filter> createBoxMaxFilter(int srcType, Size ksize,
Point anchor = Point(-1, -1),
int borderMode = BORDER_DEFAULT, Scalar borderVal = Scalar::all(0));
//! result pixel value is the maximum of pixel values under the rectangular mask region
/** @brief Creates the minimum filter.
@param srcType Input/output image type. Only CV_8UC1 and CV_8UC4 are supported.
@param ksize Kernel size.
@param anchor Anchor point. The default value (-1) means that the anchor is at the kernel center.
@param borderMode Pixel extrapolation method. For details, see borderInterpolate .
@param borderVal Default border value.
*/
CV_EXPORTS Ptr<Filter> createBoxMinFilter(int srcType, Size ksize,
Point anchor = Point(-1, -1),
int borderMode = BORDER_DEFAULT, Scalar borderVal = Scalar::all(0));
@ -136,14 +290,30 @@ CV_EXPORTS Ptr<Filter> createBoxMinFilter(int srcType, Size ksize,
////////////////////////////////////////////////////////////////////////////////////////////////////
// 1D Sum Filter
//! creates a horizontal 1D box filter
//! supports only CV_8UC1 source type and CV_32FC1 sum type
/** @brief Creates a horizontal 1D box filter.
@param srcType Input image type. Only CV_8UC1 type is supported for now.
@param dstType Output image type. Only CV_32FC1 type is supported for now.
@param ksize Kernel size.
@param anchor Anchor point. The default value (-1) means that the anchor is at the kernel center.
@param borderMode Pixel extrapolation method. For details, see borderInterpolate .
@param borderVal Default border value.
*/
CV_EXPORTS Ptr<Filter> createRowSumFilter(int srcType, int dstType, int ksize, int anchor = -1, int borderMode = BORDER_DEFAULT, Scalar borderVal = Scalar::all(0));
//! creates a vertical 1D box filter
//! supports only CV_8UC1 sum type and CV_32FC1 dst type
/** @brief Creates a vertical 1D box filter.
@param srcType Input image type. Only CV_8UC1 type is supported for now.
@param dstType Output image type. Only CV_32FC1 type is supported for now.
@param ksize Kernel size.
@param anchor Anchor point. The default value (-1) means that the anchor is at the kernel center.
@param borderMode Pixel extrapolation method. For details, see borderInterpolate .
@param borderVal Default border value.
*/
CV_EXPORTS Ptr<Filter> createColumnSumFilter(int srcType, int dstType, int ksize, int anchor = -1, int borderMode = BORDER_DEFAULT, Scalar borderVal = Scalar::all(0));
//! @}
}} // namespace cv { namespace cuda {
#endif /* __OPENCV_CUDAFILTERS_HPP__ */

View File

@ -50,16 +50,48 @@
#include "opencv2/core/cuda.hpp"
#include "opencv2/imgproc.hpp"
/**
@addtogroup cuda
@{
@defgroup cudaimgproc Image Processing
@{
@defgroup cudaimgproc_color Color space processing
@defgroup cudaimgproc_hist Histogram Calculation
@defgroup cudaimgproc_hough Hough Transform
@defgroup cudaimgproc_feature Feature Detection
@}
@}
*/
namespace cv { namespace cuda {
//! @addtogroup cudaimgproc
//! @{
/////////////////////////// Color Processing ///////////////////////////
//! converts image from one color space to another
//! @addtogroup cudaimgproc_color
//! @{
/** @brief Converts an image from one color space to another.
@param src Source image with CV_8U , CV_16U , or CV_32F depth and 1, 3, or 4 channels.
@param dst Destination image.
@param code Color space conversion code. For details, see cvtColor .
@param dcn Number of channels in the destination image. If the parameter is 0, the number of the
channels is derived automatically from src and the code .
@param stream Stream for the asynchronous version.
3-channel color spaces (like HSV, XYZ, and so on) can be stored in a 4-channel image for better
performance.
@sa cvtColor
*/
CV_EXPORTS void cvtColor(InputArray src, OutputArray dst, int code, int dcn = 0, Stream& stream = Stream::Null());
enum
{
// Bayer Demosaicing (Malvar, He, and Cutler)
//! Bayer Demosaicing (Malvar, He, and Cutler)
COLOR_BayerBG2BGR_MHT = 256,
COLOR_BayerGB2BGR_MHT = 257,
COLOR_BayerRG2BGR_MHT = 258,
@ -75,105 +107,228 @@ enum
COLOR_BayerRG2GRAY_MHT = 262,
COLOR_BayerGR2GRAY_MHT = 263
};
/** @brief Converts an image from Bayer pattern to RGB or grayscale.
@param src Source image (8-bit or 16-bit single channel).
@param dst Destination image.
@param code Color space conversion code (see the description below).
@param dcn Number of channels in the destination image. If the parameter is 0, the number of the
channels is derived automatically from src and the code .
@param stream Stream for the asynchronous version.
The function can do the following transformations:
- Demosaicing using bilinear interpolation
> - COLOR_BayerBG2GRAY , COLOR_BayerGB2GRAY , COLOR_BayerRG2GRAY , COLOR_BayerGR2GRAY
> - COLOR_BayerBG2BGR , COLOR_BayerGB2BGR , COLOR_BayerRG2BGR , COLOR_BayerGR2BGR
- Demosaicing using Malvar-He-Cutler algorithm (@cite MHT2011)
> - COLOR_BayerBG2GRAY_MHT , COLOR_BayerGB2GRAY_MHT , COLOR_BayerRG2GRAY_MHT ,
> COLOR_BayerGR2GRAY_MHT
> - COLOR_BayerBG2BGR_MHT , COLOR_BayerGB2BGR_MHT , COLOR_BayerRG2BGR_MHT ,
> COLOR_BayerGR2BGR_MHT
@sa cvtColor
*/
CV_EXPORTS void demosaicing(InputArray src, OutputArray dst, int code, int dcn = -1, Stream& stream = Stream::Null());
//! swap channels
//! dstOrder - Integer array describing how channel values are permutated. The n-th entry
//! of the array contains the number of the channel that is stored in the n-th channel of
//! the output image. E.g. Given an RGBA image, aDstOrder = [3,2,1,0] converts this to ABGR
//! channel order.
/** @brief Exchanges the color channels of an image in-place.
@param image Source image. Supports only CV_8UC4 type.
@param dstOrder Integer array describing how channel values are permutated. The n-th entry of the
array contains the number of the channel that is stored in the n-th channel of the output image.
E.g. Given an RGBA image, aDstOrder = [3,2,1,0] converts this to ABGR channel order.
@param stream Stream for the asynchronous version.
The methods support arbitrary permutations of the original channels, including replication.
*/
CV_EXPORTS void swapChannels(InputOutputArray image, const int dstOrder[4], Stream& stream = Stream::Null());
//! Routines for correcting image color gamma
/** @brief Routines for correcting image color gamma.
@param src Source image (3- or 4-channel 8 bit).
@param dst Destination image.
@param forward true for forward gamma correction or false for inverse gamma correction.
@param stream Stream for the asynchronous version.
*/
CV_EXPORTS void gammaCorrection(InputArray src, OutputArray dst, bool forward = true, Stream& stream = Stream::Null());
enum { ALPHA_OVER, ALPHA_IN, ALPHA_OUT, ALPHA_ATOP, ALPHA_XOR, ALPHA_PLUS, ALPHA_OVER_PREMUL, ALPHA_IN_PREMUL, ALPHA_OUT_PREMUL,
ALPHA_ATOP_PREMUL, ALPHA_XOR_PREMUL, ALPHA_PLUS_PREMUL, ALPHA_PREMUL};
//! Composite two images using alpha opacity values contained in each image
//! Supports CV_8UC4, CV_16UC4, CV_32SC4 and CV_32FC4 types
/** @brief Composites two images using alpha opacity values contained in each image.
@param img1 First image. Supports CV_8UC4 , CV_16UC4 , CV_32SC4 and CV_32FC4 types.
@param img2 Second image. Must have the same size and the same type as img1 .
@param dst Destination image.
@param alpha_op Flag specifying the alpha-blending operation:
- **ALPHA_OVER**
- **ALPHA_IN**
- **ALPHA_OUT**
- **ALPHA_ATOP**
- **ALPHA_XOR**
- **ALPHA_PLUS**
- **ALPHA_OVER_PREMUL**
- **ALPHA_IN_PREMUL**
- **ALPHA_OUT_PREMUL**
- **ALPHA_ATOP_PREMUL**
- **ALPHA_XOR_PREMUL**
- **ALPHA_PLUS_PREMUL**
- **ALPHA_PREMUL**
@param stream Stream for the asynchronous version.
@note
- An example demonstrating the use of alphaComp can be found at
opencv_source_code/samples/gpu/alpha_comp.cpp
*/
CV_EXPORTS void alphaComp(InputArray img1, InputArray img2, OutputArray dst, int alpha_op, Stream& stream = Stream::Null());
//! @} cudaimgproc_color
////////////////////////////// Histogram ///////////////////////////////
//! Calculates histogram for 8u one channel image
//! Output hist will have one row, 256 cols and CV32SC1 type.
//! @addtogroup cudaimgproc_hist
//! @{
/** @brief Calculates histogram for one channel 8-bit image.
@param src Source image with CV_8UC1 type.
@param hist Destination histogram with one row, 256 columns, and the CV_32SC1 type.
@param stream Stream for the asynchronous version.
*/
CV_EXPORTS void calcHist(InputArray src, OutputArray hist, Stream& stream = Stream::Null());
//! normalizes the grayscale image brightness and contrast by normalizing its histogram
/** @brief Equalizes the histogram of a grayscale image.
@param src Source image with CV_8UC1 type.
@param dst Destination image.
@param buf Optional buffer to avoid extra memory allocations (for many calls with the same sizes).
@param stream Stream for the asynchronous version.
@sa equalizeHist
*/
CV_EXPORTS void equalizeHist(InputArray src, OutputArray dst, InputOutputArray buf, Stream& stream = Stream::Null());
/** @overload */
static inline void equalizeHist(InputArray src, OutputArray dst, Stream& stream = Stream::Null())
{
GpuMat buf;
cuda::equalizeHist(src, dst, buf, stream);
}
/** @brief Base class for Contrast Limited Adaptive Histogram Equalization. :
*/
class CV_EXPORTS CLAHE : public cv::CLAHE
{
public:
using cv::CLAHE::apply;
/** @brief Equalizes the histogram of a grayscale image using Contrast Limited Adaptive Histogram Equalization.
@param src Source image with CV_8UC1 type.
@param dst Destination image.
@param stream Stream for the asynchronous version.
*/
virtual void apply(InputArray src, OutputArray dst, Stream& stream) = 0;
};
/** @brief Creates implementation for cuda::CLAHE .
@param clipLimit Threshold for contrast limiting.
@param tileGridSize Size of grid for histogram equalization. Input image will be divided into
equally sized rectangular tiles. tileGridSize defines the number of tiles in row and column.
*/
CV_EXPORTS Ptr<cuda::CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8));
//! Compute levels with even distribution. levels will have 1 row and nLevels cols and CV_32SC1 type.
/** @brief Computes levels with even distribution.
@param levels Destination array. levels has 1 row, nLevels columns, and the CV_32SC1 type.
@param nLevels Number of computed levels. nLevels must be at least 2.
@param lowerLevel Lower boundary value of the lowest level.
@param upperLevel Upper boundary value of the greatest level.
*/
CV_EXPORTS void evenLevels(OutputArray levels, int nLevels, int lowerLevel, int upperLevel);
//! Calculates histogram with evenly distributed bins for signle channel source.
//! Supports CV_8UC1, CV_16UC1 and CV_16SC1 source types.
//! Output hist will have one row and histSize cols and CV_32SC1 type.
/** @brief Calculates a histogram with evenly distributed bins.
@param src Source image. CV_8U, CV_16U, or CV_16S depth and 1 or 4 channels are supported. For
a four-channel image, all channels are processed separately.
@param hist Destination histogram with one row, histSize columns, and the CV_32S type.
@param histSize Size of the histogram.
@param lowerLevel Lower boundary of lowest-level bin.
@param upperLevel Upper boundary of highest-level bin.
@param buf Optional buffer to avoid extra memory allocations (for many calls with the same sizes).
@param stream Stream for the asynchronous version.
*/
CV_EXPORTS void histEven(InputArray src, OutputArray hist, InputOutputArray buf, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null());
/** @overload */
static inline void histEven(InputArray src, OutputArray hist, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null())
{
GpuMat buf;
cuda::histEven(src, hist, buf, histSize, lowerLevel, upperLevel, stream);
}
//! Calculates histogram with evenly distributed bins for four-channel source.
//! All channels of source are processed separately.
//! Supports CV_8UC4, CV_16UC4 and CV_16SC4 source types.
//! Output hist[i] will have one row and histSize[i] cols and CV_32SC1 type.
/** @overload */
CV_EXPORTS void histEven(InputArray src, GpuMat hist[4], InputOutputArray buf, int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream = Stream::Null());
/** @overload */
static inline void histEven(InputArray src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream = Stream::Null())
{
GpuMat buf;
cuda::histEven(src, hist, buf, histSize, lowerLevel, upperLevel, stream);
}
//! Calculates histogram with bins determined by levels array.
//! levels must have one row and CV_32SC1 type if source has integer type or CV_32FC1 otherwise.
//! Supports CV_8UC1, CV_16UC1, CV_16SC1 and CV_32FC1 source types.
//! Output hist will have one row and (levels.cols-1) cols and CV_32SC1 type.
/** @brief Calculates a histogram with bins determined by the levels array.
@param src Source image. CV_8U , CV_16U , or CV_16S depth and 1 or 4 channels are supported.
For a four-channel image, all channels are processed separately.
@param hist Destination histogram with one row, (levels.cols-1) columns, and the CV_32SC1 type.
@param levels Number of levels in the histogram.
@param buf Optional buffer to avoid extra memory allocations (for many calls with the same sizes).
@param stream Stream for the asynchronous version.
*/
CV_EXPORTS void histRange(InputArray src, OutputArray hist, InputArray levels, InputOutputArray buf, Stream& stream = Stream::Null());
/** @overload */
static inline void histRange(InputArray src, OutputArray hist, InputArray levels, Stream& stream = Stream::Null())
{
GpuMat buf;
cuda::histRange(src, hist, levels, buf, stream);
}
//! Calculates histogram with bins determined by levels array.
//! All levels must have one row and CV_32SC1 type if source has integer type or CV_32FC1 otherwise.
//! All channels of source are processed separately.
//! Supports CV_8UC4, CV_16UC4, CV_16SC4 and CV_32FC4 source types.
//! Output hist[i] will have one row and (levels[i].cols-1) cols and CV_32SC1 type.
/** @overload */
CV_EXPORTS void histRange(InputArray src, GpuMat hist[4], const GpuMat levels[4], InputOutputArray buf, Stream& stream = Stream::Null());
/** @overload */
static inline void histRange(InputArray src, GpuMat hist[4], const GpuMat levels[4], Stream& stream = Stream::Null())
{
GpuMat buf;
cuda::histRange(src, hist, levels, buf, stream);
}
//! @} cudaimgproc_hist
//////////////////////////////// Canny ////////////////////////////////
/** @brief Base class for Canny Edge Detector. :
*/
class CV_EXPORTS CannyEdgeDetector : public Algorithm
{
public:
/** @brief Finds edges in an image using the @cite Canny86 algorithm.
@param image Single-channel 8-bit input image.
@param edges Output edge map. It has the same size and type as image .
*/
virtual void detect(InputArray image, OutputArray edges) = 0;
/** @overload
@param dx First derivative of image in the vertical direction. Support only CV_32S type.
@param dy First derivative of image in the horizontal direction. Support only CV_32S type.
@param edges Output edge map. It has the same size and type as image .
*/
virtual void detect(InputArray dx, InputArray dy, OutputArray edges) = 0;
virtual void setLowThreshold(double low_thresh) = 0;
@ -189,6 +344,16 @@ public:
virtual bool getL2Gradient() const = 0;
};
/** @brief Creates implementation for cuda::CannyEdgeDetector .
@param low_thresh First threshold for the hysteresis procedure.
@param high_thresh Second threshold for the hysteresis procedure.
@param apperture_size Aperture size for the Sobel operator.
@param L2gradient Flag indicating whether a more accurate \f$L_2\f$ norm
\f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to compute the image gradient magnitude (
L2gradient=true ), or a faster default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough ( L2gradient=false
).
*/
CV_EXPORTS Ptr<CannyEdgeDetector> createCannyEdgeDetector(double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false);
/////////////////////////// Hough Transform ////////////////////////////
@ -196,10 +361,32 @@ CV_EXPORTS Ptr<CannyEdgeDetector> createCannyEdgeDetector(double low_thresh, dou
//////////////////////////////////////
// HoughLines
//! @addtogroup cudaimgproc_hough
//! @{
/** @brief Base class for lines detector algorithm. :
*/
class CV_EXPORTS HoughLinesDetector : public Algorithm
{
public:
/** @brief Finds lines in a binary image using the classical Hough transform.
@param src 8-bit, single-channel binary source image.
@param lines Output vector of lines. Each line is represented by a two-element vector
\f$(\rho, \theta)\f$ . \f$\rho\f$ is the distance from the coordinate origin \f$(0,0)\f$ (top-left corner of
the image). \f$\theta\f$ is the line rotation angle in radians (
\f$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\f$ ).
@sa HoughLines
*/
virtual void detect(InputArray src, OutputArray lines) = 0;
/** @brief Downloads results from cuda::HoughLinesDetector::detect to host memory.
@param d_lines Result of cuda::HoughLinesDetector::detect .
@param h_lines Output host array.
@param h_votes Optional output array for line's votes.
*/
virtual void downloadResults(InputArray d_lines, OutputArray h_lines, OutputArray h_votes = noArray()) = 0;
virtual void setRho(float rho) = 0;
@ -218,16 +405,35 @@ public:
virtual int getMaxLines() const = 0;
};
/** @brief Creates implementation for cuda::HoughLinesDetector .
@param rho Distance resolution of the accumulator in pixels.
@param theta Angle resolution of the accumulator in radians.
@param threshold Accumulator threshold parameter. Only those lines are returned that get enough
votes ( \f$>\texttt{threshold}\f$ ).
@param doSort Performs lines sort by votes.
@param maxLines Maximum number of output lines.
*/
CV_EXPORTS Ptr<HoughLinesDetector> createHoughLinesDetector(float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
//////////////////////////////////////
// HoughLinesP
//! finds line segments in the black-n-white image using probabilistic Hough transform
/** @brief Base class for line segments detector algorithm. :
*/
class CV_EXPORTS HoughSegmentDetector : public Algorithm
{
public:
/** @brief Finds line segments in a binary image using the probabilistic Hough transform.
@param src 8-bit, single-channel binary source image.
@param lines Output vector of lines. Each line is represented by a 4-element vector
\f$(x_1, y_1, x_2, y_2)\f$ , where \f$(x_1,y_1)\f$ and \f$(x_2, y_2)\f$ are the ending points of each detected
line segment.
@sa HoughLinesP
*/
virtual void detect(InputArray src, OutputArray lines) = 0;
virtual void setRho(float rho) = 0;
@ -246,14 +452,32 @@ public:
virtual int getMaxLines() const = 0;
};
/** @brief Creates implementation for cuda::HoughSegmentDetector .
@param rho Distance resolution of the accumulator in pixels.
@param theta Angle resolution of the accumulator in radians.
@param minLineLength Minimum line length. Line segments shorter than that are rejected.
@param maxLineGap Maximum allowed gap between points on the same line to link them.
@param maxLines Maximum number of output lines.
*/
CV_EXPORTS Ptr<HoughSegmentDetector> createHoughSegmentDetector(float rho, float theta, int minLineLength, int maxLineGap, int maxLines = 4096);
//////////////////////////////////////
// HoughCircles
/** @brief Base class for circles detector algorithm. :
*/
class CV_EXPORTS HoughCirclesDetector : public Algorithm
{
public:
/** @brief Finds circles in a grayscale image using the Hough transform.
@param src 8-bit, single-channel grayscale input image.
@param circles Output vector of found circles. Each vector is encoded as a 3-element
floating-point vector \f$(x, y, radius)\f$ .
@sa HoughCircles
*/
virtual void detect(InputArray src, OutputArray circles) = 0;
virtual void setDp(float dp) = 0;
@ -278,85 +502,257 @@ public:
virtual int getMaxCircles() const = 0;
};
/** @brief Creates implementation for cuda::HoughCirclesDetector .
@param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if
dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has
half as big width and height.
@param minDist Minimum distance between the centers of the detected circles. If the parameter is
too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is
too large, some circles may be missed.
@param cannyThreshold The higher threshold of the two passed to Canny edge detector (the lower one
is twice smaller).
@param votesThreshold The accumulator threshold for the circle centers at the detection stage. The
smaller it is, the more false circles may be detected.
@param minRadius Minimum circle radius.
@param maxRadius Maximum circle radius.
@param maxCircles Maximum number of output circles.
*/
CV_EXPORTS Ptr<HoughCirclesDetector> createHoughCirclesDetector(float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096);
//////////////////////////////////////
// GeneralizedHough
//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122.
//! Detects position only without traslation and rotation
/** @brief Creates implementation for generalized hough transform from @cite Ballard1981 .
*/
CV_EXPORTS Ptr<GeneralizedHoughBallard> createGeneralizedHoughBallard();
//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.
//! Detects position, traslation and rotation
/** @brief Creates implementation for generalized hough transform from @cite Guil1999 .
*/
CV_EXPORTS Ptr<GeneralizedHoughGuil> createGeneralizedHoughGuil();
//! @} cudaimgproc_hough
////////////////////////// Corners Detection ///////////////////////////
//! @addtogroup cudaimgproc_feature
//! @{
/** @brief Base class for Cornerness Criteria computation. :
*/
class CV_EXPORTS CornernessCriteria : public Algorithm
{
public:
/** @brief Computes the cornerness criteria at each image pixel.
@param src Source image.
@param dst Destination image containing cornerness values. It will have the same size as src and
CV_32FC1 type.
@param stream Stream for the asynchronous version.
*/
virtual void compute(InputArray src, OutputArray dst, Stream& stream = Stream::Null()) = 0;
};
//! computes Harris cornerness criteria at each image pixel
/** @brief Creates implementation for Harris cornerness criteria.
@param srcType Input source type. Only CV_8UC1 and CV_32FC1 are supported for now.
@param blockSize Neighborhood size.
@param ksize Aperture parameter for the Sobel operator.
@param k Harris detector free parameter.
@param borderType Pixel extrapolation method. Only BORDER_REFLECT101 and BORDER_REPLICATE are
supported for now.
@sa cornerHarris
*/
CV_EXPORTS Ptr<CornernessCriteria> createHarrisCorner(int srcType, int blockSize, int ksize, double k, int borderType = BORDER_REFLECT101);
//! computes minimum eigen value of 2x2 derivative covariation matrix at each pixel - the cornerness criteria
/** @brief Creates implementation for the minimum eigen value of a 2x2 derivative covariation matrix (the
cornerness criteria).
@param srcType Input source type. Only CV_8UC1 and CV_32FC1 are supported for now.
@param blockSize Neighborhood size.
@param ksize Aperture parameter for the Sobel operator.
@param borderType Pixel extrapolation method. Only BORDER_REFLECT101 and BORDER_REPLICATE are
supported for now.
@sa cornerMinEigenVal
*/
CV_EXPORTS Ptr<CornernessCriteria> createMinEigenValCorner(int srcType, int blockSize, int ksize, int borderType = BORDER_REFLECT101);
////////////////////////// Corners Detection ///////////////////////////
/** @brief Base class for Corners Detector. :
*/
class CV_EXPORTS CornersDetector : public Algorithm
{
public:
//! return 1 rows matrix with CV_32FC2 type
/** @brief Determines strong corners on an image.
@param image Input 8-bit or floating-point 32-bit, single-channel image.
@param corners Output vector of detected corners (1-row matrix with CV_32FC2 type with corners
positions).
@param mask Optional region of interest. If the image is not empty (it needs to have the type
CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
*/
virtual void detect(InputArray image, OutputArray corners, InputArray mask = noArray()) = 0;
};
/** @brief Creates implementation for cuda::CornersDetector .
@param srcType Input source type. Only CV_8UC1 and CV_32FC1 are supported for now.
@param maxCorners Maximum number of corners to return. If there are more corners than are found,
the strongest of them is returned.
@param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
(see cornerMinEigenVal ) or the Harris function response (see cornerHarris ). The corners with the
quality measure less than the product are rejected. For example, if the best corner has the
quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
less than 15 are rejected.
@param minDistance Minimum possible Euclidean distance between the returned corners.
@param blockSize Size of an average block for computing a derivative covariation matrix over each
pixel neighborhood. See cornerEigenValsAndVecs .
@param useHarrisDetector Parameter indicating whether to use a Harris detector (see cornerHarris)
or cornerMinEigenVal.
@param harrisK Free parameter of the Harris detector.
*/
CV_EXPORTS Ptr<CornersDetector> createGoodFeaturesToTrackDetector(int srcType, int maxCorners = 1000, double qualityLevel = 0.01, double minDistance = 0.0,
int blockSize = 3, bool useHarrisDetector = false, double harrisK = 0.04);
//! @} cudaimgproc_feature
///////////////////////////// Mean Shift //////////////////////////////
//! Does mean shift filtering on GPU.
/** @brief Performs mean-shift filtering for each point of the source image.
@param src Source image. Only CV_8UC4 images are supported for now.
@param dst Destination image containing the color of mapped points. It has the same size and type
as src .
@param sp Spatial window radius.
@param sr Color window radius.
@param criteria Termination criteria. See TermCriteria.
@param stream
It maps each point of the source image into another point. As a result, you have a new color and new
position of each point.
*/
CV_EXPORTS void meanShiftFiltering(InputArray src, OutputArray dst, int sp, int sr,
TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1),
Stream& stream = Stream::Null());
//! Does mean shift procedure on GPU.
/** @brief Performs a mean-shift procedure and stores information about processed points (their colors and
positions) in two images.
@param src Source image. Only CV_8UC4 images are supported for now.
@param dstr Destination image containing the color of mapped points. The size and type is the same
as src .
@param dstsp Destination image containing the position of mapped points. The size is the same as
src size. The type is CV_16SC2 .
@param sp Spatial window radius.
@param sr Color window radius.
@param criteria Termination criteria. See TermCriteria.
@param stream
@sa cuda::meanShiftFiltering
*/
CV_EXPORTS void meanShiftProc(InputArray src, OutputArray dstr, OutputArray dstsp, int sp, int sr,
TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1),
Stream& stream = Stream::Null());
//! Does mean shift segmentation with elimination of small regions.
/** @brief Performs a mean-shift segmentation of the source image and eliminates small segments.
@param src Source image. Only CV_8UC4 images are supported for now.
@param dst Segmented image with the same size and type as src (host memory).
@param sp Spatial window radius.
@param sr Color window radius.
@param minsize Minimum segment size. Smaller segments are merged.
@param criteria Termination criteria. See TermCriteria.
*/
CV_EXPORTS void meanShiftSegmentation(InputArray src, OutputArray dst, int sp, int sr, int minsize,
TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1));
/////////////////////////// Match Template ////////////////////////////
//! computes the proximity map for the raster template and the image where the template is searched for
/** @brief Base class for Template Matching. :
*/
class CV_EXPORTS TemplateMatching : public Algorithm
{
public:
/** @brief Computes a proximity map for a raster template and an image where the template is searched for.
@param image Source image.
@param templ Template image with the size and type the same as image .
@param result Map containing comparison results ( CV_32FC1 ). If image is *W x H* and templ is *w
x h*, then result must be *W-w+1 x H-h+1*.
@param stream Stream for the asynchronous version.
*/
virtual void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null()) = 0;
};
/** @brief Creates implementation for cuda::TemplateMatching .
@param srcType Input source type. CV_32F and CV_8U depth images (1..4 channels) are supported
for now.
@param method Specifies the way to compare the template with the image.
@param user_block_size You can use field user_block_size to set specific block size. If you
leave its default value Size(0,0) then automatic estimation of block size will be used (which is
optimized for speed). By varying user_block_size you can reduce memory requirements at the cost
of speed.
The following methods are supported for the CV_8U depth images for now:
- CV_TM_SQDIFF
- CV_TM_SQDIFF_NORMED
- CV_TM_CCORR
- CV_TM_CCORR_NORMED
- CV_TM_CCOEFF
- CV_TM_CCOEFF_NORMED
The following methods are supported for the CV_32F images for now:
- CV_TM_SQDIFF
- CV_TM_CCORR
@sa matchTemplate
*/
CV_EXPORTS Ptr<TemplateMatching> createTemplateMatching(int srcType, int method, Size user_block_size = Size());
////////////////////////// Bilateral Filter ///////////////////////////
//! Performa bilateral filtering of passsed image
/** @brief Performs bilateral filtering of passed image
@param src Source image. Supports only (channles != 2 && depth() != CV_8S && depth() != CV_32S
&& depth() != CV_64F).
@param dst Destination imagwe.
@param kernel_size Kernel window size.
@param sigma_color Filter sigma in the color space.
@param sigma_spatial Filter sigma in the coordinate space.
@param borderMode Border type. See borderInterpolate for details. BORDER_REFLECT101 ,
BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now.
@param stream Stream for the asynchronous version.
@sa bilateralFilter
*/
CV_EXPORTS void bilateralFilter(InputArray src, OutputArray dst, int kernel_size, float sigma_color, float sigma_spatial,
int borderMode = BORDER_DEFAULT, Stream& stream = Stream::Null());
///////////////////////////// Blending ////////////////////////////////
//! performs linear blending of two images
//! to avoid accuracy errors sum of weigths shouldn't be very close to zero
/** @brief Performs linear blending of two images.
@param img1 First image. Supports only CV_8U and CV_32F depth.
@param img2 Second image. Must have the same size and the same type as img1 .
@param weights1 Weights for first image. Must have tha same size as img1 . Supports only CV_32F
type.
@param weights2 Weights for second image. Must have tha same size as img2 . Supports only CV_32F
type.
@param result Destination image.
@param stream Stream for the asynchronous version.
*/
CV_EXPORTS void blendLinear(InputArray img1, InputArray img2, InputArray weights1, InputArray weights2,
OutputArray result, Stream& stream = Stream::Null());
//! @}
}} // namespace cv { namespace cuda {
#endif /* __OPENCV_CUDAIMGPROC_HPP__ */

View File

@ -49,4 +49,11 @@
#include "opencv2/cudalegacy/NCVHaarObjectDetection.hpp"
#include "opencv2/cudalegacy/NCVBroxOpticalFlow.hpp"
/**
@addtogroup cuda
@{
@defgroup cudalegacy Legacy support
@}
*/
#endif /* __OPENCV_CUDALEGACY_HPP__ */

View File

@ -60,6 +60,8 @@
//
//==============================================================================
//! @addtogroup cudalegacy
//! @{
/**
* Compile-time assert namespace
@ -203,6 +205,7 @@ struct NcvPoint2D32u
__host__ __device__ NcvPoint2D32u(Ncv32u x_, Ncv32u y_) : x(x_), y(y_) {}
};
//! @cond IGNORED
NCV_CT_ASSERT(sizeof(NcvBool) <= 4);
NCV_CT_ASSERT(sizeof(Ncv64s) == 8);
@ -221,6 +224,7 @@ NCV_CT_ASSERT(sizeof(NcvRect32u) == 4 * sizeof(Ncv32u));
NCV_CT_ASSERT(sizeof(NcvSize32u) == 2 * sizeof(Ncv32u));
NCV_CT_ASSERT(sizeof(NcvPoint2D32u) == 2 * sizeof(Ncv32u));
//! @endcond
//==============================================================================
//
@ -1023,6 +1027,6 @@ CV_EXPORTS NCVStatus ncvDrawRects_32u_device(Ncv32u *d_dst, Ncv32u dstStride, Nc
NCVMatrixAlloc<type> name(alloc, width, height); \
ncvAssertReturn(name.isMemAllocated(), err);
//! @}
#endif // _ncv_hpp_

View File

@ -62,6 +62,9 @@
#include "opencv2/cudalegacy/NCV.hpp"
//! @addtogroup cudalegacy
//! @{
/// \brief Model and solver parameters
struct NCVBroxOpticalFlowDescriptor
{
@ -89,6 +92,7 @@ struct NCVBroxOpticalFlowDescriptor
/// \param [in] frame1 frame to track
/// \param [out] u flow horizontal component (along \b x axis)
/// \param [out] v flow vertical component (along \b y axis)
/// \param stream
/// \return computation status
/////////////////////////////////////////////////////////////////////////////////////////
@ -101,4 +105,6 @@ NCVStatus NCVBroxOpticalFlow(const NCVBroxOpticalFlowDescriptor desc,
NCVMatrix<Ncv32f> &v,
cudaStream_t stream);
//! @}
#endif

View File

@ -61,6 +61,8 @@
#include "opencv2/cudalegacy/NCV.hpp"
//! @addtogroup cudalegacy
//! @{
//==============================================================================
//
@ -456,6 +458,6 @@ CV_EXPORTS NCVStatus ncvHaarStoreNVBIN_host(const cv::String &filename,
NCVVector<HaarClassifierNode128> &h_HaarNodes,
NCVVector<HaarFeature64> &h_HaarFeatures);
//! @}
#endif // _ncvhaarobjectdetection_hpp_

View File

@ -48,6 +48,8 @@
#include "opencv2/cudalegacy/NCV.hpp"
#include "opencv2/core/cuda/common.hpp"
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
namespace pyramid
@ -106,4 +108,6 @@ private:
#endif //_WIN32
//! @endcond
#endif //_ncvpyramid_hpp_

View File

@ -45,19 +45,14 @@
#include "opencv2/cudalegacy/NCV.hpp"
/**
* \file NPP_staging.hpp
* NPP Staging Library
*/
//! @addtogroup cudalegacy
//! @{
/** \defgroup core_npp NPPST Core
* Basic functions for CUDA streams management.
* @{
*/
/**
* Gets an active CUDA stream used by NPPST
* NOT THREAD SAFE
@ -168,6 +163,7 @@ NCVStatus nppiStInterpolateFrames(const NppStInterpolationState *pState);
* \param nSrcStep [IN] Source image line step
* \param pDst [OUT] Destination image pointer (CUDA device memory)
* \param dstSize [OUT] Destination image size
* \param nDstStep
* \param oROI [IN] Region of interest in the source image
* \param borderType [IN] Type of border
* \param pKernel [IN] Pointer to row kernel values (CUDA device memory)
@ -201,6 +197,7 @@ NCVStatus nppiStFilterRowBorder_32f_C1R(const Ncv32f *pSrc,
* \param nSrcStep [IN] Source image line step
* \param pDst [OUT] Destination image pointer (CUDA device memory)
* \param dstSize [OUT] Destination image size
* \param nDstStep [IN]
* \param oROI [IN] Region of interest in the source image
* \param borderType [IN] Type of border
* \param pKernel [IN] Pointer to column kernel values (CUDA device memory)
@ -228,7 +225,7 @@ NCVStatus nppiStFilterColumnBorder_32f_C1R(const Ncv32f *pSrc,
/** Size of buffer required for vector image warping.
*
* \param srcSize [IN] Source image size
* \param nStep [IN] Source image line step
* \param nSrcStep [IN] Source image line step
* \param hpSize [OUT] Where to store computed size (host memory)
*
* \return NCV status code
@ -285,6 +282,7 @@ NCVStatus nppiStVectorWarp_PSF1x1_32f_C1(const Ncv32f *pSrc,
* \param pU [IN] Pointer to horizontal displacement field (CUDA device memory)
* \param pV [IN] Pointer to vertical displacement field (CUDA device memory)
* \param nVFStep [IN] Displacement field line step
* \param pBuffer
* \param timeScale [IN] Value by which displacement field will be scaled for warping
* \param pDst [OUT] Destination image pointer (CUDA device memory)
*
@ -903,5 +901,6 @@ NCVStatus nppsStCompact_32f_host(Ncv32f *h_src, Ncv32u srcLen,
/*@}*/
//! @}
#endif // _npp_staging_hpp_

View File

@ -56,6 +56,8 @@
#include "opencv2/cudalegacy.hpp"
//! @cond IGNORED
namespace cv { namespace cuda
{
class NppStStreamHandler
@ -89,4 +91,6 @@ namespace cv { namespace cuda
#define ncvSafeCall(expr) cv::cuda::checkNcvError(expr, __FILE__, __LINE__, CV_Func)
//! @endcond
#endif // __OPENCV_CORE_CUDALEGACY_PRIVATE_HPP__

View File

@ -49,8 +49,21 @@
#include "opencv2/core/cuda.hpp"
/**
@addtogroup cuda
@{
@defgroup cudaoptflow Optical Flow
@}
*/
namespace cv { namespace cuda {
//! @addtogroup cudaoptflow
//! @{
/** @brief Class computing the optical flow for two images using Brox et al Optical Flow algorithm
(@cite Brox2004). :
*/
class CV_EXPORTS BroxOpticalFlow
{
public:
@ -88,16 +101,58 @@ public:
GpuMat buf;
};
/** @brief Class used for calculating an optical flow.
The class can calculate an optical flow for a sparse feature set or dense optical flow using the
iterative Lucas-Kanade method with pyramids.
@sa calcOpticalFlowPyrLK
@note
- An example of the Lucas Kanade optical flow algorithm can be found at
opencv_source_code/samples/gpu/pyrlk_optical_flow.cpp
*/
class CV_EXPORTS PyrLKOpticalFlow
{
public:
PyrLKOpticalFlow();
/** @brief Calculate an optical flow for a sparse feature set.
@param prevImg First 8-bit input image (supports both grayscale and color images).
@param nextImg Second input image of the same size and the same type as prevImg .
@param prevPts Vector of 2D points for which the flow needs to be found. It must be one row matrix
with CV_32FC2 type.
@param nextPts Output vector of 2D points (with single-precision floating-point coordinates)
containing the calculated new positions of input features in the second image. When useInitialFlow
is true, the vector must have the same size as in the input.
@param status Output status vector (CV_8UC1 type). Each element of the vector is set to 1 if the
flow for the corresponding features has been found. Otherwise, it is set to 0.
@param err Output vector (CV_32FC1 type) that contains the difference between patches around the
original and moved points or min eigen value if getMinEigenVals is checked. It can be NULL, if not
needed.
@sa calcOpticalFlowPyrLK
*/
void sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts,
GpuMat& status, GpuMat* err = 0);
/** @brief Calculate dense optical flow.
@param prevImg First 8-bit grayscale input image.
@param nextImg Second input image of the same size and the same type as prevImg .
@param u Horizontal component of the optical flow of the same size as input images, 32-bit
floating-point, single-channel
@param v Vertical component of the optical flow of the same size as input images, 32-bit
floating-point, single-channel
@param err Output vector (CV_32FC1 type) that contains the difference between patches around the
original and moved points or min eigen value if getMinEigenVals is checked. It can be NULL, if not
needed.
*/
void dense(const GpuMat& prevImg, const GpuMat& nextImg, GpuMat& u, GpuMat& v, GpuMat* err = 0);
/** @brief Releases inner buffers memory.
*/
void releaseMemory();
Size winSize;
@ -115,6 +170,8 @@ private:
GpuMat vPyr_[2];
};
/** @brief Class computing a dense optical flow using the Gunnar Farnebacks algorithm. :
*/
class CV_EXPORTS FarnebackOpticalFlow
{
public:
@ -139,8 +196,20 @@ public:
double polySigma;
int flags;
/** @brief Computes a dense optical flow using the Gunnar Farnebacks algorithm.
@param frame0 First 8-bit gray-scale input image
@param frame1 Second 8-bit gray-scale input image
@param flowx Flow horizontal component
@param flowy Flow vertical component
@param s Stream
@sa calcOpticalFlowFarneback
*/
void operator ()(const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &s = Stream::Null());
/** @brief Releases unused auxiliary memory buffers.
*/
void releaseMemory()
{
frames_[0].release();
@ -295,20 +364,22 @@ private:
GpuMat extended_I1;
};
//! Interpolate frames (images) using provided optical flow (displacement field).
//! frame0 - frame 0 (32-bit floating point images, single channel)
//! frame1 - frame 1 (the same type and size)
//! fu - forward horizontal displacement
//! fv - forward vertical displacement
//! bu - backward horizontal displacement
//! bv - backward vertical displacement
//! pos - new frame position
//! newFrame - new frame
//! buf - temporary buffer, will have width x 6*height size, CV_32FC1 type and contain 6 GpuMat;
//! occlusion masks 0, occlusion masks 1,
//! interpolated forward flow 0, interpolated forward flow 1,
//! interpolated backward flow 0, interpolated backward flow 1
//!
/** @brief Interpolates frames (images) using provided optical flow (displacement field).
@param frame0 First frame (32-bit floating point images, single channel).
@param frame1 Second frame. Must have the same type and size as frame0 .
@param fu Forward horizontal displacement.
@param fv Forward vertical displacement.
@param bu Backward horizontal displacement.
@param bv Backward vertical displacement.
@param pos New frame position.
@param newFrame Output image.
@param buf Temporary buffer, will have width x 6\*height size, CV_32FC1 type and contain 6
GpuMat: occlusion masks for first frame, occlusion masks for second, interpolated forward
horizontal flow, interpolated forward vertical flow, interpolated backward horizontal flow,
interpolated backward vertical flow.
@param stream Stream for the asynchronous version.
*/
CV_EXPORTS void interpolateFrames(const GpuMat& frame0, const GpuMat& frame1,
const GpuMat& fu, const GpuMat& fv,
const GpuMat& bu, const GpuMat& bv,
@ -317,6 +388,8 @@ CV_EXPORTS void interpolateFrames(const GpuMat& frame0, const GpuMat& frame1,
CV_EXPORTS void createOpticalFlowNeedleMap(const GpuMat& u, const GpuMat& v, GpuMat& vertex, GpuMat& colors);
//! @}
}} // namespace cv { namespace cuda {
#endif /* __OPENCV_CUDAOPTFLOW_HPP__ */

View File

@ -50,11 +50,25 @@
#include "opencv2/core/cuda.hpp"
#include "opencv2/calib3d.hpp"
/**
@addtogroup cuda
@{
@defgroup cudastereo Stereo Correspondence
@}
*/
namespace cv { namespace cuda {
//! @addtogroup cudastereo
//! @{
/////////////////////////////////////////
// StereoBM
/** @brief Class computing stereo correspondence (disparity map) using the block matching algorithm. :
@sa StereoBM
*/
class CV_EXPORTS StereoBM : public cv::StereoBM
{
public:
@ -63,20 +77,70 @@ public:
virtual void compute(InputArray left, InputArray right, OutputArray disparity, Stream& stream) = 0;
};
/** @brief Creates StereoBM object.
@param numDisparities the disparity search range. For each pixel algorithm will find the best
disparity from 0 (default minimum disparity) to numDisparities. The search range can then be
shifted by changing the minimum disparity.
@param blockSize the linear size of the blocks compared by the algorithm. The size should be odd
(as the block is centered at the current pixel). Larger block size implies smoother, though less
accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher
chance for algorithm to find a wrong correspondence.
*/
CV_EXPORTS Ptr<cuda::StereoBM> createStereoBM(int numDisparities = 64, int blockSize = 19);
/////////////////////////////////////////
// StereoBeliefPropagation
//! "Efficient Belief Propagation for Early Vision" P.Felzenszwalb
/** @brief Class computing stereo correspondence using the belief propagation algorithm. :
The class implements algorithm described in @cite Felzenszwalb2006 . It can compute own data cost
(using a truncated linear model) or use a user-provided data cost.
@note
StereoBeliefPropagation requires a lot of memory for message storage:
\f[width \_ step \cdot height \cdot ndisp \cdot 4 \cdot (1 + 0.25)\f]
and for data cost storage:
\f[width\_step \cdot height \cdot ndisp \cdot (1 + 0.25 + 0.0625 + \dotsm + \frac{1}{4^{levels}})\f]
width_step is the number of bytes in a line including padding.
StereoBeliefPropagation uses a truncated linear model for the data cost and discontinuity terms:
\f[DataCost = data \_ weight \cdot \min ( \lvert Img_Left(x,y)-Img_Right(x-d,y) \rvert , max \_ data \_ term)\f]
\f[DiscTerm = \min (disc \_ single \_ jump \cdot \lvert f_1-f_2 \rvert , max \_ disc \_ term)\f]
For more details, see @cite Felzenszwalb2006 .
By default, StereoBeliefPropagation uses floating-point arithmetics and the CV_32FC1 type for
messages. But it can also use fixed-point arithmetics and the CV_16SC1 message type for better
performance. To avoid an overflow in this case, the parameters must satisfy the following
requirement:
\f[10 \cdot 2^{levels-1} \cdot max \_ data \_ term < SHRT \_ MAX\f]
@sa StereoMatcher
*/
class CV_EXPORTS StereoBeliefPropagation : public cv::StereoMatcher
{
public:
using cv::StereoMatcher::compute;
/** @overload */
virtual void compute(InputArray left, InputArray right, OutputArray disparity, Stream& stream) = 0;
//! version for user specified data term
/** @brief Enables the stereo correspondence operator that finds the disparity for the specified data cost.
@param data User-specified data cost, a matrix of msg_type type and
Size(\<image columns\>\*ndisp, \<image rows\>) size.
@param disparity Output disparity map. If disparity is empty, the output type is CV_16SC1 .
Otherwise, the type is retained.
@param stream Stream for the asynchronous version.
*/
virtual void compute(InputArray data, OutputArray disparity, Stream& stream = Stream::Null()) = 0;
//! number of BP iterations on each level
@ -107,18 +171,48 @@ public:
virtual int getMsgType() const = 0;
virtual void setMsgType(int msg_type) = 0;
/** @brief Uses a heuristic method to compute the recommended parameters ( ndisp, iters and levels ) for the
specified image size ( width and height ).
*/
static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels);
};
/** @brief Creates StereoBeliefPropagation object.
@param ndisp Number of disparities.
@param iters Number of BP iterations on each level.
@param levels Number of levels.
@param msg_type Type for messages. CV_16SC1 and CV_32FC1 types are supported.
*/
CV_EXPORTS Ptr<cuda::StereoBeliefPropagation>
createStereoBeliefPropagation(int ndisp = 64, int iters = 5, int levels = 5, int msg_type = CV_32F);
/////////////////////////////////////////
// StereoConstantSpaceBP
//! "A Constant-Space Belief Propagation Algorithm for Stereo Matching"
//! Qingxiong Yang, Liang Wang, Narendra Ahuja
//! http://vision.ai.uiuc.edu/~qyang6/
/** @brief Class computing stereo correspondence using the constant space belief propagation algorithm. :
The class implements algorithm described in @cite Yang2010 . StereoConstantSpaceBP supports both local
minimum and global minimum data cost initialization algorithms. For more details, see the paper
mentioned above. By default, a local algorithm is used. To enable a global algorithm, set
use_local_init_data_cost to false .
StereoConstantSpaceBP uses a truncated linear model for the data cost and discontinuity terms:
\f[DataCost = data \_ weight \cdot \min ( \lvert I_2-I_1 \rvert , max \_ data \_ term)\f]
\f[DiscTerm = \min (disc \_ single \_ jump \cdot \lvert f_1-f_2 \rvert , max \_ disc \_ term)\f]
For more details, see @cite Yang2010 .
By default, StereoConstantSpaceBP uses floating-point arithmetics and the CV_32FC1 type for
messages. But it can also use fixed-point arithmetics and the CV_16SC1 message type for better
performance. To avoid an overflow in this case, the parameters must satisfy the following
requirement:
\f[10 \cdot 2^{levels-1} \cdot max \_ data \_ term < SHRT \_ MAX\f]
*/
class CV_EXPORTS StereoConstantSpaceBP : public cuda::StereoBeliefPropagation
{
public:
@ -129,23 +223,40 @@ public:
virtual bool getUseLocalInitDataCost() const = 0;
virtual void setUseLocalInitDataCost(bool use_local_init_data_cost) = 0;
/** @brief Uses a heuristic method to compute parameters (ndisp, iters, levelsand nrplane) for the specified
image size (widthand height).
*/
static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane);
};
/** @brief Creates StereoConstantSpaceBP object.
@param ndisp Number of disparities.
@param iters Number of BP iterations on each level.
@param levels Number of levels.
@param nr_plane Number of disparity levels on the first level.
@param msg_type Type for messages. CV_16SC1 and CV_32FC1 types are supported.
*/
CV_EXPORTS Ptr<cuda::StereoConstantSpaceBP>
createStereoConstantSpaceBP(int ndisp = 128, int iters = 8, int levels = 4, int nr_plane = 4, int msg_type = CV_32F);
/////////////////////////////////////////
// DisparityBilateralFilter
//! Disparity map refinement using joint bilateral filtering given a single color image.
//! Qingxiong Yang, Liang Wang, Narendra Ahuja
//! http://vision.ai.uiuc.edu/~qyang6/
/** @brief Class refining a disparity map using joint bilateral filtering. :
The class implements @cite Yang2010 algorithm.
*/
class CV_EXPORTS DisparityBilateralFilter : public cv::Algorithm
{
public:
//! the disparity map refinement operator. Refine disparity map using joint bilateral filtering given a single color image.
//! disparity must have CV_8U or CV_16S type, image must have CV_8UC1 or CV_8UC3 type.
/** @brief Refines a disparity map using joint bilateral filtering.
@param disparity Input disparity map. CV_8UC1 and CV_16SC1 types are supported.
@param image Input image. CV_8UC1 and CV_8UC3 types are supported.
@param dst Destination disparity map. It has the same size and type as disparity .
@param stream Stream for the asynchronous version.
*/
virtual void apply(InputArray disparity, InputArray image, OutputArray dst, Stream& stream = Stream::Null()) = 0;
virtual int getNumDisparities() const = 0;
@ -170,24 +281,48 @@ public:
virtual void setSigmaRange(double sigma_range) = 0;
};
/** @brief Creates DisparityBilateralFilter object.
@param ndisp Number of disparities.
@param radius Filter radius.
@param iters Number of iterations.
*/
CV_EXPORTS Ptr<cuda::DisparityBilateralFilter>
createDisparityBilateralFilter(int ndisp = 64, int radius = 3, int iters = 1);
/////////////////////////////////////////
// Utility
//! Reprojects disparity image to 3D space.
//! Supports CV_8U and CV_16S types of input disparity.
//! The output is a 3- or 4-channel floating-point matrix.
//! Each element of this matrix will contain the 3D coordinates of the point (x,y,z,1), computed from the disparity map.
//! Q is the 4x4 perspective transformation matrix that can be obtained with cvStereoRectify.
/** @brief Reprojects a disparity image to 3D space.
@param disp Input disparity image. CV_8U and CV_16S types are supported.
@param xyzw Output 3- or 4-channel floating-point image of the same size as disp . Each element of
xyzw(x,y) contains 3D coordinates (x,y,z) or (x,y,z,1) of the point (x,y) , computed from the
disparity map.
@param Q \f$4 \times 4\f$ perspective transformation matrix that can be obtained via stereoRectify .
@param dst_cn The number of channels for output image. Can be 3 or 4.
@param stream Stream for the asynchronous version.
@sa reprojectImageTo3D
*/
CV_EXPORTS void reprojectImageTo3D(InputArray disp, OutputArray xyzw, InputArray Q, int dst_cn = 4, Stream& stream = Stream::Null());
//! Does coloring of disparity image: [0..ndisp) -> [0..240, 1, 1] in HSV.
//! Supported types of input disparity: CV_8U, CV_16S.
//! Output disparity has CV_8UC4 type in BGRA format (alpha = 255).
/** @brief Colors a disparity image.
@param src_disp Source disparity image. CV_8UC1 and CV_16SC1 types are supported.
@param dst_disp Output disparity image. It has the same size as src_disp . The type is CV_8UC4
in BGRA format (alpha = 255).
@param ndisp Number of disparities.
@param stream Stream for the asynchronous version.
This function draws a colored disparity map by converting disparity values from [0..ndisp) interval
first to HSV color space (where different disparity values correspond to different hues) and then
converting the pixels to RGB for visualization.
*/
CV_EXPORTS void drawColorDisp(InputArray src_disp, OutputArray dst_disp, int ndisp, Stream& stream = Stream::Null());
//! @}
}} // namespace cv { namespace cuda {
#endif /* __OPENCV_CUDASTEREO_HPP__ */

View File

@ -50,54 +50,178 @@
#include "opencv2/core/cuda.hpp"
#include "opencv2/imgproc.hpp"
/**
@addtogroup cuda
@{
@defgroup cudawarping Image Warping
@}
*/
namespace cv { namespace cuda {
//! DST[x,y] = SRC[xmap[x,y],ymap[x,y]]
//! supports only CV_32FC1 map type
//! @addtogroup cudawarping
//! @{
/** @brief Applies a generic geometrical transformation to an image.
@param src Source image.
@param dst Destination image with the size the same as xmap and the type the same as src .
@param xmap X values. Only CV_32FC1 type is supported.
@param ymap Y values. Only CV_32FC1 type is supported.
@param interpolation Interpolation method (see resize ). INTER_NEAREST , INTER_LINEAR and
INTER_CUBIC are supported for now.
@param borderMode Pixel extrapolation method (see borderInterpolate ). BORDER_REFLECT101 ,
BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now.
@param borderValue Value used in case of a constant border. By default, it is 0.
@param stream Stream for the asynchronous version.
The function transforms the source image using the specified map:
\f[\texttt{dst} (x,y) = \texttt{src} (xmap(x,y), ymap(x,y))\f]
Values of pixels with non-integer coordinates are computed using the bilinear interpolation.
@sa remap
*/
CV_EXPORTS void remap(InputArray src, OutputArray dst, InputArray xmap, InputArray ymap,
int interpolation, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar(),
Stream& stream = Stream::Null());
//! resizes the image
//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, INTER_AREA
/** @brief Resizes an image.
@param src Source image.
@param dst Destination image with the same type as src . The size is dsize (when it is non-zero)
or the size is computed from src.size() , fx , and fy .
@param dsize Destination image size. If it is zero, it is computed as:
\f[\texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))}\f]
Either dsize or both fx and fy must be non-zero.
@param fx Scale factor along the horizontal axis. If it is zero, it is computed as:
\f[\texttt{(double)dsize.width/src.cols}\f]
@param fy Scale factor along the vertical axis. If it is zero, it is computed as:
\f[\texttt{(double)dsize.height/src.rows}\f]
@param interpolation Interpolation method. INTER_NEAREST , INTER_LINEAR and INTER_CUBIC are
supported for now.
@param stream Stream for the asynchronous version.
@sa resize
*/
CV_EXPORTS void resize(InputArray src, OutputArray dst, Size dsize, double fx=0, double fy=0, int interpolation = INTER_LINEAR, Stream& stream = Stream::Null());
//! warps the image using affine transformation
//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
/** @brief Applies an affine transformation to an image.
@param src Source image. CV_8U , CV_16U , CV_32S , or CV_32F depth and 1, 3, or 4 channels are
supported.
@param dst Destination image with the same type as src . The size is dsize .
@param M *2x3* transformation matrix.
@param dsize Size of the destination image.
@param flags Combination of interpolation methods (see resize) and the optional flag
WARP_INVERSE_MAP specifying that M is an inverse transformation ( dst=\>src ). Only
INTER_NEAREST , INTER_LINEAR , and INTER_CUBIC interpolation methods are supported.
@param borderMode
@param borderValue
@param stream Stream for the asynchronous version.
@sa warpAffine
*/
CV_EXPORTS void warpAffine(InputArray src, OutputArray dst, InputArray M, Size dsize, int flags = INTER_LINEAR,
int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar(), Stream& stream = Stream::Null());
/** @brief Builds transformation maps for affine transformation.
@param M *2x3* transformation matrix.
@param inverse Flag specifying that M is an inverse transformation ( dst=\>src ).
@param dsize Size of the destination image.
@param xmap X values with CV_32FC1 type.
@param ymap Y values with CV_32FC1 type.
@param stream Stream for the asynchronous version.
@sa cuda::warpAffine , cuda::remap
*/
CV_EXPORTS void buildWarpAffineMaps(InputArray M, bool inverse, Size dsize, OutputArray xmap, OutputArray ymap, Stream& stream = Stream::Null());
//! warps the image using perspective transformation
//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
/** @brief Applies a perspective transformation to an image.
@param src Source image. CV_8U , CV_16U , CV_32S , or CV_32F depth and 1, 3, or 4 channels are
supported.
@param dst Destination image with the same type as src . The size is dsize .
@param M *3x3* transformation matrix.
@param dsize Size of the destination image.
@param flags Combination of interpolation methods (see resize ) and the optional flag
WARP_INVERSE_MAP specifying that M is the inverse transformation ( dst =\> src ). Only
INTER_NEAREST , INTER_LINEAR , and INTER_CUBIC interpolation methods are supported.
@param borderMode
@param borderValue
@param stream Stream for the asynchronous version.
@sa warpPerspective
*/
CV_EXPORTS void warpPerspective(InputArray src, OutputArray dst, InputArray M, Size dsize, int flags = INTER_LINEAR,
int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar(), Stream& stream = Stream::Null());
/** @brief Builds transformation maps for perspective transformation.
@param M *3x3* transformation matrix.
@param inverse Flag specifying that M is an inverse transformation ( dst=\>src ).
@param dsize Size of the destination image.
@param xmap X values with CV_32FC1 type.
@param ymap Y values with CV_32FC1 type.
@param stream Stream for the asynchronous version.
@sa cuda::warpPerspective , cuda::remap
*/
CV_EXPORTS void buildWarpPerspectiveMaps(InputArray M, bool inverse, Size dsize, OutputArray xmap, OutputArray ymap, Stream& stream = Stream::Null());
//! builds plane warping maps
/** @brief Builds plane warping maps.
*/
CV_EXPORTS void buildWarpPlaneMaps(Size src_size, Rect dst_roi, InputArray K, InputArray R, InputArray T, float scale,
OutputArray map_x, OutputArray map_y, Stream& stream = Stream::Null());
//! builds cylindrical warping maps
/** @brief Builds cylindrical warping maps.
*/
CV_EXPORTS void buildWarpCylindricalMaps(Size src_size, Rect dst_roi, InputArray K, InputArray R, float scale,
OutputArray map_x, OutputArray map_y, Stream& stream = Stream::Null());
//! builds spherical warping maps
/** @brief Builds spherical warping maps.
*/
CV_EXPORTS void buildWarpSphericalMaps(Size src_size, Rect dst_roi, InputArray K, InputArray R, float scale,
OutputArray map_x, OutputArray map_y, Stream& stream = Stream::Null());
//! rotates an image around the origin (0,0) and then shifts it
//! supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
//! supports 1, 3 or 4 channels images with CV_8U, CV_16U or CV_32F depth
/** @brief Rotates an image around the origin (0,0) and then shifts it.
@param src Source image. Supports 1, 3 or 4 channels images with CV_8U , CV_16U or CV_32F
depth.
@param dst Destination image with the same type as src . The size is dsize .
@param dsize Size of the destination image.
@param angle Angle of rotation in degrees.
@param xShift Shift along the horizontal axis.
@param yShift Shift along the vertical axis.
@param interpolation Interpolation method. Only INTER_NEAREST , INTER_LINEAR , and INTER_CUBIC
are supported.
@param stream Stream for the asynchronous version.
@sa cuda::warpAffine
*/
CV_EXPORTS void rotate(InputArray src, OutputArray dst, Size dsize, double angle, double xShift = 0, double yShift = 0,
int interpolation = INTER_LINEAR, Stream& stream = Stream::Null());
//! smoothes the source image and downsamples it
/** @brief Smoothes an image and downsamples it.
@param src Source image.
@param dst Destination image. Will have Size((src.cols+1)/2, (src.rows+1)/2) size and the same
type as src .
@param stream Stream for the asynchronous version.
@sa pyrDown
*/
CV_EXPORTS void pyrDown(InputArray src, OutputArray dst, Stream& stream = Stream::Null());
//! upsamples the source image and then smoothes it
/** @brief Upsamples an image and then smoothes it.
@param src Source image.
@param dst Destination image. Will have Size(src.cols\*2, src.rows\*2) size and the same type as
src .
@param stream Stream for the asynchronous version.
*/
CV_EXPORTS void pyrUp(InputArray src, OutputArray dst, Stream& stream = Stream::Null());
class CV_EXPORTS ImagePyramid : public Algorithm
@ -108,6 +232,8 @@ public:
CV_EXPORTS Ptr<ImagePyramid> createImagePyramid(InputArray img, int nLayers = -1, Stream& stream = Stream::Null());
//! @}
}} // namespace cv { namespace cuda {
#endif /* __OPENCV_CUDAWARPING_HPP__ */

View File

@ -109,4 +109,11 @@
#include "cudev/expr/unary_op.hpp"
#include "cudev/expr/warping.hpp"
/**
@addtogroup cuda
@{
@defgroup cudev Device layer
@}
*/
#endif

View File

@ -50,6 +50,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
struct Block
{
__device__ __forceinline__ static uint blockId()
@ -122,6 +125,9 @@ __device__ __forceinline__ static void blockTransfrom(InIt1 beg1, InIt1 end1, In
for(; t1 < end1; t1 += STRIDE, t2 += STRIDE, o += STRIDE)
*o = op(*t1, *t2);
}
//! @}
}}
#endif

View File

@ -50,6 +50,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
template <class T> struct DynamicSharedMem
{
__device__ __forceinline__ operator T*()
@ -81,6 +84,8 @@ template <> struct DynamicSharedMem<double>
}
};
//! @}
}}
#endif

View File

@ -54,6 +54,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
// blockReduce
template <int N, typename T, class Op>
@ -123,6 +126,8 @@ __device__ __forceinline__ void blockReduceKeyVal(const tuple<KP0, KP1, KP2, KP3
>(skeys, key, svals, val, tid, cmp);
}
//! @}
}}
#endif

View File

@ -51,6 +51,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
template <int THREADS_NUM, typename T>
__device__ T blockScanInclusive(T data, volatile T* smem, uint tid)
{
@ -96,6 +99,8 @@ __device__ __forceinline__ T blockScanExclusive(T data, volatile T* smem, uint t
return blockScanInclusive<THREADS_NUM>(data, smem, tid) - data;
}
//! @}
}}
#endif

View File

@ -53,6 +53,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
// NormL1
template <typename T> struct NormL1
@ -179,6 +182,8 @@ struct NormHamming
}
};
//! @}
}}
#endif

View File

@ -52,6 +52,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
using namespace cv::cuda;
// CV_CUDEV_ARCH
@ -84,6 +87,8 @@ __host__ __device__ __forceinline__ int divUp(int total, int grain)
#define CV_PI_F ((float)CV_PI)
#define CV_LOG2_F ((float)CV_LOG2)
//! @}
}}
#endif

View File

@ -55,6 +55,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
#define CV_CUDEV_EXPR_BINARY_FUNC(name) \
template <class SrcPtr1, class SrcPtr2> \
__host__ Expr<BinaryTransformPtrSz<typename PtrTraits<SrcPtr1>::ptr_type, typename PtrTraits<SrcPtr2>::ptr_type, name ## _func<typename LargerType<typename PtrTraits<SrcPtr1>::value_type, typename PtrTraits<SrcPtr2>::value_type>::type> > > \
@ -70,6 +73,8 @@ CV_CUDEV_EXPR_BINARY_FUNC(absdiff)
#undef CV_CUDEV_EXPR_BINARY_FUNC
//! @}
}}
#endif

View File

@ -58,6 +58,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
// Binary Operations
#define CV_CUDEV_EXPR_BINOP_INST(op, functor) \
@ -230,6 +233,8 @@ CV_CUDEV_EXPR_BINOP_INST(>>, bit_rshift)
#undef CV_CUDEV_EXPR_BINOP_INST
//! @}
}}
#endif

View File

@ -54,6 +54,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
#define CV_CUDEV_EXPR_CVTCOLOR_INST(name) \
template <class SrcPtr> \
__host__ Expr<UnaryTransformPtrSz<typename PtrTraits<SrcPtr>::ptr_type, name ## _func<typename VecTraits<typename PtrTraits<SrcPtr>::value_type>::elem_type> > > \
@ -277,6 +280,8 @@ CV_CUDEV_EXPR_CVTCOLOR_INST(Luv4_to_LBGRA)
#undef CV_CUDEV_EXPR_CVTCOLOR_INST
//! @}
}}
#endif

View File

@ -53,6 +53,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
// derivX
template <class SrcPtr>
@ -116,6 +119,8 @@ laplacian_(const SrcPtr& src)
return makeExpr(laplacianPtr<ksize>(src));
}
//! @}
}}
#endif

View File

@ -51,6 +51,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
template <class Body> struct Expr
{
Body body;
@ -87,6 +90,8 @@ template <class Body> struct PtrTraits< Expr<Body> >
}
};
//! @}
}}
#endif

View File

@ -56,6 +56,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
// min/max
template <class SrcPtr1, class SrcPtr2>
@ -127,6 +130,8 @@ lut_(const SrcPtr& src, const TablePtr& tbl)
return makeExpr(lutPtr(src, tbl));
}
//! @}
}}
#endif

View File

@ -56,6 +56,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
// sum
template <class SrcPtr> struct SumExprBody
@ -254,6 +257,8 @@ integral_(const SrcPtr& src)
return makeExpr(body);
}
//! @}
}}
#endif

View File

@ -54,6 +54,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
#define CV_CUDEV_EXPR_UNARY_FUNC(name) \
template <class SrcPtr> \
__host__ Expr<UnaryTransformPtrSz<typename PtrTraits<SrcPtr>::ptr_type, name ## _func<typename PtrTraits<SrcPtr>::value_type> > > \
@ -93,6 +96,8 @@ pow_(const SrcPtr& src, float power)
return makeExpr(transformPtr(src, bind2nd(pow_func<typename PtrTraits<SrcPtr>::value_type>(), power)));
}
//! @}
}}
#endif

View File

@ -57,6 +57,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
#define CV_CUDEV_EXPR_UNOP_INST(op, functor) \
template <typename T> \
__host__ Expr<UnaryTransformPtrSz<typename PtrTraits<GpuMat_<T> >::ptr_type, functor<T> > > \
@ -89,6 +92,8 @@ CV_CUDEV_EXPR_UNOP_INST(~, bit_not)
#undef CV_CUDEV_EXPR_UNOP_INST
//! @}
}}
#endif

View File

@ -57,6 +57,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
// resize
template <class SrcPtr>
@ -166,6 +169,8 @@ transpose_(const SrcPtr& src)
return makeExpr(body);
}
//! @}
}}
#endif

View File

@ -51,6 +51,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
// Various 3/4-channel to 3/4-channel RGB transformations
#define CV_CUDEV_RGB2RGB_INST(name, scn, dcn, bidx) \
@ -469,6 +472,8 @@ CV_CUDEV_RGB5x52GRAY_INST(BGR565_to_GRAY, 6)
#undef CV_CUDEV_RGB5x52GRAY_INST
//! @}
}}
#endif

View File

@ -54,6 +54,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
// Function Objects
template <typename _Arg, typename _Result> struct unary_function
@ -873,6 +876,8 @@ template <typename F> struct IsBinaryFunction
enum { value = (sizeof(check(makeF())) == sizeof(Yes)) };
};
//! @}
}}
#endif

View File

@ -51,6 +51,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
template <class Op, int n> struct UnaryTupleAdapter
{
typedef typename Op::result_type result_type;
@ -93,6 +96,8 @@ __host__ __device__ BinaryTupleAdapter<Op, n0, n1> binaryTupleAdapter(const Op&
return a;
}
//! @}
}}
#endif

View File

@ -57,6 +57,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
template <class Policy, class SrcPtr, typename DstType, class MaskPtr>
__host__ void gridCopy_(const SrcPtr& src, GpuMat_<DstType>& dst, const MaskPtr& mask, Stream& stream = Stream::Null())
{
@ -447,6 +450,8 @@ __host__ void gridCopy_(const SrcPtrTuple& src, const tuple< GlobPtrSz<D0>, Glob
gridCopy_<DefaultCopyPolicy>(src, dst, stream);
}
//! @}
}}
#endif

View File

@ -54,6 +54,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
template <int BIN_COUNT, class Policy, class SrcPtr, typename ResType, class MaskPtr>
__host__ void gridHistogram_(const SrcPtr& src, GpuMat_<ResType>& dst, const MaskPtr& mask, Stream& stream = Stream::Null())
{
@ -114,6 +117,8 @@ __host__ void gridHistogram(const SrcPtr& src, GpuMat_<ResType>& dst, Stream& st
gridHistogram_<BIN_COUNT, DefaultHistogramPolicy>(src, dst, stream);
}
//! @}
}}
#endif

View File

@ -53,6 +53,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
template <class SrcPtr, typename DstType>
__host__ void gridIntegral(const SrcPtr& src, GpuMat_<DstType>& dst, Stream& stream = Stream::Null())
{
@ -64,6 +67,8 @@ __host__ void gridIntegral(const SrcPtr& src, GpuMat_<DstType>& dst, Stream& str
integral_detail::integral(shrinkPtr(src), shrinkPtr(dst), rows, cols, StreamAccessor::getStream(stream));
}
//! @}
}}
#endif

View File

@ -55,6 +55,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
template <class Brd, class SrcPtr, typename DstType>
__host__ void gridPyrDown_(const SrcPtr& src, GpuMat_<DstType>& dst, Stream& stream = Stream::Null())
{
@ -83,6 +86,8 @@ __host__ void gridPyrUp(const SrcPtr& src, GpuMat_<DstType>& dst, Stream& stream
pyramids_detail::pyrUp(shrinkPtr(src), shrinkPtr(dst), rows, cols, dst.rows, dst.cols, StreamAccessor::getStream(stream));
}
//! @}
}}
#endif

View File

@ -57,6 +57,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
template <class Policy, class SrcPtr, typename ResType, class MaskPtr>
__host__ void gridCalcSum_(const SrcPtr& src, GpuMat_<ResType>& dst, const MaskPtr& mask, Stream& stream = Stream::Null())
{
@ -370,6 +373,8 @@ __host__ void gridCountNonZero(const SrcPtr& src, GpuMat_<ResType>& dst, Stream&
gridCountNonZero_<DefaultGlobReducePolicy>(src, dst, stream);
}
//! @}
}}
#endif

View File

@ -59,6 +59,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
template <typename T> struct Sum : plus<T>
{
typedef T work_type;
@ -225,6 +228,8 @@ __host__ void gridReduceToColumn(const SrcPtr& src, GpuMat_<ResType>& dst, Strea
gridReduceToColumn_<Reductor, DefaultReduceToVecPolicy>(src, dst, stream);
}
//! @}
}}
#endif

View File

@ -57,6 +57,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
template <class Policy, class SrcPtrTuple, typename DstType, class MaskPtr>
__host__ void gridMerge_(const SrcPtrTuple& src, GpuMat_<DstType>& dst, const MaskPtr& mask, Stream& stream = Stream::Null())
{
@ -579,6 +582,8 @@ __host__ void gridSplit(const SrcPtr& src, GlobPtrSz<DstType> (&dst)[COUNT], Str
gridSplit_<DefaultSplitMergePolicy>(src, dst, stream);
}
//! @}
}}
#endif

View File

@ -57,6 +57,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
template <class Policy, class SrcPtr, typename DstType, class UnOp, class MaskPtr>
__host__ void gridTransformUnary_(const SrcPtr& src, GpuMat_<DstType>& dst, const UnOp& op, const MaskPtr& mask, Stream& stream = Stream::Null())
{
@ -536,6 +539,8 @@ __host__ void gridTransformTuple(const SrcPtr& src, const tuple< GlobPtrSz<D0>,
gridTransformTuple_<DefaultTransformPolicy>(src, dst, op, stream);
}
//! @}
}}
#endif

View File

@ -54,6 +54,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
template <class Policy, class SrcPtr, typename DstType>
__host__ void gridTranspose_(const SrcPtr& src, GpuMat_<DstType>& dst, Stream& stream = Stream::Null())
{
@ -98,6 +101,8 @@ __host__ void gridTranspose(const SrcPtr& src, const GlobPtrSz<DstType>& dst, St
gridTranspose_<DefaultTransposePolicy>(src, dst, stream);
}
//! @}
}}
#endif

View File

@ -51,6 +51,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
template <typename T> struct ConstantPtr
{
typedef T value_type;
@ -88,6 +91,8 @@ template <typename T> struct PtrTraits< ConstantPtrSz<T> > : PtrTraitsBase< Cons
{
};
//! @}
}}
#endif

View File

@ -53,6 +53,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
// derivX
template <class SrcPtr> struct DerivXPtr
@ -388,6 +391,8 @@ template <int ksize, class SrcPtr> struct PtrTraits< LaplacianPtrSz<ksize, SrcPt
{
};
//! @}
}}
#endif

View File

@ -52,6 +52,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
// BrdConstant
template <class SrcPtr> struct BrdConstant
@ -214,6 +217,8 @@ __host__ BrdBase<BrdWrap, typename PtrTraits<SrcPtr>::ptr_type> brdWrap(const Sr
return b;
}
//! @}
}}
#endif

View File

@ -51,6 +51,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
template <typename T> struct GlobPtr
{
typedef T value_type;
@ -106,6 +109,8 @@ template <typename T> struct PtrTraits< GlobPtrSz<T> > : PtrTraitsBase<GlobPtrSz
{
};
//! @}
}}
#endif

View File

@ -53,6 +53,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
template <typename T>
class GpuMat_ : public GpuMat
{
@ -154,6 +157,8 @@ template <typename T> struct PtrTraits< GpuMat_<T> > : PtrTraitsBase<GpuMat_<T>,
{
};
//! @}
}}
#include "detail/gpumat.hpp"

View File

@ -55,6 +55,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
// Nearest
template <class SrcPtr> struct NearestInterPtr
@ -380,6 +383,8 @@ template <class SrcPtr> struct PtrTraits< CommonAreaInterPtrSz<SrcPtr> > : PtrTr
{
};
//! @}
}}
#endif

View File

@ -54,6 +54,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
template <class SrcPtr, class TablePtr> struct LutPtr
{
typedef typename PtrTraits<TablePtr>::value_type value_type;
@ -95,6 +98,8 @@ template <class SrcPtr, class TablePtr> struct PtrTraits< LutPtrSz<SrcPtr, Table
{
};
//! @}
}}
#endif

View File

@ -51,6 +51,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
struct WithOutMask
{
typedef bool value_type;
@ -98,6 +101,8 @@ template <class MaskPtr> struct PtrTraits< SingleMaskChannelsSz<MaskPtr> > : Ptr
{
};
//! @}
}}
#endif

View File

@ -54,6 +54,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
template <class SrcPtr, class MapPtr> struct RemapPtr1
{
typedef typename PtrTraits<SrcPtr>::value_type value_type;
@ -149,6 +152,8 @@ template <class SrcPtr, class MapXPtr, class MapYPtr> struct PtrTraits< RemapPtr
{
};
//! @}
}}
#endif

View File

@ -54,6 +54,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
template <class SrcPtr> struct ResizePtr
{
typedef typename PtrTraits<SrcPtr>::value_type value_type;
@ -98,6 +101,8 @@ template <class SrcPtr> struct PtrTraits< ResizePtrSz<SrcPtr> > : PtrTraitsBase<
{
};
//! @}
}}
#endif

View File

@ -92,6 +92,9 @@ namespace
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
#if CUDART_VERSION >= 5050
template <typename T> struct TexturePtr
@ -248,6 +251,8 @@ template <typename T> struct PtrTraits< Texture<T> > : PtrTraitsBase<Texture<T>,
#endif
//! @}
}}
#endif

View File

@ -50,6 +50,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
template <class Ptr2DSz, class Ptr2D> struct PtrTraitsBase
{
typedef Ptr2DSz ptr_sz_type;
@ -96,6 +99,8 @@ __host__ int getCols(const Ptr2DSz& ptr)
return PtrTraits<Ptr2DSz>::getCols(ptr);
}
//! @}
}}
#endif

View File

@ -53,6 +53,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
// UnaryTransformPtr
template <class SrcPtr, class Op> struct UnaryTransformPtr
@ -146,6 +149,8 @@ template <class Src1Ptr, class Src2Ptr, class Op> struct PtrTraits< BinaryTransf
{
};
//! @}
}}
#endif

View File

@ -53,6 +53,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
// affine
struct AffineMapPtr
@ -147,6 +150,8 @@ warpPerspectivePtr(const SrcPtr& src, Size dstSize, const GpuMat_<float>& warpMa
return remapPtr(src, perspectiveMap(dstSize, warpMat));
}
//! @}
}}
#endif

View File

@ -52,6 +52,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
template <class PtrTuple> struct ZipPtr;
template <class Ptr0, class Ptr1> struct ZipPtr< tuple<Ptr0, Ptr1> > : tuple<Ptr0, Ptr1>
@ -168,6 +171,8 @@ template <class PtrTuple> struct PtrTraits< ZipPtrSz<PtrTuple> > : PtrTraitsBase
{
};
//! @}
}}
#endif

View File

@ -50,6 +50,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
// atomicAdd
__device__ __forceinline__ int atomicAdd(int* address, int val)
@ -192,6 +195,8 @@ __device__ static double atomicMax(double* address, double val)
#endif
}
//! @}
}}
#endif

View File

@ -52,6 +52,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
template <class T> struct numeric_limits;
template <> struct numeric_limits<bool>
@ -119,6 +122,8 @@ template <> struct numeric_limits<double>
static const bool is_signed = true;
};
//! @}
}}
#endif

View File

@ -50,6 +50,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
template <typename T> __device__ __forceinline__ T saturate_cast(uchar v) { return T(v); }
template <typename T> __device__ __forceinline__ T saturate_cast(schar v) { return T(v); }
template <typename T> __device__ __forceinline__ T saturate_cast(ushort v) { return T(v); }
@ -267,6 +270,8 @@ template <> __device__ __forceinline__ uint saturate_cast<uint>(double v)
#endif
}
//! @}
}}
#endif

View File

@ -128,6 +128,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
// 2
__device__ __forceinline__ uint vadd2(uint a, uint b)
@ -908,6 +911,8 @@ __device__ __forceinline__ uint vmin4(uint a, uint b)
return r;
}
//! @}
}}
#endif

View File

@ -51,6 +51,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
using tuple_detail::tuple;
using tuple_detail::tuple_size;
using tuple_detail::get;
@ -75,6 +78,8 @@ template <class Tuple, template <typename T> class CvtOp> struct ConvertTuple
typedef typename tuple_detail::ConvertTuple<Tuple, tuple_size<Tuple>::value, CvtOp>::type type;
};
//! @}
}}
#endif

View File

@ -52,6 +52,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
// NullType
struct NullType {};
@ -164,6 +167,8 @@ template <typename A, typename B> struct LargerType
>::type type;
};
//! @}
}}
#endif

View File

@ -51,6 +51,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
// saturate_cast
namespace vec_math_detail
@ -931,6 +934,8 @@ CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(atan2, ::atan2, double, double, double)
#undef CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC
//! @}
}}
#endif

View File

@ -50,6 +50,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
// MakeVec
template<typename T, int CN> struct MakeVec;
@ -177,6 +180,8 @@ template<> struct VecTraits<char4>
__host__ __device__ __forceinline__ static char4 make(const schar* v) {return make_char4(v[0], v[1], v[2], v[3]);}
};
//! @}
}}
// DataType

View File

@ -53,6 +53,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
// warpReduce
template <typename T, class Op>
@ -201,6 +204,8 @@ smem_tuple(T0* t0, T1* t1, T2* t2, T3* t3, T4* t4, T5* t5, T6* t6, T7* t7, T8* t
return make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2, (volatile T3*) t3, (volatile T4*) t4, (volatile T5*) t5, (volatile T6*) t6, (volatile T7*) t7, (volatile T8*) t8, (volatile T9*) t9);
}
//! @}
}}
#endif

View File

@ -52,6 +52,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
template <typename T>
__device__ T warpScanInclusive(T data, volatile T* smem, uint tid)
{
@ -94,6 +97,8 @@ __device__ __forceinline__ T warpScanExclusive(T data, volatile T* smem, uint ti
return warpScanInclusive(data, smem, tid) - data;
}
//! @}
}}
#endif

View File

@ -51,6 +51,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
#if CV_CUDEV_ARCH >= 300
// shfl
@ -419,6 +422,8 @@ CV_CUDEV_SHFL_XOR_VEC_INST(double)
#endif // CV_CUDEV_ARCH >= 300
//! @}
}}
#endif

View File

@ -50,6 +50,9 @@
namespace cv { namespace cudev {
//! @addtogroup cudev
//! @{
enum
{
LOG_WARP_SIZE = 5,
@ -117,6 +120,8 @@ __device__ __forceinline__ void warpYota(OutIt beg, OutIt end, T value)
*t = value;
}
//! @}
}}
#endif

View File

@ -46,18 +46,54 @@
#include "opencv2/core.hpp"
#include "opencv2/flann/miniflann.hpp"
/**
@defgroup features2d 2D Features Framework
@{
@defgroup features2d_main Feature Detection and Description
@defgroup features2d_match Descriptor Matchers
Matchers of keypoint descriptors in OpenCV have wrappers with a common interface that enables you to
easily switch between different algorithms solving the same problem. This section is devoted to
matching descriptors that are represented as vectors in a multidimensional space. All objects that
implement vector descriptor matchers inherit the DescriptorMatcher interface.
@note
- An example explaining keypoint matching can be found at
opencv_source_code/samples/cpp/descriptor_extractor_matcher.cpp
- An example on descriptor matching evaluation can be found at
opencv_source_code/samples/cpp/detector_descriptor_matcher_evaluation.cpp
- An example on one to many image matching can be found at
opencv_source_code/samples/cpp/matching_to_many_images.cpp
@defgroup features2d_draw Drawing Function of Keypoints and Matches
@defgroup features2d_category Object Categorization
This section describes approaches based on local 2D features and used to categorize objects.
@note
- A complete Bag-Of-Words sample can be found at
opencv_source_code/samples/cpp/bagofwords_classification.cpp
- (Python) An example using the features2D framework to perform object categorization can be
found at opencv_source_code/samples/python2/find_obj.py
@}
*/
namespace cv
{
//! @addtogroup features2d
//! @{
// //! writes vector of keypoints to the file storage
// CV_EXPORTS void write(FileStorage& fs, const String& name, const std::vector<KeyPoint>& keypoints);
// //! reads vector of keypoints from the specified file storage node
// CV_EXPORTS void read(const FileNode& node, CV_OUT std::vector<KeyPoint>& keypoints);
/*
* A class filters a vector of keypoints.
* Because now it is difficult to provide a convenient interface for all usage scenarios of the keypoints filter class,
* it has only several needed by now static methods.
/** @brief A class filters a vector of keypoints.
Because now it is difficult to provide a convenient interface for all usage scenarios of the
keypoints filter class, it has only several needed by now static methods.
*/
class CV_EXPORTS KeyPointsFilter
{
@ -91,44 +127,66 @@ public:
/************************************ Base Classes ************************************/
/*
* Abstract base class for 2D image feature detectors and descriptor extractors
*/
/** @brief Abstract base class for 2D image feature detectors and descriptor extractors
*/
class CV_EXPORTS_W Feature2D : public virtual Algorithm
{
public:
virtual ~Feature2D();
/*
* Detect keypoints in an image.
* image The image.
* keypoints The detected keypoints.
* mask Mask specifying where to look for keypoints (optional). Must be a char
* matrix with non-zero values in the region of interest.
/** @brief Detects keypoints in an image (first variant) or image set (second variant).
@param image Image.
@param keypoints The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .
@param mask Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.
*/
CV_WRAP virtual void detect( InputArray image,
CV_OUT std::vector<KeyPoint>& keypoints,
InputArray mask=noArray() );
/** @overload
@param images Image set.
@param keypoints The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .
@param masks Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].
*/
virtual void detect( InputArrayOfArrays images,
std::vector<std::vector<KeyPoint> >& keypoints,
InputArrayOfArrays masks=noArray() );
/*
* Compute the descriptors for a set of keypoints in an image.
* image The image.
* keypoints The input keypoints. Keypoints for which a descriptor cannot be computed are removed.
* descriptors Copmputed descriptors. Row i is the descriptor for keypoint i.
/** @brief Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
@param image Image.
@param keypoints Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).
@param descriptors Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.
*/
CV_WRAP virtual void compute( InputArray image,
CV_OUT CV_IN_OUT std::vector<KeyPoint>& keypoints,
OutputArray descriptors );
/** @overload
@param images Image set.
@param keypoints Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).
@param descriptors Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.
*/
virtual void compute( InputArrayOfArrays images,
std::vector<std::vector<KeyPoint> >& keypoints,
OutputArrayOfArrays descriptors );
/* Detects keypoints and computes the descriptors */
/** Detects keypoints and computes the descriptors */
CV_WRAP virtual void detectAndCompute( InputArray image, InputArray mask,
CV_OUT std::vector<KeyPoint>& keypoints,
OutputArray descriptors,
@ -138,33 +196,96 @@ public:
CV_WRAP virtual int descriptorType() const;
CV_WRAP virtual int defaultNorm() const;
// Return true if detector object is empty
//! Return true if detector object is empty
CV_WRAP virtual bool empty() const;
};
/** Feature detectors in OpenCV have wrappers with a common interface that enables you to easily switch
between different algorithms solving the same problem. All objects that implement keypoint detectors
inherit the FeatureDetector interface. */
typedef Feature2D FeatureDetector;
/** Extractors of keypoint descriptors in OpenCV have wrappers with a common interface that enables you
to easily switch between different algorithms solving the same problem. This section is devoted to
computing descriptors represented as vectors in a multidimensional space. All objects that implement
the vector descriptor extractors inherit the DescriptorExtractor interface.
*/
typedef Feature2D DescriptorExtractor;
/*!
BRISK implementation
*/
//! @addtogroup features2d_main
//! @{
/** @brief Class implementing the BRISK keypoint detector and descriptor extractor, described in @cite LCS11 .
*/
class CV_EXPORTS_W BRISK : public Feature2D
{
public:
/** @brief The BRISK constructor
@param thresh FAST/AGAST detection threshold score.
@param octaves detection octaves. Use 0 to do single scale.
@param patternScale apply this scale to the pattern used for sampling the neighbourhood of a
keypoint.
*/
CV_WRAP static Ptr<BRISK> create(int thresh=30, int octaves=3, float patternScale=1.0f);
// custom setup
/** @brief The BRISK constructor for a custom pattern
@param radiusList defines the radii (in pixels) where the samples around a keypoint are taken (for
keypoint scale 1).
@param numberList defines the number of sampling points on the sampling circle. Must be the same
size as radiusList..
@param dMax threshold for the short pairings used for descriptor formation (in pixels for keypoint
scale 1).
@param dMin threshold for the long pairings used for orientation determination (in pixels for
keypoint scale 1).
@param indexChange index remapping of the bits. */
CV_WRAP static Ptr<BRISK> create(const std::vector<float> &radiusList, const std::vector<int> &numberList,
float dMax=5.85f, float dMin=8.2f, const std::vector<int>& indexChange=std::vector<int>());
};
/*!
ORB implementation.
*/
/** @brief Class implementing the ORB (*oriented BRIEF*) keypoint detector and descriptor extractor
described in @cite RRKB11 . The algorithm uses FAST in pyramids to detect stable keypoints, selects
the strongest features using FAST or Harris response, finds their orientation using first-order
moments and computes the descriptors using BRIEF (where the coordinates of random point pairs (or
k-tuples) are rotated according to the measured orientation).
*/
class CV_EXPORTS_W ORB : public Feature2D
{
public:
enum { kBytes = 32, HARRIS_SCORE=0, FAST_SCORE=1 };
/** @brief The ORB constructor
@param nfeatures The maximum number of features to retain.
@param scaleFactor Pyramid decimation ratio, greater than 1. scaleFactor==2 means the classical
pyramid, where each next level has 4x less pixels than the previous, but such a big scale factor
will degrade feature matching scores dramatically. On the other hand, too close to 1 scale factor
will mean that to cover certain scale range you will need more pyramid levels and so the speed
will suffer.
@param nlevels The number of pyramid levels. The smallest level will have linear size equal to
input_image_linear_size/pow(scaleFactor, nlevels).
@param edgeThreshold This is size of the border where the features are not detected. It should
roughly match the patchSize parameter.
@param firstLevel It should be 0 in the current implementation.
@param WTA_K The number of points that produce each element of the oriented BRIEF descriptor. The
default value 2 means the BRIEF where we take a random point pair and compare their brightnesses,
so we get 0/1 response. Other possible values are 3 and 4. For example, 3 means that we take 3
random points (of course, those point coordinates are random, but they are generated from the
pre-defined seed, so each element of BRIEF descriptor is computed deterministically from the pixel
rectangle), find point of maximum brightness and output index of the winner (0, 1 or 2). Such
output will occupy 2 bits, and therefore it will need a special variant of Hamming distance,
denoted as NORM_HAMMING2 (2 bits per bin). When WTA_K=4, we take 4 random points to compute each
bin (that will also occupy 2 bits with possible values 0, 1, 2 or 3).
@param scoreType The default HARRIS_SCORE means that Harris algorithm is used to rank features
(the score is written to KeyPoint::score and is used to retain best nfeatures features);
FAST_SCORE is alternative value of the parameter that produces slightly less stable keypoints,
but it is a little faster to compute.
@param patchSize size of the patch used by the oriented BRIEF descriptor. Of course, on smaller
pyramid layers the perceived image area covered by a feature will be larger.
@param fastThreshold
*/
CV_WRAP static Ptr<ORB> create(int nfeatures=500, float scaleFactor=1.2f, int nlevels=8, int edgeThreshold=31,
int firstLevel=0, int WTA_K=2, int scoreType=ORB::HARRIS_SCORE, int patchSize=31, int fastThreshold=20);
@ -196,15 +317,16 @@ public:
CV_WRAP virtual int getFastThreshold() const = 0;
};
/*!
Maximal Stable Extremal Regions class.
/** @brief Maximally stable extremal region extractor. :
The class implements MSER algorithm introduced by J. Matas.
Unlike SIFT, SURF and many other detectors in OpenCV, this is salient region detector,
not the salient point detector.
The class encapsulates all the parameters of the MSER extraction algorithm (see
<http://en.wikipedia.org/wiki/Maximally_stable_extremal_regions>). Also see
<http://code.opencv.org/projects/opencv/wiki/MSER> for useful comments and parameters description.
It returns the regions, each of those is encoded as a contour.
*/
@note
- (Python) A complete example showing the use of the MSER detector can be found at
opencv_source_code/samples/python2/mser.py
*/
class CV_EXPORTS_W MSER : public Feature2D
{
public:
@ -231,13 +353,38 @@ public:
CV_WRAP virtual bool getPass2Only() const = 0;
};
//! detects corners using FAST algorithm by E. Rosten
/** @overload */
CV_EXPORTS void FAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints,
int threshold, bool nonmaxSuppression=true );
/** @brief Detects corners using the FAST algorithm
@param image grayscale image where keypoints (corners) are detected.
@param keypoints keypoints detected on the image.
@param threshold threshold on difference between intensity of the central pixel and pixels of a
circle around this pixel.
@param nonmaxSuppression if true, non-maximum suppression is applied to detected corners
(keypoints).
@param type one of the three neighborhoods as defined in the paper:
FastFeatureDetector::TYPE_9_16, FastFeatureDetector::TYPE_7_12,
FastFeatureDetector::TYPE_5_8
Detects corners using the FAST algorithm by @cite Rosten06 .
@note In Python API, types are given as cv2.FAST_FEATURE_DETECTOR_TYPE_5_8,
cv2.FAST_FEATURE_DETECTOR_TYPE_7_12 and cv2.FAST_FEATURE_DETECTOR_TYPE_9_16. For corner
detection, use cv2.FAST.detect() method.
*/
CV_EXPORTS void FAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints,
int threshold, bool nonmaxSuppression, int type );
//! @} features2d_main
//! @addtogroup features2d_main
//! @{
/** @brief Wrapping class for feature detection using the FAST method. :
*/
class CV_EXPORTS_W FastFeatureDetector : public Feature2D
{
public:
@ -261,7 +408,8 @@ public:
CV_WRAP virtual int getType() const = 0;
};
/** @brief Wrapping class for feature detection using the goodFeaturesToTrack function. :
*/
class CV_EXPORTS_W GFTTDetector : public Feature2D
{
public:
@ -286,7 +434,37 @@ public:
CV_WRAP virtual double getK() const = 0;
};
/** @brief Class for extracting blobs from an image. :
The class implements a simple algorithm for extracting blobs from an image:
1. Convert the source image to binary images by applying thresholding with several thresholds from
minThreshold (inclusive) to maxThreshold (exclusive) with distance thresholdStep between
neighboring thresholds.
2. Extract connected components from every binary image by findContours and calculate their
centers.
3. Group centers from several binary images by their coordinates. Close centers form one group that
corresponds to one blob, which is controlled by the minDistBetweenBlobs parameter.
4. From the groups, estimate final centers of blobs and their radiuses and return as locations and
sizes of keypoints.
This class performs several filtrations of returned blobs. You should set filterBy\* to true/false
to turn on/off corresponding filtration. Available filtrations:
- **By color**. This filter compares the intensity of a binary image at the center of a blob to
blobColor. If they differ, the blob is filtered out. Use blobColor = 0 to extract dark blobs
and blobColor = 255 to extract light blobs.
- **By area**. Extracted blobs have an area between minArea (inclusive) and maxArea (exclusive).
- **By circularity**. Extracted blobs have circularity
(\f$\frac{4*\pi*Area}{perimeter * perimeter}\f$) between minCircularity (inclusive) and
maxCircularity (exclusive).
- **By ratio of the minimum inertia to maximum inertia**. Extracted blobs have this ratio
between minInertiaRatio (inclusive) and maxInertiaRatio (exclusive).
- **By convexity**. Extracted blobs have convexity (area / area of blob convex hull) between
minConvexity (inclusive) and maxConvexity (exclusive).
Default values of parameters are tuned to extract dark circular blobs.
*/
class CV_EXPORTS_W SimpleBlobDetector : public Feature2D
{
public:
@ -322,9 +500,16 @@ public:
create(const SimpleBlobDetector::Params &parameters = SimpleBlobDetector::Params());
};
//! @} features2d_main
/*!
KAZE implementation
//! @addtogroup features2d_main
//! @{
/** @brief Class implementing the KAZE keypoint detector and descriptor extractor, described in @cite ABD12 .
@note AKAZE descriptor can only be used with KAZE or AKAZE keypoints .. [ABD12] KAZE Features. Pablo
F. Alcantarilla, Adrien Bartoli and Andrew J. Davison. In European Conference on Computer Vision
(ECCV), Fiorenze, Italy, October 2012.
*/
class CV_EXPORTS_W KAZE : public Feature2D
{
@ -337,6 +522,16 @@ public:
DIFF_CHARBONNIER = 3
};
/** @brief The KAZE constructor
@param extended Set to enable extraction of extended (128-byte) descriptor.
@param upright Set to enable use of upright descriptors (non rotation-invariant).
@param threshold Detector response threshold to accept point
@param nOctaves Maximum octave evolution of the image
@param nOctaveLayers Default number of sublevels per scale level
@param diffusivity Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or
DIFF_CHARBONNIER
*/
CV_WRAP static Ptr<KAZE> create(bool extended=false, bool upright=false,
float threshold = 0.001f,
int nOctaves = 4, int nOctaveLayers = 4,
@ -361,9 +556,13 @@ public:
CV_WRAP virtual int getDiffusivity() const = 0;
};
/*!
AKAZE implementation
*/
/** @brief Class implementing the AKAZE keypoint detector and descriptor extractor, described in @cite ANB13 . :
@note AKAZE descriptors can only be used with KAZE or AKAZE keypoints. Try to avoid using *extract*
and *detect* instead of *operator()* due to performance reasons. .. [ANB13] Fast Explicit Diffusion
for Accelerated Features in Nonlinear Scale Spaces. Pablo F. Alcantarilla, Jesús Nuevo and Adrien
Bartoli. In British Machine Vision Conference (BMVC), Bristol, UK, September 2013.
*/
class CV_EXPORTS_W AKAZE : public Feature2D
{
public:
@ -376,6 +575,18 @@ public:
DESCRIPTOR_MLDB = 5
};
/** @brief The AKAZE constructor
@param descriptor_type Type of the extracted descriptor: DESCRIPTOR_KAZE,
DESCRIPTOR_KAZE_UPRIGHT, DESCRIPTOR_MLDB or DESCRIPTOR_MLDB_UPRIGHT.
@param descriptor_size Size of the descriptor in bits. 0 -\> Full size
@param descriptor_channels Number of channels in the descriptor (1, 2, 3)
@param threshold Detector response threshold to accept point
@param nOctaves Maximum octave evolution of the image
@param nOctaveLayers Default number of sublevels per scale level
@param diffusivity Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or
DIFF_CHARBONNIER
*/
CV_WRAP static Ptr<AKAZE> create(int descriptor_type=AKAZE::DESCRIPTOR_MLDB,
int descriptor_size = 0, int descriptor_channels = 3,
float threshold = 0.001f, int nOctaves = 4,
@ -403,6 +614,8 @@ public:
CV_WRAP virtual int getDiffusivity() const = 0;
};
//! @} features2d_main
/****************************************************************************************\
* Distance *
\****************************************************************************************/
@ -501,76 +714,153 @@ template<int cellsize> struct HammingMultilevel
/****************************************************************************************\
* DescriptorMatcher *
\****************************************************************************************/
/*
* Abstract base class for matching two sets of descriptors.
//! @addtogroup features2d_match
//! @{
/** @brief Abstract base class for matching keypoint descriptors.
It has two groups of match methods: for matching descriptors of an image with another image or with
an image set.
*/
class CV_EXPORTS_W DescriptorMatcher : public Algorithm
{
public:
virtual ~DescriptorMatcher();
/*
* Add descriptors to train descriptor collection.
* descriptors Descriptors to add. Each descriptors[i] is a descriptors set from one image.
/** @brief Adds descriptors to train a CPU(trainDescCollectionis) or GPU(utrainDescCollectionis) descriptor
collection.
If the collection is not empty, the new descriptors are added to existing train descriptors.
@param descriptors Descriptors to add. Each descriptors[i] is a set of descriptors from the same
train image.
*/
CV_WRAP virtual void add( InputArrayOfArrays descriptors );
/*
* Get train descriptors collection.
/** @brief Returns a constant link to the train descriptor collection trainDescCollection .
*/
CV_WRAP const std::vector<Mat>& getTrainDescriptors() const;
/*
* Clear train descriptors collection.
/** @brief Clears the train descriptor collections.
*/
CV_WRAP virtual void clear();
/*
* Return true if there are not train descriptors in collection.
/** @brief Returns true if there are no train descriptors in the both collections.
*/
CV_WRAP virtual bool empty() const;
/*
* Return true if the matcher supports mask in match methods.
/** @brief Returns true if the descriptor matcher supports masking permissible matches.
*/
CV_WRAP virtual bool isMaskSupported() const = 0;
/*
* Train matcher (e.g. train flann index).
* In all methods to match the method train() is run every time before matching.
* Some descriptor matchers (e.g. BruteForceMatcher) have empty implementation
* of this method, other matchers really train their inner structures
* (e.g. FlannBasedMatcher trains flann::Index). So nonempty implementation
* of train() should check the class object state and do traing/retraining
* only if the state requires that (e.g. FlannBasedMatcher trains flann::Index
* if it has not trained yet or if new descriptors have been added to the train
* collection).
/** @brief Trains a descriptor matcher
Trains a descriptor matcher (for example, the flann index). In all methods to match, the method
train() is run every time before matching. Some descriptor matchers (for example, BruteForceMatcher)
have an empty implementation of this method. Other matchers really train their inner structures (for
example, FlannBasedMatcher trains flann::Index ).
*/
CV_WRAP virtual void train();
/*
* Group of methods to match descriptors from image pair.
* Method train() is run in this methods.
/** @brief Finds the best match for each descriptor from a query set.
@param queryDescriptors Query set of descriptors.
@param trainDescriptors Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.
@param matches Matches. If a query descriptor is masked out in mask , no match is added for this
descriptor. So, matches size may be smaller than the query descriptors count.
@param mask Mask specifying permissible matches between an input query and train matrices of
descriptors.
In the first variant of this method, the train descriptors are passed as an input argument. In the
second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is
used. Optional mask (or masks) can be passed to specify which query and training descriptors can be
matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if
mask.at\<uchar\>(i,j) is non-zero.
*/
// Find one best match for each query descriptor (if mask is empty).
CV_WRAP void match( InputArray queryDescriptors, InputArray trainDescriptors,
CV_OUT std::vector<DMatch>& matches, InputArray mask=noArray() ) const;
// Find k best matches for each query descriptor (in increasing order of distances).
// compactResult is used when mask is not empty. If compactResult is false matches
// vector will have the same size as queryDescriptors rows. If compactResult is true
// matches vector will not contain matches for fully masked out query descriptors.
/** @brief Finds the k best matches for each descriptor from a query set.
@param queryDescriptors Query set of descriptors.
@param trainDescriptors Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.
@param mask Mask specifying permissible matches between an input query and train matrices of
descriptors.
@param matches Matches. Each matches[i] is k or less matches for the same query descriptor.
@param k Count of best matches found per each query descriptor or less if a query descriptor has
less than k possible matches in total.
@param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.
These extended variants of DescriptorMatcher::match methods find several best matches for each query
descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::match
for the details about query and train descriptors.
*/
CV_WRAP void knnMatch( InputArray queryDescriptors, InputArray trainDescriptors,
CV_OUT std::vector<std::vector<DMatch> >& matches, int k,
InputArray mask=noArray(), bool compactResult=false ) const;
// Find best matches for each query descriptor which have distance less than
// maxDistance (in increasing order of distances).
/** @brief For each query descriptor, finds the training descriptors not farther than the specified distance.
@param queryDescriptors Query set of descriptors.
@param trainDescriptors Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.
@param matches Found matches.
@param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.
@param maxDistance Threshold for the distance between matched descriptors. Distance means here
metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
in Pixels)!
@param mask Mask specifying permissible matches between an input query and train matrices of
descriptors.
For each query descriptor, the methods find such training descriptors that the distance between the
query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are
returned in the distance increasing order.
*/
void radiusMatch( InputArray queryDescriptors, InputArray trainDescriptors,
std::vector<std::vector<DMatch> >& matches, float maxDistance,
InputArray mask=noArray(), bool compactResult=false ) const;
/*
* Group of methods to match descriptors from one image to image set.
* See description of similar methods for matching image pair above.
*/
/** @overload
@param queryDescriptors Query set of descriptors.
@param matches Matches. If a query descriptor is masked out in mask , no match is added for this
descriptor. So, matches size may be smaller than the query descriptors count.
@param masks Set of masks. Each masks[i] specifies permissible matches between the input query
descriptors and stored train descriptors from the i-th image trainDescCollection[i].
*/
CV_WRAP void match( InputArray queryDescriptors, CV_OUT std::vector<DMatch>& matches,
InputArrayOfArrays masks=noArray() );
/** @overload
@param queryDescriptors Query set of descriptors.
@param matches Matches. Each matches[i] is k or less matches for the same query descriptor.
@param k Count of best matches found per each query descriptor or less if a query descriptor has
less than k possible matches in total.
@param masks Set of masks. Each masks[i] specifies permissible matches between the input query
descriptors and stored train descriptors from the i-th image trainDescCollection[i].
@param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.
*/
CV_WRAP void knnMatch( InputArray queryDescriptors, CV_OUT std::vector<std::vector<DMatch> >& matches, int k,
InputArrayOfArrays masks=noArray(), bool compactResult=false );
/** @overload
@param queryDescriptors Query set of descriptors.
@param matches Found matches.
@param maxDistance Threshold for the distance between matched descriptors. Distance means here
metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
in Pixels)!
@param masks Set of masks. Each masks[i] specifies permissible matches between the input query
descriptors and stored train descriptors from the i-th image trainDescCollection[i].
@param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.
*/
void radiusMatch( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance,
InputArrayOfArrays masks=noArray(), bool compactResult=false );
@ -579,14 +869,28 @@ public:
// Writes matcher object to a file storage
virtual void write( FileStorage& ) const;
// Clone the matcher. If emptyTrainData is false the method create deep copy of the object, i.e. copies
// both parameters and train data. If emptyTrainData is true the method create object copy with current parameters
// but with empty train data.
/** @brief Clones the matcher.
@param emptyTrainData If emptyTrainData is false, the method creates a deep copy of the object,
that is, copies both parameters and train data. If emptyTrainData is true, the method creates an
object copy with the current parameters but with empty train data.
*/
virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const = 0;
/** @brief Creates a descriptor matcher of a given type with the default parameters (using default
constructor).
@param descriptorMatcherType Descriptor matcher type. Now the following matcher types are
supported:
- `BruteForce` (it uses L2 )
- `BruteForce-L1`
- `BruteForce-Hamming`
- `BruteForce-Hamming(2)`
- `FlannBased`
*/
CV_WRAP static Ptr<DescriptorMatcher> create( const String& descriptorMatcherType );
protected:
/*
/**
* Class to work with descriptors from several images as with one merged matrix.
* It is used e.g. in FlannBasedMatcher.
*/
@ -613,9 +917,9 @@ protected:
std::vector<int> startIdxs;
};
// In fact the matching is implemented only by the following two methods. These methods suppose
// that the class object has been trained already. Public match methods call these methods
// after calling train().
//! In fact the matching is implemented only by the following two methods. These methods suppose
//! that the class object has been trained already. Public match methods call these methods
//! after calling train().
virtual void knnMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k,
InputArrayOfArrays masks=noArray(), bool compactResult=false ) = 0;
virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance,
@ -627,23 +931,33 @@ protected:
static Mat clone_op( Mat m ) { return m.clone(); }
void checkMasks( InputArrayOfArrays masks, int queryDescriptorsCount ) const;
// Collection of descriptors from train images.
//! Collection of descriptors from train images.
std::vector<Mat> trainDescCollection;
std::vector<UMat> utrainDescCollection;
};
/*
* Brute-force descriptor matcher.
*
* For each descriptor in the first set, this matcher finds the closest
* descriptor in the second set by trying each one.
*
* For efficiency, BruteForceMatcher is templated on the distance metric.
* For float descriptors, a common choice would be cv::L2<float>.
/** @brief Brute-force descriptor matcher.
For each descriptor in the first set, this matcher finds the closest descriptor in the second set
by trying each one. This descriptor matcher supports masking permissible matches of descriptor
sets.
*/
class CV_EXPORTS_W BFMatcher : public DescriptorMatcher
{
public:
/** @brief Brute-force matcher constructor.
@param normType One of NORM_L1, NORM_L2, NORM_HAMMING, NORM_HAMMING2. L1 and L2 norms are
preferable choices for SIFT and SURF descriptors, NORM_HAMMING should be used with ORB, BRISK and
BRIEF, NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4 (see ORB::ORB constructor
description).
@param crossCheck If it is false, this is will be default BFMatcher behaviour when it finds the k
nearest neighbors for each query descriptor. If crossCheck==true, then the knnMatch() method with
k=1 will only return pairs (i,j) such that for i-th query descriptor the j-th descriptor in the
matcher's collection is the nearest and vice versa, i.e. the BFMatcher will only return consistent
pairs. Such technique usually produces best results with minimal number of outliers when there are
enough matches. This is alternative to the ratio test, used by D. Lowe in SIFT paper.
*/
CV_WRAP BFMatcher( int normType=NORM_L2, bool crossCheck=false );
virtual ~BFMatcher() {}
@ -661,8 +975,12 @@ protected:
};
/*
* Flann based matcher
/** @brief Flann-based descriptor matcher.
This matcher trains flann::Index_ on a train descriptor collection and calls its nearest search
methods to find the best matches. So, this matcher may be faster when matching a large train
collection than the brute force matcher. FlannBasedMatcher does not support masking permissible
matches of descriptor sets because flann::Index does not support this. :
*/
class CV_EXPORTS_W FlannBasedMatcher : public DescriptorMatcher
{
@ -700,42 +1018,85 @@ protected:
int addedDescCount;
};
//! @} features2d_match
/****************************************************************************************\
* Drawing functions *
\****************************************************************************************/
//! @addtogroup features2d_draw
//! @{
struct CV_EXPORTS DrawMatchesFlags
{
enum{ DEFAULT = 0, // Output image matrix will be created (Mat::create),
// i.e. existing memory of output image may be reused.
// Two source image, matches and single keypoints will be drawn.
// For each keypoint only the center point will be drawn (without
// the circle around keypoint with keypoint size and orientation).
DRAW_OVER_OUTIMG = 1, // Output image matrix will not be created (Mat::create).
// Matches will be drawn on existing content of output image.
NOT_DRAW_SINGLE_POINTS = 2, // Single keypoints will not be drawn.
DRAW_RICH_KEYPOINTS = 4 // For each keypoint the circle around keypoint with keypoint size and
// orientation will be drawn.
enum{ DEFAULT = 0, //!< Output image matrix will be created (Mat::create),
//!< i.e. existing memory of output image may be reused.
//!< Two source image, matches and single keypoints will be drawn.
//!< For each keypoint only the center point will be drawn (without
//!< the circle around keypoint with keypoint size and orientation).
DRAW_OVER_OUTIMG = 1, //!< Output image matrix will not be created (Mat::create).
//!< Matches will be drawn on existing content of output image.
NOT_DRAW_SINGLE_POINTS = 2, //!< Single keypoints will not be drawn.
DRAW_RICH_KEYPOINTS = 4 //!< For each keypoint the circle around keypoint with keypoint size and
//!< orientation will be drawn.
};
};
// Draw keypoints.
/** @brief Draws keypoints.
@param image Source image.
@param keypoints Keypoints from the source image.
@param outImage Output image. Its content depends on the flags value defining what is drawn in the
output image. See possible flags bit values below.
@param color Color of keypoints.
@param flags Flags setting drawing features. Possible flags bit values are defined by
DrawMatchesFlags. See details above in drawMatches .
@note
For Python API, flags are modified as cv2.DRAW_MATCHES_FLAGS_DEFAULT,
cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS, cv2.DRAW_MATCHES_FLAGS_DRAW_OVER_OUTIMG,
cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS
*/
CV_EXPORTS_W void drawKeypoints( InputArray image, const std::vector<KeyPoint>& keypoints, InputOutputArray outImage,
const Scalar& color=Scalar::all(-1), int flags=DrawMatchesFlags::DEFAULT );
// Draws matches of keypints from two images on output image.
/** @brief Draws the found matches of keypoints from two images.
@param img1 First source image.
@param keypoints1 Keypoints from the first source image.
@param img2 Second source image.
@param keypoints2 Keypoints from the second source image.
@param matches1to2 Matches from the first image to the second one, which means that keypoints1[i]
has a corresponding point in keypoints2[matches[i]] .
@param outImg Output image. Its content depends on the flags value defining what is drawn in the
output image. See possible flags bit values below.
@param matchColor Color of matches (lines and connected keypoints). If matchColor==Scalar::all(-1)
, the color is generated randomly.
@param singlePointColor Color of single keypoints (circles), which means that keypoints do not
have the matches. If singlePointColor==Scalar::all(-1) , the color is generated randomly.
@param matchesMask Mask determining which matches are drawn. If the mask is empty, all matches are
drawn.
@param flags Flags setting drawing features. Possible flags bit values are defined by
DrawMatchesFlags.
This function draws matches of keypoints from two images in the output image. Match is a line
connecting two keypoints (circles). See cv::DrawMatchesFlags.
*/
CV_EXPORTS_W void drawMatches( InputArray img1, const std::vector<KeyPoint>& keypoints1,
InputArray img2, const std::vector<KeyPoint>& keypoints2,
const std::vector<DMatch>& matches1to2, InputOutputArray outImg,
const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
const std::vector<char>& matchesMask=std::vector<char>(), int flags=DrawMatchesFlags::DEFAULT );
/** @overload */
CV_EXPORTS_AS(drawMatchesKnn) void drawMatches( InputArray img1, const std::vector<KeyPoint>& keypoints1,
InputArray img2, const std::vector<KeyPoint>& keypoints2,
const std::vector<std::vector<DMatch> >& matches1to2, InputOutputArray outImg,
const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
const std::vector<std::vector<char> >& matchesMask=std::vector<std::vector<char> >(), int flags=DrawMatchesFlags::DEFAULT );
//! @} features2d_draw
/****************************************************************************************\
* Functions to evaluate the feature detectors and [generic] descriptor extractors *
\****************************************************************************************/
@ -755,8 +1116,14 @@ CV_EXPORTS int getNearestPoint( const std::vector<Point2f>& recallPrecisionCurve
/****************************************************************************************\
* Bag of visual words *
\****************************************************************************************/
/*
* Abstract base class for training of a 'bag of visual words' vocabulary from a set of descriptors
//! @addtogroup features2d_category
//! @{
/** @brief Abstract base class for training the *bag of visual words* vocabulary from a set of descriptors.
For details, see, for example, *Visual Categorization with Bags of Keypoints* by Gabriella Csurka,
Christopher R. Dance, Lixin Fan, Jutta Willamowski, Cedric Bray, 2004. :
*/
class CV_EXPORTS_W BOWTrainer
{
@ -764,20 +1131,37 @@ public:
BOWTrainer();
virtual ~BOWTrainer();
/** @brief Adds descriptors to a training set.
@param descriptors Descriptors to add to a training set. Each row of the descriptors matrix is a
descriptor.
The training set is clustered using clustermethod to construct the vocabulary.
*/
CV_WRAP void add( const Mat& descriptors );
/** @brief Returns a training set of descriptors.
*/
CV_WRAP const std::vector<Mat>& getDescriptors() const;
/** @brief Returns the count of all descriptors stored in the training set.
*/
CV_WRAP int descriptorsCount() const;
CV_WRAP virtual void clear();
/*
* Train visual words vocabulary, that is cluster training descriptors and
* compute cluster centers.
* Returns cluster centers.
*
* descriptors Training descriptors computed on images keypoints.
*/
/** @overload */
CV_WRAP virtual Mat cluster() const = 0;
/** @brief Clusters train descriptors.
@param descriptors Descriptors to cluster. Each row of the descriptors matrix is a descriptor.
Descriptors are not added to the inner train descriptor set.
The vocabulary consists of cluster centers. So, this method returns the vocabulary. In the first
variant of the method, train descriptors stored in the object are clustered. In the second variant,
input descriptors are clustered.
*/
CV_WRAP virtual Mat cluster( const Mat& descriptors ) const = 0;
protected:
@ -785,12 +1169,15 @@ protected:
int size;
};
/*
* This is BOWTrainer using cv::kmeans to get vocabulary.
/** @brief kmeans -based class to train visual vocabulary using the *bag of visual words* approach. :
*/
class CV_EXPORTS_W BOWKMeansTrainer : public BOWTrainer
{
public:
/** @brief The constructor.
@see cv::kmeans
*/
CV_WRAP BOWKMeansTrainer( int clusterCount, const TermCriteria& termcrit=TermCriteria(),
int attempts=3, int flags=KMEANS_PP_CENTERS );
virtual ~BOWKMeansTrainer();
@ -807,21 +1194,62 @@ protected:
int flags;
};
/*
* Class to compute image descriptor using bag of visual words.
/** @brief Class to compute an image descriptor using the *bag of visual words*.
Such a computation consists of the following steps:
1. Compute descriptors for a given image and its keypoints set.
2. Find the nearest visual words from the vocabulary for each keypoint descriptor.
3. Compute the bag-of-words image descriptor as is a normalized histogram of vocabulary words
encountered in the image. The i-th bin of the histogram is a frequency of i-th word of the
vocabulary in the given image.
*/
class CV_EXPORTS_W BOWImgDescriptorExtractor
{
public:
/** @brief The constructor.
@param dextractor Descriptor extractor that is used to compute descriptors for an input image and
its keypoints.
@param dmatcher Descriptor matcher that is used to find the nearest word of the trained vocabulary
for each keypoint descriptor of the image.
*/
CV_WRAP BOWImgDescriptorExtractor( const Ptr<DescriptorExtractor>& dextractor,
const Ptr<DescriptorMatcher>& dmatcher );
/** @overload */
BOWImgDescriptorExtractor( const Ptr<DescriptorMatcher>& dmatcher );
virtual ~BOWImgDescriptorExtractor();
/** @brief Sets a visual vocabulary.
@param vocabulary Vocabulary (can be trained using the inheritor of BOWTrainer ). Each row of the
vocabulary is a visual word (cluster center).
*/
CV_WRAP void setVocabulary( const Mat& vocabulary );
/** @brief Returns the set vocabulary.
*/
CV_WRAP const Mat& getVocabulary() const;
/** @brief Computes an image descriptor using the set visual vocabulary.
@param image Image, for which the descriptor is computed.
@param keypoints Keypoints detected in the input image.
@param imgDescriptor Computed output image descriptor.
@param pointIdxsOfClusters Indices of keypoints that belong to the cluster. This means that
pointIdxsOfClusters[i] are keypoint indices that belong to the i -th cluster (word of vocabulary)
returned if it is non-zero.
@param descriptors Descriptors of the image keypoints that are returned if they are non-zero.
*/
void compute( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray imgDescriptor,
std::vector<std::vector<int> >* pointIdxsOfClusters=0, Mat* descriptors=0 );
/** @overload
@param keypointDescriptors Computed descriptors to match with vocabulary.
@param imgDescriptor Computed output image descriptor.
@param pointIdxsOfClusters Indices of keypoints that belong to the cluster. This means that
pointIdxsOfClusters[i] are keypoint indices that belong to the i -th cluster (word of vocabulary)
returned if it is non-zero.
*/
void compute( InputArray keypointDescriptors, OutputArray imgDescriptor,
std::vector<std::vector<int> >* pointIdxsOfClusters=0 );
// compute() is not constant because DescriptorMatcher::match is not constant
@ -829,7 +1257,12 @@ public:
CV_WRAP_AS(compute) void compute2( const Mat& image, std::vector<KeyPoint>& keypoints, CV_OUT Mat& imgDescriptor )
{ compute(image,keypoints,imgDescriptor); }
/** @brief Returns an image descriptor size if the vocabulary is set. Otherwise, it returns 0.
*/
CV_WRAP int descriptorSize() const;
/** @brief Returns an image descriptor type.
*/
CV_WRAP int descriptorType() const;
protected:
@ -838,6 +1271,10 @@ protected:
Ptr<DescriptorMatcher> dmatcher;
};
//! @} features2d_category
//! @} features2d
} /* namespace cv */
#endif

View File

@ -210,6 +210,8 @@ __kernel void BruteForceMatch_Match(
}
#else
__local value_type *s_train = (__local value_type *)sharebuffer + BLOCK_SIZE_ODD * BLOCK_SIZE;
const int s_query_i = mad24(BLOCK_SIZE_ODD, lidy, lidx);
const int s_train_i = mad24(BLOCK_SIZE_ODD, lidx, lidy);
#endif
float myBestDistance = MAX_FLOAT;
@ -242,13 +244,15 @@ __kernel void BruteForceMatch_Match(
{
const int loadx = mad24(i, BLOCK_SIZE, lidx);
//load query and train into local memory
s_query[mad24(BLOCK_SIZE_ODD, lidy, lidx)] = 0;
s_train[mad24(BLOCK_SIZE_ODD, lidx, lidy)] = 0;
if (loadx < query_cols)
{
s_query[mad24(BLOCK_SIZE_ODD, lidy, lidx)] = query_vec[loadx];
s_train[mad24(BLOCK_SIZE_ODD, lidx, lidy)] = train_vec[loadx];
s_query[s_query_i] = query_vec[loadx];
s_train[s_train_i] = train_vec[loadx];
}
else
{
s_query[s_query_i] = 0;
s_train[s_train_i] = 0;
}
barrier(CLK_LOCAL_MEM_FENCE);
@ -337,18 +341,22 @@ __kernel void BruteForceMatch_RadiusMatch(
__local value_type *s_train = (__local value_type *)sharebuffer + BLOCK_SIZE_ODD * BLOCK_SIZE;
result_type result = 0;
const int s_query_i = mad24(BLOCK_SIZE_ODD, lidy, lidx);
const int s_train_i = mad24(BLOCK_SIZE_ODD, lidx, lidy);
for (int i = 0 ; i < (query_cols + BLOCK_SIZE - 1) / BLOCK_SIZE ; ++i)
{
//load a BLOCK_SIZE * BLOCK_SIZE block into local train.
const int loadx = mad24(BLOCK_SIZE, i, lidx);
s_query[mad24(BLOCK_SIZE_ODD, lidy, lidx)] = 0;
s_train[mad24(BLOCK_SIZE_ODD, lidx, lidy)] = 0;
if (loadx < query_cols)
{
s_query[mad24(BLOCK_SIZE_ODD, lidy, lidx)] = query_vec[loadx];
s_train[mad24(BLOCK_SIZE_ODD, lidx, lidy)] = train_vec[loadx];
s_query[s_query_i] = query_vec[loadx];
s_train[s_train_i] = train_vec[loadx];
}
else
{
s_query[s_query_i] = 0;
s_train[s_train_i] = 0;
}
//synchronize to make sure each elem for reduceIteration in share memory is written already.
@ -405,6 +413,8 @@ __kernel void BruteForceMatch_knnMatch(
}
#else
__local value_type *s_train = (__local value_type *)sharebuffer + BLOCK_SIZE_ODD * BLOCK_SIZE;
const int s_query_i = mad24(BLOCK_SIZE_ODD, lidy, lidx);
const int s_train_i = mad24(BLOCK_SIZE_ODD, lidx, lidy);
#endif
float myBestDistance1 = MAX_FLOAT;
@ -438,13 +448,15 @@ __kernel void BruteForceMatch_knnMatch(
{
const int loadx = mad24(BLOCK_SIZE, i, lidx);
//load query and train into local memory
s_query[mad24(BLOCK_SIZE_ODD, lidy, lidx)] = 0;
s_train[mad24(BLOCK_SIZE_ODD, lidx, lidy)] = 0;
if (loadx < query_cols)
{
s_query[mad24(BLOCK_SIZE_ODD, lidy, lidx)] = query_vec[loadx];
s_train[mad24(BLOCK_SIZE_ODD, lidx, lidy)] = train_vec[loadx];
s_query[s_query_i] = query_vec[loadx];
s_train[s_train_i] = train_vec[loadx];
}
else
{
s_query[s_query_i] = 0;
s_train[s_train_i] = 0;
}
barrier(CLK_LOCAL_MEM_FENCE);

View File

@ -148,8 +148,8 @@ ORB_computeDescriptor(__global const uchar* imgbuf, int imgstep, int imgoffset0,
float angle = as_float(kpt[KEYPOINT_ANGLE]);
angle *= 0.01745329251994329547f;
float sina = sin(angle);
float cosa = cos(angle);
float cosa;
float sina = sincos(angle, &cosa);
__global uchar* desc = _desc + idx*dsize;

View File

@ -47,6 +47,15 @@
#include "opencv2/flann/miniflann.hpp"
#include "opencv2/flann/flann_base.hpp"
/**
@defgroup flann Clustering and Search in Multi-Dimensional Spaces
This section documents OpenCV's interface to the FLANN library. FLANN (Fast Library for Approximate
Nearest Neighbors) is a library that contains a collection of algorithms optimized for fast nearest
neighbor search in large datasets and for high dimensional features. More information about FLANN
can be found in @cite Muja2009 .
*/
namespace cvflann
{
CV_EXPORTS flann_distance_t flann_distance_type();
@ -59,6 +68,10 @@ namespace cv
namespace flann
{
//! @addtogroup flann
//! @{
template <typename T> struct CvType {};
template <> struct CvType<unsigned char> { static int type() { return CV_8U; } };
template <> struct CvType<char> { static int type() { return CV_8S; } };
@ -88,7 +101,9 @@ using ::cvflann::ChiSquareDistance;
using ::cvflann::KL_Divergence;
/** @brief The FLANN nearest neighbor index class. This class is templated with the type of elements for which
the index is built.
*/
template <typename Distance>
class GenericIndex
{
@ -96,10 +111,108 @@ public:
typedef typename Distance::ElementType ElementType;
typedef typename Distance::ResultType DistanceType;
/** @brief Constructs a nearest neighbor search index for a given dataset.
@param features Matrix of containing the features(points) to index. The size of the matrix is
num_features x feature_dimensionality and the data type of the elements in the matrix must
coincide with the type of the index.
@param params Structure containing the index parameters. The type of index that will be
constructed depends on the type of this parameter. See the description.
@param distance
The method constructs a fast search structure from a set of features using the specified algorithm
with specified parameters, as defined by params. params is a reference to one of the following class
IndexParams descendants:
- **LinearIndexParams** When passing an object of this type, the index will perform a linear,
brute-force search. :
@code
struct LinearIndexParams : public IndexParams
{
};
@endcode
- **KDTreeIndexParams** When passing an object of this type the index constructed will consist of
a set of randomized kd-trees which will be searched in parallel. :
@code
struct KDTreeIndexParams : public IndexParams
{
KDTreeIndexParams( int trees = 4 );
};
@endcode
- **KMeansIndexParams** When passing an object of this type the index constructed will be a
hierarchical k-means tree. :
@code
struct KMeansIndexParams : public IndexParams
{
KMeansIndexParams(
int branching = 32,
int iterations = 11,
flann_centers_init_t centers_init = CENTERS_RANDOM,
float cb_index = 0.2 );
};
@endcode
- **CompositeIndexParams** When using a parameters object of this type the index created
combines the randomized kd-trees and the hierarchical k-means tree. :
@code
struct CompositeIndexParams : public IndexParams
{
CompositeIndexParams(
int trees = 4,
int branching = 32,
int iterations = 11,
flann_centers_init_t centers_init = CENTERS_RANDOM,
float cb_index = 0.2 );
};
@endcode
- **LshIndexParams** When using a parameters object of this type the index created uses
multi-probe LSH (by Multi-Probe LSH: Efficient Indexing for High-Dimensional Similarity Search
by Qin Lv, William Josephson, Zhe Wang, Moses Charikar, Kai Li., Proceedings of the 33rd
International Conference on Very Large Data Bases (VLDB). Vienna, Austria. September 2007) :
@code
struct LshIndexParams : public IndexParams
{
LshIndexParams(
unsigned int table_number,
unsigned int key_size,
unsigned int multi_probe_level );
};
@endcode
- **AutotunedIndexParams** When passing an object of this type the index created is
automatically tuned to offer the best performance, by choosing the optimal index type
(randomized kd-trees, hierarchical kmeans, linear) and parameters for the dataset provided. :
@code
struct AutotunedIndexParams : public IndexParams
{
AutotunedIndexParams(
float target_precision = 0.9,
float build_weight = 0.01,
float memory_weight = 0,
float sample_fraction = 0.1 );
};
@endcode
- **SavedIndexParams** This object type is used for loading a previously saved index from the
disk. :
@code
struct SavedIndexParams : public IndexParams
{
SavedIndexParams( String filename );
};
@endcode
*/
GenericIndex(const Mat& features, const ::cvflann::IndexParams& params, Distance distance = Distance());
~GenericIndex();
/** @brief Performs a K-nearest neighbor search for a given query point using the index.
@param query The query point
@param indices Vector that will contain the indices of the K-nearest neighbors found. It must have
at least knn size.
@param dists Vector that will contain the distances to the K-nearest neighbors found. It must have
at least knn size.
@param knn Number of nearest neighbors to search for.
@param params SearchParams
*/
void knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices,
std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& params);
void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& params);
@ -123,6 +236,7 @@ private:
::cvflann::Index<Distance>* nnIndex;
};
//! @cond IGNORED
#define FLANN_DISTANCE_CHECK \
if ( ::cvflann::flann_distance_type() != cvflann::FLANN_DIST_L2) { \
@ -218,6 +332,8 @@ int GenericIndex<Distance>::radiusSearch(const Mat& query, Mat& indices, Mat& di
return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
}
//! @endcond
/**
* @deprecated Use GenericIndex class instead
*/
@ -283,6 +399,8 @@ template <typename T>
class FLANN_DEPRECATED Index_;
#endif
//! @cond IGNORED
template <typename T>
Index_<T>::Index_(const Mat& dataset, const ::cvflann::IndexParams& params)
{
@ -377,7 +495,25 @@ int Index_<T>::radiusSearch(const Mat& query, Mat& indices, Mat& dists, Distance
if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
}
//! @endcond
/** @brief Clusters features using hierarchical k-means algorithm.
@param features The points to be clustered. The matrix must have elements of type
Distance::ElementType.
@param centers The centers of the clusters obtained. The matrix must have type
Distance::ResultType. The number of rows in this matrix represents the number of clusters desired,
however, because of the way the cut in the hierarchical tree is chosen, the number of clusters
computed will be the highest number of the form (branching-1)\*k+1 that's lower than the number of
clusters desired, where branching is the tree's branching factor (see description of the
KMeansIndexParams).
@param params Parameters used in the construction of the hierarchical k-means tree.
@param d Distance to be used for clustering.
The method clusters the given feature vectors by constructing a hierarchical k-means tree and
choosing a cut in the tree that minimizes the cluster's variance. It returns the number of clusters
found.
*/
template <typename Distance>
int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params,
Distance d = Distance())
@ -396,7 +532,8 @@ int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::K
return ::cvflann::hierarchicalClustering<Distance>(m_features, m_centers, params, d);
}
/** @deprecated
*/
template <typename ELEM_TYPE, typename DIST_TYPE>
FLANN_DEPRECATED int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params)
{
@ -417,6 +554,8 @@ FLANN_DEPRECATED int hierarchicalClustering(const Mat& features, Mat& centers, c
}
}
//! @} flann
} } // namespace cv::flann
#endif

View File

@ -271,6 +271,71 @@ public:
return FLANN_INDEX_KMEANS;
}
class KMeansDistanceComputer : public cv::ParallelLoopBody
{
public:
KMeansDistanceComputer(Distance _distance, const Matrix<ElementType>& _dataset,
const int _branching, const int* _indices, const Matrix<double>& _dcenters, const size_t _veclen,
int* _count, int* _belongs_to, std::vector<DistanceType>& _radiuses, bool& _converged, cv::Mutex& _mtx)
: distance(_distance)
, dataset(_dataset)
, branching(_branching)
, indices(_indices)
, dcenters(_dcenters)
, veclen(_veclen)
, count(_count)
, belongs_to(_belongs_to)
, radiuses(_radiuses)
, converged(_converged)
, mtx(_mtx)
{
}
void operator()(const cv::Range& range) const
{
const int begin = range.start;
const int end = range.end;
for( int i = begin; i<end; ++i)
{
DistanceType sq_dist = distance(dataset[indices[i]], dcenters[0], veclen);
int new_centroid = 0;
for (int j=1; j<branching; ++j) {
DistanceType new_sq_dist = distance(dataset[indices[i]], dcenters[j], veclen);
if (sq_dist>new_sq_dist) {
new_centroid = j;
sq_dist = new_sq_dist;
}
}
if (sq_dist > radiuses[new_centroid]) {
radiuses[new_centroid] = sq_dist;
}
if (new_centroid != belongs_to[i]) {
count[belongs_to[i]]--;
count[new_centroid]++;
belongs_to[i] = new_centroid;
mtx.lock();
converged = false;
mtx.unlock();
}
}
}
private:
Distance distance;
const Matrix<ElementType>& dataset;
const int branching;
const int* indices;
const Matrix<double>& dcenters;
const size_t veclen;
int* count;
int* belongs_to;
std::vector<DistanceType>& radiuses;
bool& converged;
cv::Mutex& mtx;
KMeansDistanceComputer& operator=( const KMeansDistanceComputer & ) { return *this; }
};
/**
* Index constructor
*
@ -658,7 +723,8 @@ private:
return;
}
int* centers_idx = new int[branching];
cv::AutoBuffer<int> centers_idx_buf(branching);
int* centers_idx = (int*)centers_idx_buf;
int centers_length;
(this->*chooseCenters)(branching, indices, indices_length, centers_idx, centers_length);
@ -666,29 +732,30 @@ private:
node->indices = indices;
std::sort(node->indices,node->indices+indices_length);
node->childs = NULL;
delete [] centers_idx;
return;
}
Matrix<double> dcenters(new double[branching*veclen_],branching,veclen_);
cv::AutoBuffer<double> dcenters_buf(branching*veclen_);
Matrix<double> dcenters((double*)dcenters_buf,branching,veclen_);
for (int i=0; i<centers_length; ++i) {
ElementType* vec = dataset_[centers_idx[i]];
for (size_t k=0; k<veclen_; ++k) {
dcenters[i][k] = double(vec[k]);
}
}
delete[] centers_idx;
std::vector<DistanceType> radiuses(branching);
int* count = new int[branching];
cv::AutoBuffer<int> count_buf(branching);
int* count = (int*)count_buf;
for (int i=0; i<branching; ++i) {
radiuses[i] = 0;
count[i] = 0;
}
// assign points to clusters
int* belongs_to = new int[indices_length];
cv::AutoBuffer<int> belongs_to_buf(indices_length);
int* belongs_to = (int*)belongs_to_buf;
for (int i=0; i<indices_length; ++i) {
DistanceType sq_dist = distance_(dataset_[indices[i]], dcenters[0], veclen_);
@ -732,27 +799,9 @@ private:
}
// reassign points to clusters
for (int i=0; i<indices_length; ++i) {
DistanceType sq_dist = distance_(dataset_[indices[i]], dcenters[0], veclen_);
int new_centroid = 0;
for (int j=1; j<branching; ++j) {
DistanceType new_sq_dist = distance_(dataset_[indices[i]], dcenters[j], veclen_);
if (sq_dist>new_sq_dist) {
new_centroid = j;
sq_dist = new_sq_dist;
}
}
if (sq_dist>radiuses[new_centroid]) {
radiuses[new_centroid] = sq_dist;
}
if (new_centroid != belongs_to[i]) {
count[belongs_to[i]]--;
count[new_centroid]++;
belongs_to[i] = new_centroid;
converged = false;
}
}
cv::Mutex mtx;
KMeansDistanceComputer invoker(distance_, dataset_, branching, indices, dcenters, veclen_, count, belongs_to, radiuses, converged, mtx);
parallel_for_(cv::Range(0, (int)indices_length), invoker);
for (int i=0; i<branching; ++i) {
// if one cluster converges to an empty cluster,
@ -823,11 +872,6 @@ private:
computeClustering(node->childs[c],indices+start, end-start, branching, level+1);
start=end;
}
delete[] dcenters.data;
delete[] centers;
delete[] count;
delete[] belongs_to;
}

Some files were not shown because too many files have changed in this diff Show More