Merge branch 'master' into cuda-dev
This commit is contained in:
@@ -459,7 +459,7 @@ if(BUILD_EXAMPLES OR BUILD_ANDROID_EXAMPLES OR INSTALL_PYTHON_EXAMPLES)
|
||||
add_subdirectory(samples)
|
||||
endif()
|
||||
|
||||
if(BUILD_ANDROID_SERVICE)
|
||||
if(ANDROID)
|
||||
add_subdirectory(android/service)
|
||||
endif()
|
||||
|
||||
|
@@ -280,6 +280,9 @@
|
||||
# - November 2012
|
||||
# [+] updated for NDK r8c
|
||||
# [+] added support for clang compiler
|
||||
# - December 2012
|
||||
# [~] fixed ccache full path search
|
||||
# [+] updated for NDK r8d
|
||||
# ------------------------------------------------------------------------------
|
||||
|
||||
cmake_minimum_required( VERSION 2.6.3 )
|
||||
@@ -302,7 +305,7 @@ set( CMAKE_SYSTEM_VERSION 1 )
|
||||
# rpath makes low sence for Android
|
||||
set( CMAKE_SKIP_RPATH TRUE CACHE BOOL "If set, runtime paths are not added when using shared libraries." )
|
||||
|
||||
set( ANDROID_SUPPORTED_NDK_VERSIONS ${ANDROID_EXTRA_NDK_VERSIONS} -r8c -r8b -r8 -r7c -r7b -r7 -r6b -r6 -r5c -r5b -r5 "" )
|
||||
set( ANDROID_SUPPORTED_NDK_VERSIONS ${ANDROID_EXTRA_NDK_VERSIONS} -r8d -r8c -r8b -r8 -r7c -r7b -r7 -r6b -r6 -r5c -r5b -r5 "" )
|
||||
if(NOT DEFINED ANDROID_NDK_SEARCH_PATHS)
|
||||
if( CMAKE_HOST_WIN32 )
|
||||
file( TO_CMAKE_PATH "$ENV{PROGRAMFILES}" ANDROID_NDK_SEARCH_PATHS )
|
||||
@@ -962,7 +965,11 @@ if( BUILD_WITH_ANDROID_NDK )
|
||||
set( ANDROID_STL_INCLUDE_DIRS "${ANDROID_NDK}/sources/cxx-stl/gabi++/include" )
|
||||
set( __libstl "${ANDROID_NDK}/sources/cxx-stl/gabi++/libs/${ANDROID_NDK_ABI_NAME}/libgabi++_static.a" )
|
||||
elseif( ANDROID_STL MATCHES "stlport" )
|
||||
if( NOT ANDROID_NDK_RELEASE STRLESS "r8d" )
|
||||
set( ANDROID_EXCEPTIONS ON )
|
||||
else()
|
||||
set( ANDROID_EXCEPTIONS OFF )
|
||||
endif()
|
||||
if( ANDROID_NDK_RELEASE STRLESS "r7" )
|
||||
set( ANDROID_RTTI OFF )
|
||||
else()
|
||||
@@ -974,7 +981,13 @@ if( BUILD_WITH_ANDROID_NDK )
|
||||
set( ANDROID_EXCEPTIONS ON )
|
||||
set( ANDROID_RTTI ON )
|
||||
if( EXISTS "${ANDROID_NDK}/sources/cxx-stl/gnu-libstdc++/${ANDROID_COMPILER_VERSION}" )
|
||||
if( ARMEABI_V7A AND ANDROID_COMPILER_VERSION VERSION_EQUAL "4.7" AND ANDROID_NDK_RELEASE STREQUAL "r8d" )
|
||||
# gnustl binary for 4.7 compiler is buggy :(
|
||||
# TODO: look for right fix
|
||||
set( __libstl "${ANDROID_NDK}/sources/cxx-stl/gnu-libstdc++/4.6" )
|
||||
else()
|
||||
set( __libstl "${ANDROID_NDK}/sources/cxx-stl/gnu-libstdc++/${ANDROID_COMPILER_VERSION}" )
|
||||
endif()
|
||||
else()
|
||||
set( __libstl "${ANDROID_NDK}/sources/cxx-stl/gnu-libstdc++" )
|
||||
endif()
|
||||
@@ -1031,6 +1044,9 @@ endif()
|
||||
# ccache support
|
||||
__INIT_VARIABLE( _ndk_ccache NDK_CCACHE ENV_NDK_CCACHE )
|
||||
if( _ndk_ccache )
|
||||
if( DEFINED NDK_CCACHE AND NOT EXISTS NDK_CCACHE )
|
||||
unset( NDK_CCACHE CACHE )
|
||||
endif()
|
||||
find_program( NDK_CCACHE "${_ndk_ccache}" DOC "The path to ccache binary")
|
||||
else()
|
||||
unset( NDK_CCACHE CACHE )
|
||||
@@ -1260,7 +1276,7 @@ endif()
|
||||
if( ANDROID_COMPILER_VERSION VERSION_EQUAL "4.6" )
|
||||
if( ANDROID_GOLD_LINKER AND (CMAKE_HOST_UNIX OR ANDROID_NDK_RELEASE STRGREATER "r8b") AND (ARMEABI OR ARMEABI_V7A OR X86) )
|
||||
set( ANDROID_LINKER_FLAGS "${ANDROID_LINKER_FLAGS} -fuse-ld=gold" )
|
||||
elseif( ANDROID_NDK_RELEASE STREQUAL "r8c")
|
||||
elseif( ANDROID_NDK_RELEASE STRGREATER "r8b")
|
||||
set( ANDROID_LINKER_FLAGS "${ANDROID_LINKER_FLAGS} -fuse-ld=bfd" )
|
||||
elseif( ANDROID_NDK_RELEASE STREQUAL "r8b" AND ARMEABI AND NOT _CMAKE_IN_TRY_COMPILE )
|
||||
message( WARNING "The default bfd linker from arm GCC 4.6 toolchain can fail with 'unresolvable R_ARM_THM_CALL relocation' error message. See https://code.google.com/p/android/issues/detail?id=35342
|
||||
@@ -1520,7 +1536,7 @@ endif()
|
||||
# BUILD_WITH_STANDALONE_TOOLCHAIN : TRUE if standalone toolchain is used
|
||||
# ANDROID_NDK_HOST_SYSTEM_NAME : "windows", "linux-x86" or "darwin-x86" depending on host platform
|
||||
# ANDROID_NDK_ABI_NAME : "armeabi", "armeabi-v7a", "x86" or "mips" depending on ANDROID_ABI
|
||||
# ANDROID_NDK_RELEASE : one of r5, r5b, r5c, r6, r6b, r7, r7b, r7c, r8, r8b, r8c; set only for NDK
|
||||
# ANDROID_NDK_RELEASE : one of r5, r5b, r5c, r6, r6b, r7, r7b, r7c, r8, r8b, r8c, r8d; set only for NDK
|
||||
# ANDROID_ARCH_NAME : "arm" or "x86" or "mips" depending on ANDROID_ABI
|
||||
# ANDROID_SYSROOT : path to the compiler sysroot
|
||||
# TOOL_OS_SUFFIX : "" or ".exe" depending on host platform
|
||||
|
@@ -1,2 +1,6 @@
|
||||
if(BUILD_ANDROID_SERVICE)
|
||||
add_subdirectory(engine)
|
||||
#add_subdirectory(engine_test)
|
||||
endif()
|
||||
|
||||
install(FILES "readme.txt" DESTINATION "apk/" COMPONENT main)
|
||||
|
@@ -1,22 +0,0 @@
|
||||
***************
|
||||
Package Content
|
||||
***************
|
||||
|
||||
The package provides new OpenCV SDK that uses OpenCV Manager for library initialization. OpenCV Manager provides the following benefits:
|
||||
|
||||
* Less memory usage. All apps use the same binaries from service and do not keep native libs inside them self;
|
||||
* Hardware specific optimizations for all supported platforms;
|
||||
* Trusted OpenCV library source. All packages with OpenCV are published on Google Play service;
|
||||
* Regular updates and bug fixes;
|
||||
|
||||
Package consists from Library Project for Java development with Eclipse, C++ headers and libraries for native application development, javadoc samples and prebuilt binaries for ARM and X86 platforms.
|
||||
To try new SDK on serial device with Google Play just install sample package and follow application messages (Google Play service access will be needed).
|
||||
TO start example on device without Google Play you need to install OpenCV manager package and OpenCV binary pack for your platform from apk folder before.
|
||||
See docs/doc/tutorials/introduction/android_binary_package/android_binary_package.html and docs/android/refmain.html for details about service.
|
||||
On-line documentation will be available at address: http://docs.opencv.org/trunk
|
||||
|
||||
********
|
||||
Contacts
|
||||
********
|
||||
|
||||
Please send all feedback to Alexander Smorkalov mailto: alexander.smorkalov@itseez.com
|
@@ -1,6 +1,40 @@
|
||||
*******************************************
|
||||
Manager Workflow
|
||||
*******************************************
|
||||
****************
|
||||
|
||||
.. _manager_selection:
|
||||
|
||||
OpenCV Manager selection
|
||||
------------------------
|
||||
|
||||
Since version 1.7 several packages of OpenCV Manager is built. Every package includes OpenCV library
|
||||
for package target platform. The internal library is used for most cases, except the rare one, when
|
||||
arm-v7a without NEON instruction set processor is detected. In this case additional binary package
|
||||
for arm-v7a is used. The new package selection logic in most cases simplifies OpenCV installation
|
||||
on end user devices. In most cases OpenCV Manager may be installed automatically from Google Play.
|
||||
For such case, when Google Play is not available, i.e. emulator, developer board, etc, you can
|
||||
install it manually using adb tool.
|
||||
|
||||
.. code-block:: sh
|
||||
:linenos:
|
||||
|
||||
adb install OpenCV-2.4.3-android-sdk/apk/OpenCV_2.4.3_Manager_2.0_<platform_name>.apk
|
||||
|
||||
Use table to determine right OpenCV Manager package:
|
||||
|
||||
+----------------------------+-----------------+-----------------------------------------------------+
|
||||
| Hardware Platform | Android version | Package name |
|
||||
+============================+=================+=====================================================+
|
||||
| Intel x86 | >= 2.3 | OpenCV_2.4.3_Manager_2.0_x86.apk |
|
||||
+----------------------------+-----------------+-----------------------------------------------------+
|
||||
| MIPS | >= 2.3 | OpenCV_2.4.3_Manager_2.0_mips.apk |
|
||||
+----------------------------+-----------------+-----------------------------------------------------+
|
||||
| armeabi (arm-v5, arm-v6) | >= 2.3 | OpenCV_2.4.3_Manager_2.0_armeabi.apk |
|
||||
+----------------------------+-----------------+-----------------------------------------------------+
|
||||
| armeabi-v7a (arm-v7a-NEON) | >= 2.3 | OpenCV_2.4.3_Manager_2.0_armv7a-neon.apk |
|
||||
+----------------------------+-----------------+-----------------------------------------------------+
|
||||
| armeabi-v7a (arm-v7a-NEON) | 2.2 | OpenCV_2.4.3.1_Manager_2.3_armv7a-neon-android8.apk |
|
||||
+----------------------------+-----------------+-----------------------------------------------------+
|
||||
|
||||
|
||||
First application start
|
||||
-----------------------
|
||||
@@ -9,10 +43,10 @@ There is no OpenCV Manager or OpenCV libraries:
|
||||
|
||||
.. image:: img/NoService.png
|
||||
|
||||
Aditional library package installation
|
||||
--------------------------------------
|
||||
Additional library package installation
|
||||
---------------------------------------
|
||||
|
||||
There is an OpenCV Manager service, but there is no apropriate OpenCV library.
|
||||
There is an OpenCV Manager service, but it does not contain appropriate OpenCV library.
|
||||
If OpenCV library installation has been approved\:
|
||||
|
||||
.. image:: img/LibInstallAproved.png
|
||||
|
@@ -1,8 +1,8 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
|
||||
package="org.opencv.engine"
|
||||
android:versionCode="23@ANDROID_PLATFORM_VERSION_CODE@"
|
||||
android:versionName="2.3" >
|
||||
android:versionCode="24@ANDROID_PLATFORM_VERSION_CODE@"
|
||||
android:versionName="2.4" >
|
||||
|
||||
<uses-sdk android:minSdkVersion="@ANDROID_NATIVE_API_LEVEL@" />
|
||||
<uses-feature android:name="android.hardware.touchscreen" android:required="false"/>
|
||||
|
@@ -130,7 +130,7 @@ android::String16 OpenCVEngine::GetLibraryList(android::String16 version)
|
||||
LOGD("Trying to load info library \"%s\"", tmp.c_str());
|
||||
|
||||
void* handle;
|
||||
const char* (*info_func)();
|
||||
InfoFunctionType info_func;
|
||||
|
||||
handle = dlopen(tmp.c_str(), RTLD_LAZY);
|
||||
if (handle)
|
||||
@@ -138,7 +138,7 @@ android::String16 OpenCVEngine::GetLibraryList(android::String16 version)
|
||||
const char* error;
|
||||
|
||||
dlerror();
|
||||
*(void **) (&info_func) = dlsym(handle, "GetLibraryList");
|
||||
info_func = (InfoFunctionType)dlsym(handle, "GetLibraryList");
|
||||
if ((error = dlerror()) == NULL)
|
||||
{
|
||||
result = String16((*info_func)());
|
||||
|
@@ -24,12 +24,12 @@ JNIEXPORT jlong JNICALL Java_org_opencv_engine_OpenCVLibraryInfo_open
|
||||
JNIEXPORT jstring JNICALL Java_org_opencv_engine_OpenCVLibraryInfo_getPackageName
|
||||
(JNIEnv* env, jobject, jlong handle)
|
||||
{
|
||||
const char* (*info_func)();
|
||||
InfoFunctionType info_func;
|
||||
const char* result;
|
||||
const char* error;
|
||||
|
||||
dlerror();
|
||||
*(void **) (&info_func) = dlsym((void*)handle, "GetPackageName");
|
||||
info_func = (InfoFunctionType)dlsym((void*)handle, "GetPackageName");
|
||||
if ((error = dlerror()) == NULL)
|
||||
result = (*info_func)();
|
||||
else
|
||||
@@ -44,12 +44,12 @@ JNIEXPORT jstring JNICALL Java_org_opencv_engine_OpenCVLibraryInfo_getPackageNam
|
||||
JNIEXPORT jstring JNICALL Java_org_opencv_engine_OpenCVLibraryInfo_getLibraryList
|
||||
(JNIEnv* env, jobject, jlong handle)
|
||||
{
|
||||
const char* (*info_func)();
|
||||
InfoFunctionType info_func;
|
||||
const char* result;
|
||||
const char* error;
|
||||
|
||||
dlerror();
|
||||
*(void **) (&info_func) = dlsym((void*)handle, "GetLibraryList");
|
||||
info_func = (InfoFunctionType)dlsym((void*)handle, "GetLibraryList");
|
||||
if ((error = dlerror()) == NULL)
|
||||
result = (*info_func)();
|
||||
else
|
||||
@@ -64,12 +64,12 @@ JNIEXPORT jstring JNICALL Java_org_opencv_engine_OpenCVLibraryInfo_getLibraryLis
|
||||
JNIEXPORT jstring JNICALL Java_org_opencv_engine_OpenCVLibraryInfo_getVersionName
|
||||
(JNIEnv* env, jobject, jlong handle)
|
||||
{
|
||||
const char* (*info_func)();
|
||||
InfoFunctionType info_func;
|
||||
const char* result;
|
||||
const char* error;
|
||||
|
||||
dlerror();
|
||||
*(void **) (&info_func) = dlsym((void*)handle, "GetRevision");
|
||||
info_func = (InfoFunctionType)dlsym((void*)handle, "GetRevision");
|
||||
if ((error = dlerror()) == NULL)
|
||||
result = (*info_func)();
|
||||
else
|
||||
|
@@ -144,6 +144,13 @@ int CommonPackageManager::GetHardwareRating(int platform, int cpu_id, const std:
|
||||
{
|
||||
int result = -1;
|
||||
|
||||
if ((cpu_id & ARCH_X86) || (cpu_id & ARCH_X64) || (cpu_id & ARCH_MIPS))
|
||||
// Note: No raiting for x86, x64 and MIPS
|
||||
// only one package is used
|
||||
result = 0;
|
||||
else
|
||||
{
|
||||
// Calculate rating for Arm
|
||||
for (size_t i = 0; i < group.size(); i++)
|
||||
{
|
||||
if (group[i] == std::pair<int, int>(platform, cpu_id))
|
||||
@@ -152,6 +159,7 @@ int CommonPackageManager::GetHardwareRating(int platform, int cpu_id, const std:
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
@@ -342,8 +342,8 @@ InstallPath(install_path)
|
||||
LOGD("Trying to load info library \"%s\"", tmp.c_str());
|
||||
|
||||
void* handle;
|
||||
const char* (*name_func)();
|
||||
const char* (*revision_func)();
|
||||
InfoFunctionType name_func;
|
||||
InfoFunctionType revision_func;
|
||||
|
||||
handle = dlopen(tmp.c_str(), RTLD_LAZY);
|
||||
if (handle)
|
||||
@@ -351,8 +351,8 @@ InstallPath(install_path)
|
||||
const char* error;
|
||||
|
||||
dlerror();
|
||||
*(void **) (&name_func) = dlsym(handle, "GetPackageName");
|
||||
*(void **) (&revision_func) = dlsym(handle, "GetRevision");
|
||||
name_func = (InfoFunctionType)dlsym(handle, "GetPackageName");
|
||||
revision_func = (InfoFunctionType)dlsym(handle, "GetRevision");
|
||||
error = dlerror();
|
||||
|
||||
if (!error && revision_func && name_func)
|
||||
|
@@ -17,4 +17,6 @@
|
||||
// Class name of OpenCV engine binder object. Is needned for connection to service
|
||||
#define OPECV_ENGINE_CLASSNAME "org.opencv.engine.OpenCVEngineInterface"
|
||||
|
||||
typedef const char* (*InfoFunctionType)();
|
||||
|
||||
#endif
|
@@ -358,6 +358,8 @@ public class ManagerActivity extends Activity
|
||||
else
|
||||
{
|
||||
temp.put("Activity", "n");
|
||||
if (!PublicName.equals("Built-in OpenCV library"))
|
||||
Tags = "safe to remove";
|
||||
}
|
||||
}
|
||||
else
|
||||
|
28
android/service/readme.txt
Normal file
28
android/service/readme.txt
Normal file
@@ -0,0 +1,28 @@
|
||||
OpenCV Manager selection
|
||||
========================
|
||||
|
||||
Since version 1.7 several packages of OpenCV Manager is built. Every package includes OpenCV library
|
||||
for package target platform. The internal library is used for most cases, except the rare one, when
|
||||
arm-v7a without NEON instruction set processor is detected. In this case additional binary package
|
||||
for arm-v7a is used. The new package selection logic in most cases simplifies OpenCV installation
|
||||
on end user devices. In most cases OpenCV Manager may be installed automatically from Google Play.
|
||||
For such case, when Google Play is not available, i.e. emulator, developer board, etc, you can
|
||||
install it manually using adb tool:
|
||||
|
||||
adb install OpenCV-2.4.3-android-sdk/apk/OpenCV_2.4.3.2_Manager_2.4_<platform_name>.apk
|
||||
|
||||
Use table to determine right OpenCV Manager package:
|
||||
|
||||
+----------------------------+-----------------+-----------------------------------------------------+
|
||||
| Hardware Platform | Android version | Package name |
|
||||
+============================+=================+=====================================================+
|
||||
| Intel x86 | >= 2.3 | OpenCV_2.4.3.2_Manager_2.4_x86.apk |
|
||||
+----------------------------+-----------------+-----------------------------------------------------+
|
||||
| MIPS | >= 2.3 | OpenCV_2.4.3.2_Manager_2.4_mips.apk |
|
||||
+----------------------------+-----------------+-----------------------------------------------------+
|
||||
| armeabi (arm-v5, arm-v6) | >= 2.3 | OpenCV_2.4.3.2_Manager_2.4_armeabi.apk |
|
||||
+----------------------------+-----------------+-----------------------------------------------------+
|
||||
| armeabi-v7a (arm-v7a-NEON) | >= 2.3 | OpenCV_2.4.3.2_Manager_2.4_armv7a-neon.apk |
|
||||
+----------------------------+-----------------+-----------------------------------------------------+
|
||||
| armeabi-v7a (arm-v7a-NEON) | 2.2 | OpenCV_2.4.3.2_Manager_2.4_armv7a-neon-android8.apk |
|
||||
+----------------------------+-----------------+-----------------------------------------------------+
|
@@ -61,7 +61,7 @@ if(CMAKE_COMPILER_IS_GNUCXX)
|
||||
add_extra_compiler_option(-W)
|
||||
add_extra_compiler_option(-Wall)
|
||||
add_extra_compiler_option(-Werror=return-type)
|
||||
#add_extra_compiler_option(-Werror=non-virtual-dtor)
|
||||
add_extra_compiler_option(-Werror=non-virtual-dtor)
|
||||
add_extra_compiler_option(-Werror=address)
|
||||
add_extra_compiler_option(-Werror=sequence-point)
|
||||
add_extra_compiler_option(-Wformat)
|
||||
|
@@ -19,7 +19,7 @@ IF(CMAKE_COMPILER_IS_GNUCXX)
|
||||
ARGS ${CMAKE_CXX_COMPILER_ARG1} -dumpversion
|
||||
OUTPUT_VARIABLE gcc_compiler_version)
|
||||
#MESSAGE("GCC Version: ${gcc_compiler_version}")
|
||||
IF(gcc_compiler_version MATCHES "4\\.[0,2-9]\\.[0-9x]")
|
||||
IF(gcc_compiler_version VERSION_GREATER "4.2.-1")
|
||||
SET(PCHSupport_FOUND TRUE)
|
||||
ENDIF()
|
||||
|
||||
|
@@ -2,8 +2,6 @@
|
||||
# CMake file for OpenCV docs
|
||||
#
|
||||
|
||||
file(GLOB FILES_DOC *.htm *.txt *.jpg *.png *.pdf)
|
||||
file(GLOB FILES_DOC_VS vidsurv/*.doc)
|
||||
file(GLOB FILES_TEX *.tex *.sty *.bib)
|
||||
file(GLOB FILES_TEX_PICS pics/*.png pics/*.jpg)
|
||||
|
||||
@@ -11,6 +9,14 @@ if(BUILD_DOCS AND HAVE_SPHINX)
|
||||
|
||||
project(opencv_docs)
|
||||
|
||||
set(DOC_LIST "${OpenCV_SOURCE_DIR}/doc/opencv-logo.png" "${OpenCV_SOURCE_DIR}/doc/opencv-logo2.png"
|
||||
"${OpenCV_SOURCE_DIR}/doc/opencv-logo-white.png" "${OpenCV_SOURCE_DIR}/doc/opencv.ico"
|
||||
"${OpenCV_SOURCE_DIR}/doc/haartraining.htm" "${OpenCV_SOURCE_DIR}/doc/license.txt"
|
||||
"${OpenCV_SOURCE_DIR}/doc/pattern.png" "${OpenCV_SOURCE_DIR}/doc/acircles_pattern.png")
|
||||
|
||||
set(OPTIONAL_DOC_LIST "")
|
||||
|
||||
|
||||
set(OPENCV2_BASE_MODULES core imgproc highgui video calib3d features2d objdetect ml flann gpu photo stitching nonfree contrib legacy)
|
||||
|
||||
# build lists of modules to be documented
|
||||
@@ -81,6 +87,9 @@ if(BUILD_DOCS AND HAVE_SPHINX)
|
||||
COMMENT "Generating the PDF Manuals"
|
||||
)
|
||||
|
||||
LIST(APPEND OPTIONAL_DOC_LIST "${CMAKE_BINARY_DIR}/doc/opencv2refman.pdf" "${CMAKE_BINARY_DIR}/doc/opencv2manager.pdf"
|
||||
"${CMAKE_BINARY_DIR}/doc/opencv_user.pdf" "${CMAKE_BINARY_DIR}/doc/opencv_tutorials.pdf" "${CMAKE_BINARY_DIR}/doc/opencv_cheatsheet.pdf")
|
||||
|
||||
if(ENABLE_SOLUTION_FOLDERS)
|
||||
set_target_properties(docs PROPERTIES FOLDER "documentation")
|
||||
endif()
|
||||
@@ -97,7 +106,13 @@ if(BUILD_DOCS AND HAVE_SPHINX)
|
||||
if(ENABLE_SOLUTION_FOLDERS)
|
||||
set_target_properties(html_docs PROPERTIES FOLDER "documentation")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
install(FILES ${FILES_DOC} DESTINATION "${OPENCV_DOC_INSTALL_PATH}" COMPONENT main)
|
||||
install(FILES ${FILES_DOC_VS} DESTINATION "${OPENCV_DOC_INSTALL_PATH}/vidsurv" COMPONENT main)
|
||||
foreach(f ${DOC_LIST})
|
||||
install(FILES "${f}" DESTINATION "${OPENCV_DOC_INSTALL_PATH}" COMPONENT main)
|
||||
endforeach()
|
||||
|
||||
foreach(f ${OPTIONAL_DOC_LIST})
|
||||
install(FILES "${f}" DESTINATION "${OPENCV_DOC_INSTALL_PATH}" OPTIONAL)
|
||||
endforeach()
|
||||
|
||||
endif()
|
@@ -85,7 +85,7 @@ This tutorial code's is shown lines below. You can also download it from `here <
|
||||
for( int i = 0; i < contours.size(); i++ )
|
||||
{ approxPolyDP( Mat(contours[i]), contours_poly[i], 3, true );
|
||||
boundRect[i] = boundingRect( Mat(contours_poly[i]) );
|
||||
minEnclosingCircle( contours_poly[i], center[i], radius[i] );
|
||||
minEnclosingCircle( (Mat)contours_poly[i], center[i], radius[i] );
|
||||
}
|
||||
|
||||
|
||||
|
@@ -50,8 +50,8 @@ The structure of package contents looks as follows:
|
||||
|
||||
OpenCV-2.4.3-android-sdk
|
||||
|_ apk
|
||||
| |_ OpenCV_2.4.3_binary_pack_XXX.apk
|
||||
| |_ OpenCV_2.4.3_Manager.apk
|
||||
| |_ OpenCV_2.4.3_binary_pack_armv7a.apk
|
||||
| |_ OpenCV_2.4.3_Manager_2.0_XXX.apk
|
||||
|
|
||||
|_ doc
|
||||
|_ samples
|
||||
@@ -85,8 +85,8 @@ The structure of package contents looks as follows:
|
||||
On production devices that have access to Google Play Market (and Internet) these packages will be
|
||||
installed from Market on the first start of an application using OpenCV Manager API.
|
||||
But devkits without Market or Internet connection require this packages to be installed manually.
|
||||
Install the `Manager.apk` and the corresponding `binary_pack.apk` depending on the device CPU,
|
||||
the Manager GUI provides this info. Below you'll see exact commands on how to do this.
|
||||
Install the `Manager.apk` and optional `binary_pack.apk` if it needed.
|
||||
See :ref:`manager_selection` for details.
|
||||
|
||||
.. note:: Installation from Internet is the preferable way since OpenCV team may publish updated
|
||||
versions of this packages on the Market.
|
||||
@@ -280,21 +280,7 @@ Well, running samples from Eclipse is very simple:
|
||||
To get rid of the message you will need to install `OpenCV Manager` and the appropriate `OpenCV binary pack`.
|
||||
Simply tap :menuselection:`Yes` if you have *Google Play Market* installed on your device/emulator. It will redirect you to the corresponding page on *Google Play Market*.
|
||||
|
||||
If you have no access to the *Market*, which is often the case with emulators - you will need to install the packages from OpenCV4Android SDK folder manually. Open the console/terminal and type in the following two commands:
|
||||
|
||||
.. code-block:: sh
|
||||
:linenos:
|
||||
|
||||
<Android SDK path>/platform-tools/adb install <OpenCV4Android SDK path>/apk/OpenCV_2.4.3_Manager.apk
|
||||
<Android SDK path>/platform-tools/adb install <OpenCV4Android SDK path>/apk/OpenCV_2.4.3_binary_pack_armv7a.apk
|
||||
|
||||
If you're running Windows, that will probably look like this:
|
||||
|
||||
.. image:: images/install_opencv_manager_with_adb.png
|
||||
:alt: Run these commands in the console to install OpenCV Manager
|
||||
:align: center
|
||||
|
||||
When done, you will be able to run OpenCV samples on your device/emulator seamlessly.
|
||||
If you have no access to the *Market*, which is often the case with emulators - you will need to install the packages from OpenCV4Android SDK folder manually. See :ref:`manager_selection` for details.
|
||||
|
||||
* Here is ``Tutorial 2 - Use OpenCV Camera`` sample, running on top of stock camera-preview of the emulator.
|
||||
|
||||
|
@@ -54,20 +54,8 @@ Using async initialization is a **recommended** way for application development.
|
||||
:alt: Add dependency from OpenCV library
|
||||
:align: center
|
||||
|
||||
To run OpenCV Manager-based application for the first time you need to install package with the `OpenCV Manager` for your platform. Armeabi, Armeabi-v7a with NEON, x86 and MIPS achitectures supported.
|
||||
You can do it using Google Play Market or manually with ``adb`` tool:
|
||||
|
||||
.. code-block:: sh
|
||||
:linenos:
|
||||
|
||||
<Android SDK path>/platform-tools/adb install <OpenCV4Android SDK path>/apk/OpenCV_2.4.3_Manager.apk
|
||||
|
||||
For rare cases if NEON instruction set is not supported you need to install aditional OpenCV Library package:
|
||||
|
||||
.. code-block:: sh
|
||||
:linenos:
|
||||
|
||||
<Android SDK path>/platform-tools/adb install <OpenCV4Android SDK path>/apk/OpenCV_2.4.3_binary_pack_armv7a.apk
|
||||
In most cases OpenCV Manager may be installed automatically from Google Play. For such case, when Google Play is not available, i.e. emulator, developer board, etc, you can
|
||||
install it manually using adb tool. See :ref:`manager_selection` for details.
|
||||
|
||||
There is a very base code snippet implementing the async initialization. It shows basic principles. See the "15-puzzle" OpenCV sample for details.
|
||||
|
||||
|
Binary file not shown.
Before Width: | Height: | Size: 16 KiB |
@@ -71,7 +71,9 @@ There are functions in OpenCV, especially from calib3d module, such as ``project
|
||||
//... fill the array
|
||||
Mat pointsMat = Mat(points);
|
||||
|
||||
One can access a point in this matrix using the same method \texttt{Mat::at}: ::
|
||||
One can access a point in this matrix using the same method ``Mat::at`` :
|
||||
|
||||
::
|
||||
|
||||
Point2f point = pointsMat.at<Point2f>(i, 0);
|
||||
|
||||
@@ -109,7 +111,7 @@ Selecting a region of interest: ::
|
||||
Rect r(10, 10, 100, 100);
|
||||
Mat smallImg = img(r);
|
||||
|
||||
A convertion from \texttt{Mat} to C API data structures: ::
|
||||
A convertion from ``Mat`` to C API data structures: ::
|
||||
|
||||
Mat img = imread("image.jpg");
|
||||
IplImage img1 = img;
|
||||
@@ -150,7 +152,7 @@ A call to ``waitKey()`` starts a message passing cycle that waits for a key stro
|
||||
double minVal, maxVal;
|
||||
minMaxLoc(sobelx, &minVal, &maxVal); //find minimum and maximum intensities
|
||||
Mat draw;
|
||||
sobelx.convertTo(draw, CV_8U, 255.0/(maxVal - minVal), -minVal);
|
||||
sobelx.convertTo(draw, CV_8U, 255.0/(maxVal - minVal), -minVal * 255.0/(maxVal - minVal));
|
||||
|
||||
namedWindow("image", CV_WINDOW_AUTOSIZE);
|
||||
imshow("image", draw);
|
||||
|
@@ -16,7 +16,7 @@ typedef perf::TestBaseWithParam<int> PointsNum;
|
||||
|
||||
PERF_TEST_P(PointsNum_Algo, solvePnP,
|
||||
testing::Combine(
|
||||
testing::Values(4, 3*9, 7*13),
|
||||
testing::Values(/*4,*/ 3*9, 7*13), //TODO: find why results on 4 points are too unstable
|
||||
testing::Values((int)CV_ITERATIVE, (int)CV_EPNP)
|
||||
)
|
||||
)
|
||||
|
@@ -109,13 +109,6 @@ template<typename _Tp> class CV_EXPORTS MatIterator_;
|
||||
template<typename _Tp> class CV_EXPORTS MatConstIterator_;
|
||||
template<typename _Tp> class CV_EXPORTS MatCommaInitializer_;
|
||||
|
||||
#if !defined(ANDROID) || (defined(_GLIBCXX_USE_WCHAR_T) && _GLIBCXX_USE_WCHAR_T)
|
||||
typedef std::basic_string<wchar_t> WString;
|
||||
|
||||
CV_EXPORTS string fromUtf16(const WString& str);
|
||||
CV_EXPORTS WString toUtf16(const string& str);
|
||||
#endif
|
||||
|
||||
CV_EXPORTS string format( const char* fmt, ... );
|
||||
CV_EXPORTS string tempfile( const char* suffix CV_DEFAULT(0));
|
||||
|
||||
@@ -1284,6 +1277,8 @@ public:
|
||||
operator _Tp* ();
|
||||
operator const _Tp*() const;
|
||||
|
||||
bool operator==(const Ptr<_Tp>& ptr) const;
|
||||
|
||||
_Tp* obj; //< the object pointer.
|
||||
int* refcount; //< the associated reference counter
|
||||
};
|
||||
@@ -1345,7 +1340,7 @@ public:
|
||||
virtual int channels(int i=-1) const;
|
||||
virtual bool empty() const;
|
||||
|
||||
/*virtual*/ ~_InputArray();
|
||||
virtual ~_InputArray();
|
||||
|
||||
int flags;
|
||||
void* obj;
|
||||
@@ -1413,7 +1408,7 @@ public:
|
||||
virtual void release() const;
|
||||
virtual void clear() const;
|
||||
|
||||
/*virtual*/ ~_OutputArray();
|
||||
virtual ~_OutputArray();
|
||||
};
|
||||
|
||||
typedef const _InputArray& InputArray;
|
||||
|
@@ -64,7 +64,7 @@
|
||||
#endif
|
||||
#elif __GNUC__*10 + __GNUC_MINOR__ >= 42
|
||||
|
||||
#if !defined WIN32 && (defined __i486__ || defined __i586__ || \
|
||||
#if !(defined WIN32 || defined _WIN32) && (defined __i486__ || defined __i586__ || \
|
||||
defined __i686__ || defined __MMX__ || defined __SSE__ || defined __ppc__)
|
||||
#define CV_XADD __sync_fetch_and_add
|
||||
#else
|
||||
@@ -2690,6 +2690,11 @@ template<typename _Tp> template<typename _Tp2> inline const Ptr<_Tp2> Ptr<_Tp>::
|
||||
return p;
|
||||
}
|
||||
|
||||
template<typename _Tp> inline bool Ptr<_Tp>::operator==(const Ptr<_Tp>& _ptr) const
|
||||
{
|
||||
return refcount == _ptr.refcount;
|
||||
}
|
||||
|
||||
//// specializied implementations of Ptr::delete_obj() for classic OpenCV types
|
||||
|
||||
template<> CV_EXPORTS void Ptr<CvMat>::delete_obj();
|
||||
|
@@ -45,7 +45,6 @@
|
||||
#include <ctype.h>
|
||||
#include <deque>
|
||||
#include <iterator>
|
||||
#include <wchar.h>
|
||||
|
||||
#define USE_ZLIB 1
|
||||
|
||||
@@ -156,35 +155,6 @@ cv::string cv::FileStorage::getDefaultObjectName(const string& _filename)
|
||||
return cv::string(name);
|
||||
}
|
||||
|
||||
namespace cv
|
||||
{
|
||||
#if !defined(ANDROID) || (defined(_GLIBCXX_USE_WCHAR_T) && _GLIBCXX_USE_WCHAR_T)
|
||||
string fromUtf16(const WString& str)
|
||||
{
|
||||
cv::AutoBuffer<char> _buf(str.size()*4 + 1);
|
||||
char* buf = _buf;
|
||||
|
||||
size_t sz = wcstombs(buf, str.c_str(), str.size());
|
||||
if( sz == (size_t)-1 )
|
||||
return string();
|
||||
buf[sz] = '\0';
|
||||
return string(buf);
|
||||
}
|
||||
|
||||
WString toUtf16(const string& str)
|
||||
{
|
||||
cv::AutoBuffer<wchar_t> _buf(str.size() + 1);
|
||||
wchar_t* buf = _buf;
|
||||
|
||||
size_t sz = mbstowcs(buf, str.c_str(), str.size());
|
||||
if( sz == (size_t)-1 )
|
||||
return WString();
|
||||
buf[sz] = '\0';
|
||||
return WString(buf);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
typedef struct CvGenericHash
|
||||
{
|
||||
CV_SET_FIELDS()
|
||||
@@ -5200,6 +5170,7 @@ void FileStorage::release()
|
||||
string FileStorage::releaseAndGetString()
|
||||
{
|
||||
string buf;
|
||||
buf.reserve(16); // HACK: Work around for compiler bug
|
||||
if( fs.obj && fs.obj->outbuf )
|
||||
icvClose(fs.obj, &buf);
|
||||
|
||||
|
@@ -359,26 +359,24 @@ string format( const char* fmt, ... )
|
||||
|
||||
string tempfile( const char* suffix )
|
||||
{
|
||||
const char *temp_dir = getenv("OPENCV_TEMP_PATH");
|
||||
string fname;
|
||||
|
||||
#if defined WIN32 || defined _WIN32
|
||||
char temp_dir[MAX_PATH + 1] = { 0 };
|
||||
char temp_dir2[MAX_PATH + 1] = { 0 };
|
||||
char temp_file[MAX_PATH + 1] = { 0 };
|
||||
|
||||
::GetTempPathA(sizeof(temp_dir), temp_dir);
|
||||
if (temp_dir == 0 || temp_dir[0] == 0)
|
||||
{
|
||||
::GetTempPathA(sizeof(temp_dir2), temp_dir2);
|
||||
temp_dir = temp_dir2;
|
||||
}
|
||||
if(0 == ::GetTempFileNameA(temp_dir, "ocv", 0, temp_file))
|
||||
return string();
|
||||
|
||||
DeleteFileA(temp_file);
|
||||
|
||||
string name = temp_file;
|
||||
if(suffix)
|
||||
{
|
||||
if (suffix[0] != '.')
|
||||
return name + "." + suffix;
|
||||
else
|
||||
return name + suffix;
|
||||
}
|
||||
else
|
||||
return name;
|
||||
fname = temp_file;
|
||||
# else
|
||||
# ifdef ANDROID
|
||||
//char defaultTemplate[] = "/mnt/sdcard/__opencv_temp.XXXXXX";
|
||||
@@ -387,8 +385,6 @@ string tempfile( const char* suffix )
|
||||
char defaultTemplate[] = "/tmp/__opencv_temp.XXXXXX";
|
||||
# endif
|
||||
|
||||
string fname;
|
||||
const char *temp_dir = getenv("OPENCV_TEMP_PATH");
|
||||
if (temp_dir == 0 || temp_dir[0] == 0)
|
||||
fname = defaultTemplate;
|
||||
else
|
||||
@@ -401,19 +397,20 @@ string tempfile( const char* suffix )
|
||||
}
|
||||
|
||||
const int fd = mkstemp((char*)fname.c_str());
|
||||
if(fd == -1) return "";
|
||||
if (fd == -1) return string();
|
||||
|
||||
close(fd);
|
||||
remove(fname.c_str());
|
||||
# endif
|
||||
|
||||
if (suffix)
|
||||
{
|
||||
if (suffix[0] != '.')
|
||||
fname = fname + "." + suffix;
|
||||
return fname + "." + suffix;
|
||||
else
|
||||
fname += suffix;
|
||||
return fname + suffix;
|
||||
}
|
||||
return fname;
|
||||
# endif
|
||||
}
|
||||
|
||||
static CvErrorCallback customErrorCallback = 0;
|
||||
|
@@ -31,7 +31,7 @@ PERF_TEST_P(fast, detect, testing::Combine(
|
||||
declare.in(frame);
|
||||
|
||||
Ptr<FeatureDetector> fd = Algorithm::create<FeatureDetector>("Feature2D.FAST");
|
||||
ASSERT_FALSE( fd == 0 );
|
||||
ASSERT_FALSE( fd.empty() );
|
||||
fd->set("threshold", 20);
|
||||
fd->set("nonmaxSuppression", true);
|
||||
fd->set("type", type);
|
||||
|
@@ -531,7 +531,7 @@ void FlannBasedMatcher::train()
|
||||
|
||||
void FlannBasedMatcher::read( const FileNode& fn)
|
||||
{
|
||||
if (indexParams == 0)
|
||||
if (indexParams.empty())
|
||||
indexParams = new flann::IndexParams();
|
||||
|
||||
FileNode ip = fn["indexParams"];
|
||||
@@ -570,7 +570,7 @@ void FlannBasedMatcher::read( const FileNode& fn)
|
||||
};
|
||||
}
|
||||
|
||||
if (searchParams == 0)
|
||||
if (searchParams.empty())
|
||||
searchParams = new flann::SearchParams();
|
||||
|
||||
FileNode sp = fn["searchParams"];
|
||||
|
@@ -23,7 +23,7 @@ PERF_TEST_P(VideoWriter_Writing, WriteFrame,
|
||||
string filename = getDataPath(get<0>(GetParam()));
|
||||
bool isColor = get<1>(GetParam());
|
||||
|
||||
VideoWriter writer("perf_writer.avi", CV_FOURCC('X', 'V', 'I', 'D'), 25, cv::Size(640, 480), isColor);
|
||||
VideoWriter writer(cv::tempfile(".avi"), CV_FOURCC('X', 'V', 'I', 'D'), 25, cv::Size(640, 480), isColor);
|
||||
|
||||
TEST_CYCLE() { Mat image = imread(filename, 1); writer << image; }
|
||||
|
||||
|
@@ -399,12 +399,12 @@ bool CvCapture_GStreamer::open( int type, const char* filename )
|
||||
|
||||
gst_app_sink_set_max_buffers (GST_APP_SINK(sink), 1);
|
||||
gst_app_sink_set_drop (GST_APP_SINK(sink), stream);
|
||||
|
||||
gst_app_sink_set_caps(GST_APP_SINK(sink), gst_caps_new_simple("video/x-raw-rgb",
|
||||
caps = gst_caps_new_simple("video/x-raw-rgb",
|
||||
"red_mask", G_TYPE_INT, 0x0000FF,
|
||||
"green_mask", G_TYPE_INT, 0x00FF00,
|
||||
"blue_mask", G_TYPE_INT, 0xFF0000,
|
||||
NULL));
|
||||
NULL);
|
||||
gst_app_sink_set_caps(GST_APP_SINK(sink), caps);
|
||||
gst_caps_unref(caps);
|
||||
|
||||
if(gst_element_set_state(GST_ELEMENT(pipeline), GST_STATE_READY) ==
|
||||
|
@@ -661,7 +661,7 @@ Applies a fixed-level threshold to each array element.
|
||||
|
||||
:param dst: output array of the same size and type as ``src``.
|
||||
|
||||
:param thresh: treshold value.
|
||||
:param thresh: threshold value.
|
||||
|
||||
:param maxval: maximum value to use with the ``THRESH_BINARY`` and ``THRESH_BINARY_INV`` thresholding types.
|
||||
|
||||
|
@@ -137,7 +137,7 @@ Finds contours in a binary image.
|
||||
|
||||
:param contours: Detected contours. Each contour is stored as a vector of points.
|
||||
|
||||
:param hierarchy: Optional output vector containing information about the image topology. It has as many elements as the number of contours. For each contour ``contours[i]`` , the elements ``hierarchy[i][0]`` , ``hiearchy[i][1]`` , ``hiearchy[i][2]`` , and ``hiearchy[i][3]`` are set to 0-based indices in ``contours`` of the next and previous contours at the same hierarchical level: the first child contour and the parent contour, respectively. If for a contour ``i`` there are no next, previous, parent, or nested contours, the corresponding elements of ``hierarchy[i]`` will be negative.
|
||||
:param hierarchy: Optional output vector, containing information about the image topology. It has as many elements as the number of contours. For each i-th contour ``contours[i]`` , the elements ``hierarchy[i][0]`` , ``hiearchy[i][1]`` , ``hiearchy[i][2]`` , and ``hiearchy[i][3]`` are set to 0-based indices in ``contours`` of the next and previous contours at the same hierarchical level, the first child contour and the parent contour, respectively. If for the contour ``i`` there are no next, previous, parent, or nested contours, the corresponding elements of ``hierarchy[i]`` will be negative.
|
||||
|
||||
:param mode: Contour retrieval mode (if you use Python see also a note below).
|
||||
|
||||
|
@@ -1048,7 +1048,18 @@ enum
|
||||
COLOR_RGBA2mRGBA = 125,
|
||||
COLOR_mRGBA2RGBA = 126,
|
||||
|
||||
COLOR_COLORCVT_MAX = 127
|
||||
// Edge-Aware Demosaicing
|
||||
COLOR_BayerBG2BGR_EA = 127,
|
||||
COLOR_BayerGB2BGR_EA = 128,
|
||||
COLOR_BayerRG2BGR_EA = 129,
|
||||
COLOR_BayerGR2BGR_EA = 130,
|
||||
|
||||
COLOR_BayerBG2RGB_EA = COLOR_BayerRG2BGR_EA,
|
||||
COLOR_BayerGB2RGB_EA = COLOR_BayerGR2BGR_EA,
|
||||
COLOR_BayerRG2RGB_EA = COLOR_BayerBG2BGR_EA,
|
||||
COLOR_BayerGR2RGB_EA = COLOR_BayerGB2BGR_EA,
|
||||
|
||||
COLOR_COLORCVT_MAX = 131
|
||||
};
|
||||
|
||||
|
||||
@@ -1252,6 +1263,9 @@ protected:
|
||||
Point2f bottomRight;
|
||||
};
|
||||
|
||||
// main function for all demosaicing procceses
|
||||
CV_EXPORTS_W void demosaicing(InputArray _src, OutputArray _dst, int code, int dcn = 0);
|
||||
|
||||
}
|
||||
|
||||
#endif /* __cplusplus */
|
||||
|
@@ -310,7 +310,18 @@ enum
|
||||
CV_RGBA2mRGBA = 125,
|
||||
CV_mRGBA2RGBA = 126,
|
||||
|
||||
CV_COLORCVT_MAX = 127
|
||||
// Edge-Aware Demosaicing
|
||||
CV_BayerBG2BGR_EA = 127,
|
||||
CV_BayerGB2BGR_EA = 128,
|
||||
CV_BayerRG2BGR_EA = 129,
|
||||
CV_BayerGR2BGR_EA = 130,
|
||||
|
||||
CV_BayerBG2RGB_EA = CV_BayerRG2BGR_EA,
|
||||
CV_BayerGB2RGB_EA = CV_BayerGR2BGR_EA,
|
||||
CV_BayerRG2RGB_EA = CV_BayerBG2BGR_EA,
|
||||
CV_BayerGR2RGB_EA = CV_BayerGB2BGR_EA,
|
||||
|
||||
CV_COLORCVT_MAX = 131
|
||||
};
|
||||
|
||||
|
||||
|
@@ -276,3 +276,28 @@ PERF_TEST_P(Size_CvtMode2, cvtColorYUV420,
|
||||
|
||||
SANITY_CHECK(dst, 1);
|
||||
}
|
||||
|
||||
CV_ENUM(EdgeAwareBayerMode, COLOR_BayerBG2BGR_EA, COLOR_BayerGB2BGR_EA, COLOR_BayerRG2BGR_EA, COLOR_BayerGR2BGR_EA)
|
||||
|
||||
typedef std::tr1::tuple<Size, EdgeAwareBayerMode> EdgeAwareParams;
|
||||
typedef perf::TestBaseWithParam<EdgeAwareParams> EdgeAwareDemosaicingTest;
|
||||
|
||||
PERF_TEST_P(EdgeAwareDemosaicingTest, demosaicingEA,
|
||||
testing::Combine(
|
||||
testing::Values(szVGA, sz720p, sz1080p, Size(130, 60)),
|
||||
testing::ValuesIn(EdgeAwareBayerMode::all())
|
||||
)
|
||||
)
|
||||
{
|
||||
Size sz = get<0>(GetParam());
|
||||
int mode = get<1>(GetParam());
|
||||
|
||||
Mat src(sz, CV_8UC1);
|
||||
Mat dst(sz, CV_8UC3);
|
||||
|
||||
declare.in(src, WARMUP_RNG).out(dst);
|
||||
|
||||
TEST_CYCLE() cvtColor(src, dst, mode, 3);
|
||||
|
||||
SANITY_CHECK(dst, 1);
|
||||
}
|
||||
|
@@ -70,7 +70,7 @@ PERF_TEST_P( Image_KernelSize, GaborFilter2d,
|
||||
filter2D(sourceImage, filteredImage, CV_32F, gaborKernel);
|
||||
}
|
||||
|
||||
SANITY_CHECK(filteredImage);
|
||||
SANITY_CHECK(filteredImage, 1e-3);
|
||||
}
|
||||
|
||||
|
||||
|
@@ -9,14 +9,14 @@ using std::tr1::get;
|
||||
|
||||
typedef tr1::tuple<Size, MatType> Size_Source_t;
|
||||
typedef TestBaseWithParam<Size_Source_t> Size_Source;
|
||||
|
||||
typedef TestBaseWithParam<Size> MatSize;
|
||||
|
||||
static const float rangeHight = 256.0f;
|
||||
static const float rangeLow = 0.0f;
|
||||
|
||||
PERF_TEST_P(Size_Source, calcHist,
|
||||
testing::Combine(testing::Values(TYPICAL_MAT_SIZES),
|
||||
testing::Values(CV_8U, CV_32F)
|
||||
)
|
||||
PERF_TEST_P(Size_Source, calcHist1d,
|
||||
testing::Combine(testing::Values(sz3MP, sz5MP),
|
||||
testing::Values(CV_8U, CV_16U, CV_32F) )
|
||||
)
|
||||
{
|
||||
Size size = get<0>(GetParam());
|
||||
@@ -28,10 +28,69 @@ PERF_TEST_P(Size_Source, calcHist,
|
||||
int dims = 1;
|
||||
int numberOfImages = 1;
|
||||
|
||||
const float r[] = {0.0f, 256.0f};
|
||||
const float r[] = {rangeLow, rangeHight};
|
||||
const float* ranges[] = {r};
|
||||
|
||||
declare.in(source, WARMUP_RNG).time(20).iterations(1000);
|
||||
randu(source, rangeLow, rangeHight);
|
||||
|
||||
declare.in(source);
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
calcHist(&source, numberOfImages, channels, Mat(), hist, dims, histSize, ranges);
|
||||
}
|
||||
|
||||
SANITY_CHECK(hist);
|
||||
}
|
||||
|
||||
PERF_TEST_P(Size_Source, calcHist2d,
|
||||
testing::Combine(testing::Values(sz3MP, sz5MP),
|
||||
testing::Values(CV_8UC2, CV_16UC2, CV_32FC2) )
|
||||
)
|
||||
{
|
||||
Size size = get<0>(GetParam());
|
||||
MatType type = get<1>(GetParam());
|
||||
Mat source(size.height, size.width, type);
|
||||
Mat hist;
|
||||
int channels [] = {0, 1};
|
||||
int histSize [] = {256, 256};
|
||||
int dims = 2;
|
||||
int numberOfImages = 1;
|
||||
|
||||
const float r[] = {rangeLow, rangeHight};
|
||||
const float* ranges[] = {r, r};
|
||||
|
||||
randu(source, rangeLow, rangeHight);
|
||||
|
||||
declare.in(source);
|
||||
TEST_CYCLE()
|
||||
{
|
||||
calcHist(&source, numberOfImages, channels, Mat(), hist, dims, histSize, ranges);
|
||||
}
|
||||
|
||||
SANITY_CHECK(hist);
|
||||
}
|
||||
|
||||
PERF_TEST_P(Size_Source, calcHist3d,
|
||||
testing::Combine(testing::Values(sz3MP, sz5MP),
|
||||
testing::Values(CV_8UC3, CV_16UC3, CV_32FC3) )
|
||||
)
|
||||
{
|
||||
Size size = get<0>(GetParam());
|
||||
MatType type = get<1>(GetParam());
|
||||
Mat hist;
|
||||
int channels [] = {0, 1, 2};
|
||||
int histSize [] = {32, 32, 32};
|
||||
int dims = 3;
|
||||
int numberOfImages = 1;
|
||||
Mat source(size.height, size.width, type);
|
||||
|
||||
const float r[] = {rangeLow, rangeHight};
|
||||
const float* ranges[] = {r, r, r};
|
||||
|
||||
randu(source, rangeLow, rangeHight);
|
||||
|
||||
declare.in(source);
|
||||
TEST_CYCLE()
|
||||
{
|
||||
calcHist(&source, numberOfImages, channels, Mat(), hist, dims, histSize, ranges);
|
||||
|
@@ -71,7 +71,7 @@ typedef TestBaseWithParam<MatInfo_Size_Scale_t> MatInfo_Size_Scale;
|
||||
|
||||
PERF_TEST_P(MatInfo_Size_Scale, ResizeAreaFast,
|
||||
testing::Combine(
|
||||
testing::Values(CV_8UC1, CV_8UC4),
|
||||
testing::Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_16UC1, CV_16UC3, CV_16UC4),
|
||||
testing::Values(szVGA, szqHD, sz720p, sz1080p),
|
||||
testing::Values(2)
|
||||
)
|
||||
|
File diff suppressed because it is too large
Load Diff
1516
modules/imgproc/src/demosaicing.cpp
Normal file
1516
modules/imgproc/src/demosaicing.cpp
Normal file
File diff suppressed because it is too large
Load Diff
@@ -165,11 +165,13 @@ static void histPrepareImages( const Mat* images, int nimages, const int* channe
|
||||
deltas[dims*2 + 1] = (int)(mask.step/mask.elemSize1());
|
||||
}
|
||||
|
||||
#ifndef HAVE_TBB
|
||||
if( isContinuous )
|
||||
{
|
||||
imsize.width *= imsize.height;
|
||||
imsize.height = 1;
|
||||
}
|
||||
#endif
|
||||
|
||||
if( !ranges )
|
||||
{
|
||||
@@ -207,6 +209,538 @@ static void histPrepareImages( const Mat* images, int nimages, const int* channe
|
||||
|
||||
|
||||
////////////////////////////////// C A L C U L A T E H I S T O G R A M ////////////////////////////////////
|
||||
#ifdef HAVE_TBB
|
||||
enum {one = 1, two, three}; // array elements number
|
||||
|
||||
template<typename T>
|
||||
class calcHist1D_Invoker
|
||||
{
|
||||
public:
|
||||
calcHist1D_Invoker( const vector<uchar*>& _ptrs, const vector<int>& _deltas,
|
||||
Mat& hist, const double* _uniranges, int sz, int dims,
|
||||
Size& imageSize )
|
||||
: mask_(_ptrs[dims]),
|
||||
mstep_(_deltas[dims*2 + 1]),
|
||||
imageWidth_(imageSize.width),
|
||||
histogramSize_(hist.size()), histogramType_(hist.type()),
|
||||
globalHistogram_((tbb::atomic<int>*)hist.data)
|
||||
{
|
||||
p_[0] = ((T**)&_ptrs[0])[0];
|
||||
step_[0] = (&_deltas[0])[1];
|
||||
d_[0] = (&_deltas[0])[0];
|
||||
a_[0] = (&_uniranges[0])[0];
|
||||
b_[0] = (&_uniranges[0])[1];
|
||||
size_[0] = sz;
|
||||
}
|
||||
|
||||
void operator()( const BlockedRange& range ) const
|
||||
{
|
||||
T* p0 = p_[0] + range.begin() * (step_[0] + imageWidth_*d_[0]);
|
||||
uchar* mask = mask_ + range.begin()*mstep_;
|
||||
|
||||
for( int row = range.begin(); row < range.end(); row++, p0 += step_[0] )
|
||||
{
|
||||
if( !mask_ )
|
||||
{
|
||||
for( int x = 0; x < imageWidth_; x++, p0 += d_[0] )
|
||||
{
|
||||
int idx = cvFloor(*p0*a_[0] + b_[0]);
|
||||
if( (unsigned)idx < (unsigned)size_[0] )
|
||||
{
|
||||
globalHistogram_[idx].fetch_and_add(1);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for( int x = 0; x < imageWidth_; x++, p0 += d_[0] )
|
||||
{
|
||||
if( mask[x] )
|
||||
{
|
||||
int idx = cvFloor(*p0*a_[0] + b_[0]);
|
||||
if( (unsigned)idx < (unsigned)size_[0] )
|
||||
{
|
||||
globalHistogram_[idx].fetch_and_add(1);
|
||||
}
|
||||
}
|
||||
}
|
||||
mask += mstep_;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
T* p_[one];
|
||||
uchar* mask_;
|
||||
int step_[one];
|
||||
int d_[one];
|
||||
int mstep_;
|
||||
double a_[one];
|
||||
double b_[one];
|
||||
int size_[one];
|
||||
int imageWidth_;
|
||||
Size histogramSize_;
|
||||
int histogramType_;
|
||||
tbb::atomic<int>* globalHistogram_;
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
class calcHist2D_Invoker
|
||||
{
|
||||
public:
|
||||
calcHist2D_Invoker( const vector<uchar*>& _ptrs, const vector<int>& _deltas,
|
||||
Mat& hist, const double* _uniranges, const int* size,
|
||||
int dims, Size& imageSize, size_t* hstep )
|
||||
: mask_(_ptrs[dims]),
|
||||
mstep_(_deltas[dims*2 + 1]),
|
||||
imageWidth_(imageSize.width),
|
||||
histogramSize_(hist.size()), histogramType_(hist.type()),
|
||||
globalHistogram_(hist.data)
|
||||
{
|
||||
p_[0] = ((T**)&_ptrs[0])[0]; p_[1] = ((T**)&_ptrs[0])[1];
|
||||
step_[0] = (&_deltas[0])[1]; step_[1] = (&_deltas[0])[3];
|
||||
d_[0] = (&_deltas[0])[0]; d_[1] = (&_deltas[0])[2];
|
||||
a_[0] = (&_uniranges[0])[0]; a_[1] = (&_uniranges[0])[2];
|
||||
b_[0] = (&_uniranges[0])[1]; b_[1] = (&_uniranges[0])[3];
|
||||
size_[0] = size[0]; size_[1] = size[1];
|
||||
hstep_[0] = hstep[0];
|
||||
}
|
||||
|
||||
void operator()(const BlockedRange& range) const
|
||||
{
|
||||
T* p0 = p_[0] + range.begin()*(step_[0] + imageWidth_*d_[0]);
|
||||
T* p1 = p_[1] + range.begin()*(step_[1] + imageWidth_*d_[1]);
|
||||
uchar* mask = mask_ + range.begin()*mstep_;
|
||||
|
||||
for( int row = range.begin(); row < range.end(); row++, p0 += step_[0], p1 += step_[1] )
|
||||
{
|
||||
if( !mask_ )
|
||||
{
|
||||
for( int x = 0; x < imageWidth_; x++, p0 += d_[0], p1 += d_[1] )
|
||||
{
|
||||
int idx0 = cvFloor(*p0*a_[0] + b_[0]);
|
||||
int idx1 = cvFloor(*p1*a_[1] + b_[1]);
|
||||
if( (unsigned)idx0 < (unsigned)size_[0] && (unsigned)idx1 < (unsigned)size_[1] )
|
||||
( (tbb::atomic<int>*)(globalHistogram_ + hstep_[0]*idx0) )[idx1].fetch_and_add(1);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for( int x = 0; x < imageWidth_; x++, p0 += d_[0], p1 += d_[1] )
|
||||
{
|
||||
if( mask[x] )
|
||||
{
|
||||
int idx0 = cvFloor(*p0*a_[0] + b_[0]);
|
||||
int idx1 = cvFloor(*p1*a_[1] + b_[1]);
|
||||
if( (unsigned)idx0 < (unsigned)size_[0] && (unsigned)idx1 < (unsigned)size_[1] )
|
||||
((tbb::atomic<int>*)(globalHistogram_ + hstep_[0]*idx0))[idx1].fetch_and_add(1);
|
||||
}
|
||||
}
|
||||
mask += mstep_;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
T* p_[two];
|
||||
uchar* mask_;
|
||||
int step_[two];
|
||||
int d_[two];
|
||||
int mstep_;
|
||||
double a_[two];
|
||||
double b_[two];
|
||||
int size_[two];
|
||||
const int imageWidth_;
|
||||
size_t hstep_[one];
|
||||
Size histogramSize_;
|
||||
int histogramType_;
|
||||
uchar* globalHistogram_;
|
||||
};
|
||||
|
||||
|
||||
template<typename T>
|
||||
class calcHist3D_Invoker
|
||||
{
|
||||
public:
|
||||
calcHist3D_Invoker( const vector<uchar*>& _ptrs, const vector<int>& _deltas,
|
||||
Size imsize, Mat& hist, const double* uniranges, int _dims,
|
||||
size_t* hstep, int* size )
|
||||
: mask_(_ptrs[_dims]),
|
||||
mstep_(_deltas[_dims*2 + 1]),
|
||||
imageWidth_(imsize.width),
|
||||
globalHistogram_(hist.data)
|
||||
{
|
||||
p_[0] = ((T**)&_ptrs[0])[0]; p_[1] = ((T**)&_ptrs[0])[1]; p_[2] = ((T**)&_ptrs[0])[2];
|
||||
step_[0] = (&_deltas[0])[1]; step_[1] = (&_deltas[0])[3]; step_[2] = (&_deltas[0])[5];
|
||||
d_[0] = (&_deltas[0])[0]; d_[1] = (&_deltas[0])[2]; d_[2] = (&_deltas[0])[4];
|
||||
a_[0] = uniranges[0]; a_[1] = uniranges[2]; a_[2] = uniranges[4];
|
||||
b_[0] = uniranges[1]; b_[1] = uniranges[3]; b_[2] = uniranges[5];
|
||||
size_[0] = size[0]; size_[1] = size[1]; size_[2] = size[2];
|
||||
hstep_[0] = hstep[0]; hstep_[1] = hstep[1];
|
||||
}
|
||||
|
||||
void operator()( const BlockedRange& range ) const
|
||||
{
|
||||
T* p0 = p_[0] + range.begin()*(imageWidth_*d_[0] + step_[0]);
|
||||
T* p1 = p_[1] + range.begin()*(imageWidth_*d_[1] + step_[1]);
|
||||
T* p2 = p_[2] + range.begin()*(imageWidth_*d_[2] + step_[2]);
|
||||
uchar* mask = mask_ + range.begin()*mstep_;
|
||||
|
||||
for( int i = range.begin(); i < range.end(); i++, p0 += step_[0], p1 += step_[1], p2 += step_[2] )
|
||||
{
|
||||
if( !mask_ )
|
||||
{
|
||||
for( int x = 0; x < imageWidth_; x++, p0 += d_[0], p1 += d_[1], p2 += d_[2] )
|
||||
{
|
||||
int idx0 = cvFloor(*p0*a_[0] + b_[0]);
|
||||
int idx1 = cvFloor(*p1*a_[1] + b_[1]);
|
||||
int idx2 = cvFloor(*p2*a_[2] + b_[2]);
|
||||
if( (unsigned)idx0 < (unsigned)size_[0] &&
|
||||
(unsigned)idx1 < (unsigned)size_[1] &&
|
||||
(unsigned)idx2 < (unsigned)size_[2] )
|
||||
{
|
||||
( (tbb::atomic<int>*)(globalHistogram_ + hstep_[0]*idx0 + hstep_[1]*idx1) )[idx2].fetch_and_add(1);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for( int x = 0; x < imageWidth_; x++, p0 += d_[0], p1 += d_[1], p2 += d_[2] )
|
||||
{
|
||||
if( mask[x] )
|
||||
{
|
||||
int idx0 = cvFloor(*p0*a_[0] + b_[0]);
|
||||
int idx1 = cvFloor(*p1*a_[1] + b_[1]);
|
||||
int idx2 = cvFloor(*p2*a_[2] + b_[2]);
|
||||
if( (unsigned)idx0 < (unsigned)size_[0] &&
|
||||
(unsigned)idx1 < (unsigned)size_[1] &&
|
||||
(unsigned)idx2 < (unsigned)size_[2] )
|
||||
{
|
||||
( (tbb::atomic<int>*)(globalHistogram_ + hstep_[0]*idx0 + hstep_[1]*idx1) )[idx2].fetch_and_add(1);
|
||||
}
|
||||
}
|
||||
}
|
||||
mask += mstep_;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static bool isFit( const Mat& histogram, const Size imageSize )
|
||||
{
|
||||
return ( imageSize.width * imageSize.height >= 320*240
|
||||
&& histogram.total() >= 8*8*8 );
|
||||
}
|
||||
|
||||
private:
|
||||
T* p_[three];
|
||||
uchar* mask_;
|
||||
int step_[three];
|
||||
int d_[three];
|
||||
const int mstep_;
|
||||
double a_[three];
|
||||
double b_[three];
|
||||
int size_[three];
|
||||
int imageWidth_;
|
||||
size_t hstep_[two];
|
||||
uchar* globalHistogram_;
|
||||
};
|
||||
|
||||
class CalcHist1D_8uInvoker
|
||||
{
|
||||
public:
|
||||
CalcHist1D_8uInvoker( const vector<uchar*>& ptrs, const vector<int>& deltas,
|
||||
Size imsize, Mat& hist, int dims, const vector<size_t>& tab,
|
||||
tbb::mutex* lock )
|
||||
: mask_(ptrs[dims]),
|
||||
mstep_(deltas[dims*2 + 1]),
|
||||
imageWidth_(imsize.width),
|
||||
imageSize_(imsize),
|
||||
histSize_(hist.size()), histType_(hist.type()),
|
||||
tab_((size_t*)&tab[0]),
|
||||
histogramWriteLock_(lock),
|
||||
globalHistogram_(hist.data)
|
||||
{
|
||||
p_[0] = (&ptrs[0])[0];
|
||||
step_[0] = (&deltas[0])[1];
|
||||
d_[0] = (&deltas[0])[0];
|
||||
}
|
||||
|
||||
void operator()( const BlockedRange& range ) const
|
||||
{
|
||||
int localHistogram[256] = { 0, };
|
||||
uchar* mask = mask_;
|
||||
uchar* p0 = p_[0];
|
||||
int x;
|
||||
tbb::mutex::scoped_lock lock;
|
||||
|
||||
if( !mask_ )
|
||||
{
|
||||
int n = (imageWidth_ - 4) / 4 + 1;
|
||||
int tail = imageWidth_ - n*4;
|
||||
|
||||
int xN = 4*n;
|
||||
p0 += (xN*d_[0] + tail*d_[0] + step_[0]) * range.begin();
|
||||
}
|
||||
else
|
||||
{
|
||||
p0 += (imageWidth_*d_[0] + step_[0]) * range.begin();
|
||||
mask += mstep_*range.begin();
|
||||
}
|
||||
|
||||
for( int i = range.begin(); i < range.end(); i++, p0 += step_[0] )
|
||||
{
|
||||
if( !mask_ )
|
||||
{
|
||||
if( d_[0] == 1 )
|
||||
{
|
||||
for( x = 0; x <= imageWidth_ - 4; x += 4 )
|
||||
{
|
||||
int t0 = p0[x], t1 = p0[x+1];
|
||||
localHistogram[t0]++; localHistogram[t1]++;
|
||||
t0 = p0[x+2]; t1 = p0[x+3];
|
||||
localHistogram[t0]++; localHistogram[t1]++;
|
||||
}
|
||||
p0 += x;
|
||||
}
|
||||
else
|
||||
{
|
||||
for( x = 0; x <= imageWidth_ - 4; x += 4 )
|
||||
{
|
||||
int t0 = p0[0], t1 = p0[d_[0]];
|
||||
localHistogram[t0]++; localHistogram[t1]++;
|
||||
p0 += d_[0]*2;
|
||||
t0 = p0[0]; t1 = p0[d_[0]];
|
||||
localHistogram[t0]++; localHistogram[t1]++;
|
||||
p0 += d_[0]*2;
|
||||
}
|
||||
}
|
||||
|
||||
for( ; x < imageWidth_; x++, p0 += d_[0] )
|
||||
{
|
||||
localHistogram[*p0]++;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for( x = 0; x < imageWidth_; x++, p0 += d_[0] )
|
||||
{
|
||||
if( mask[x] )
|
||||
{
|
||||
localHistogram[*p0]++;
|
||||
}
|
||||
}
|
||||
mask += mstep_;
|
||||
}
|
||||
}
|
||||
|
||||
lock.acquire(*histogramWriteLock_);
|
||||
for(int i = 0; i < 256; i++ )
|
||||
{
|
||||
size_t hidx = tab_[i];
|
||||
if( hidx < OUT_OF_RANGE )
|
||||
{
|
||||
*(int*)((globalHistogram_ + hidx)) += localHistogram[i];
|
||||
}
|
||||
}
|
||||
lock.release();
|
||||
}
|
||||
|
||||
static bool isFit( const Mat& histogram, const Size imageSize )
|
||||
{
|
||||
return ( histogram.total() >= 8
|
||||
&& imageSize.width * imageSize.height >= 160*120 );
|
||||
}
|
||||
|
||||
private:
|
||||
uchar* p_[one];
|
||||
uchar* mask_;
|
||||
int mstep_;
|
||||
int step_[one];
|
||||
int d_[one];
|
||||
int imageWidth_;
|
||||
Size imageSize_;
|
||||
Size histSize_;
|
||||
int histType_;
|
||||
size_t* tab_;
|
||||
tbb::mutex* histogramWriteLock_;
|
||||
uchar* globalHistogram_;
|
||||
};
|
||||
|
||||
class CalcHist2D_8uInvoker
|
||||
{
|
||||
public:
|
||||
CalcHist2D_8uInvoker( const vector<uchar*>& _ptrs, const vector<int>& _deltas,
|
||||
Size imsize, Mat& hist, int dims, const vector<size_t>& _tab,
|
||||
tbb::mutex* lock )
|
||||
: mask_(_ptrs[dims]),
|
||||
mstep_(_deltas[dims*2 + 1]),
|
||||
imageWidth_(imsize.width),
|
||||
histSize_(hist.size()), histType_(hist.type()),
|
||||
tab_((size_t*)&_tab[0]),
|
||||
histogramWriteLock_(lock),
|
||||
globalHistogram_(hist.data)
|
||||
{
|
||||
p_[0] = (uchar*)(&_ptrs[0])[0]; p_[1] = (uchar*)(&_ptrs[0])[1];
|
||||
step_[0] = (&_deltas[0])[1]; step_[1] = (&_deltas[0])[3];
|
||||
d_[0] = (&_deltas[0])[0]; d_[1] = (&_deltas[0])[2];
|
||||
}
|
||||
|
||||
void operator()( const BlockedRange& range ) const
|
||||
{
|
||||
uchar* p0 = p_[0] + range.begin()*(step_[0] + imageWidth_*d_[0]);
|
||||
uchar* p1 = p_[1] + range.begin()*(step_[1] + imageWidth_*d_[1]);
|
||||
uchar* mask = mask_ + range.begin()*mstep_;
|
||||
|
||||
Mat localHist = Mat::zeros(histSize_, histType_);
|
||||
uchar* localHistData = localHist.data;
|
||||
tbb::mutex::scoped_lock lock;
|
||||
|
||||
for(int i = range.begin(); i < range.end(); i++, p0 += step_[0], p1 += step_[1])
|
||||
{
|
||||
if( !mask_ )
|
||||
{
|
||||
for( int x = 0; x < imageWidth_; x++, p0 += d_[0], p1 += d_[1] )
|
||||
{
|
||||
size_t idx = tab_[*p0] + tab_[*p1 + 256];
|
||||
if( idx < OUT_OF_RANGE )
|
||||
{
|
||||
++*(int*)(localHistData + idx);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for( int x = 0; x < imageWidth_; x++, p0 += d_[0], p1 += d_[1] )
|
||||
{
|
||||
size_t idx;
|
||||
if( mask[x] && (idx = tab_[*p0] + tab_[*p1 + 256]) < OUT_OF_RANGE )
|
||||
{
|
||||
++*(int*)(localHistData + idx);
|
||||
}
|
||||
}
|
||||
mask += mstep_;
|
||||
}
|
||||
}
|
||||
|
||||
lock.acquire(*histogramWriteLock_);
|
||||
for(int i = 0; i < histSize_.width*histSize_.height; i++)
|
||||
{
|
||||
((int*)globalHistogram_)[i] += ((int*)localHistData)[i];
|
||||
}
|
||||
lock.release();
|
||||
}
|
||||
|
||||
static bool isFit( const Mat& histogram, const Size imageSize )
|
||||
{
|
||||
return ( (histogram.total() > 4*4 && histogram.total() <= 116*116
|
||||
&& imageSize.width * imageSize.height >= 320*240)
|
||||
|| (histogram.total() > 116*116 && imageSize.width * imageSize.height >= 1280*720) );
|
||||
}
|
||||
|
||||
private:
|
||||
uchar* p_[two];
|
||||
uchar* mask_;
|
||||
int step_[two];
|
||||
int d_[two];
|
||||
int mstep_;
|
||||
int imageWidth_;
|
||||
Size histSize_;
|
||||
int histType_;
|
||||
size_t* tab_;
|
||||
tbb::mutex* histogramWriteLock_;
|
||||
uchar* globalHistogram_;
|
||||
};
|
||||
|
||||
class CalcHist3D_8uInvoker
|
||||
{
|
||||
public:
|
||||
CalcHist3D_8uInvoker( const vector<uchar*>& _ptrs, const vector<int>& _deltas,
|
||||
Size imsize, Mat& hist, int dims, const vector<size_t>& tab )
|
||||
: mask_(_ptrs[dims]),
|
||||
mstep_(_deltas[dims*2 + 1]),
|
||||
histogramSize_(hist.size.p), histogramType_(hist.type()),
|
||||
imageWidth_(imsize.width),
|
||||
tab_((size_t*)&tab[0]),
|
||||
globalHistogram_(hist.data)
|
||||
{
|
||||
p_[0] = (uchar*)(&_ptrs[0])[0]; p_[1] = (uchar*)(&_ptrs[0])[1]; p_[2] = (uchar*)(&_ptrs[0])[2];
|
||||
step_[0] = (&_deltas[0])[1]; step_[1] = (&_deltas[0])[3]; step_[2] = (&_deltas[0])[5];
|
||||
d_[0] = (&_deltas[0])[0]; d_[1] = (&_deltas[0])[2]; d_[2] = (&_deltas[0])[4];
|
||||
}
|
||||
|
||||
void operator()( const BlockedRange& range ) const
|
||||
{
|
||||
uchar* p0 = p_[0] + range.begin()*(step_[0] + imageWidth_*d_[0]);
|
||||
uchar* p1 = p_[1] + range.begin()*(step_[1] + imageWidth_*d_[1]);
|
||||
uchar* p2 = p_[2] + range.begin()*(step_[2] + imageWidth_*d_[2]);
|
||||
uchar* mask = mask_ + range.begin()*mstep_;
|
||||
|
||||
for(int i = range.begin(); i < range.end(); i++, p0 += step_[0], p1 += step_[1], p2 += step_[2] )
|
||||
{
|
||||
if( !mask_ )
|
||||
{
|
||||
for( int x = 0; x < imageWidth_; x++, p0 += d_[0], p1 += d_[1], p2 += d_[2] )
|
||||
{
|
||||
size_t idx = tab_[*p0] + tab_[*p1 + 256] + tab_[*p2 + 512];
|
||||
if( idx < OUT_OF_RANGE )
|
||||
{
|
||||
( *(tbb::atomic<int>*)(globalHistogram_ + idx) ).fetch_and_add(1);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for( int x = 0; x < imageWidth_; x++, p0 += d_[0], p1 += d_[1], p2 += d_[2] )
|
||||
{
|
||||
size_t idx;
|
||||
if( mask[x] && (idx = tab_[*p0] + tab_[*p1 + 256] + tab_[*p2 + 512]) < OUT_OF_RANGE )
|
||||
{
|
||||
(*(tbb::atomic<int>*)(globalHistogram_ + idx)).fetch_and_add(1);
|
||||
}
|
||||
}
|
||||
mask += mstep_;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static bool isFit( const Mat& histogram, const Size imageSize )
|
||||
{
|
||||
return ( histogram.total() >= 128*128*128
|
||||
&& imageSize.width * imageSize.width >= 320*240 );
|
||||
}
|
||||
|
||||
private:
|
||||
uchar* p_[three];
|
||||
uchar* mask_;
|
||||
int mstep_;
|
||||
int step_[three];
|
||||
int d_[three];
|
||||
int* histogramSize_;
|
||||
int histogramType_;
|
||||
int imageWidth_;
|
||||
size_t* tab_;
|
||||
uchar* globalHistogram_;
|
||||
};
|
||||
|
||||
static void
|
||||
callCalcHist2D_8u( vector<uchar*>& _ptrs, const vector<int>& _deltas,
|
||||
Size imsize, Mat& hist, int dims, vector<size_t>& _tab )
|
||||
{
|
||||
int grainSize = imsize.height / tbb::task_scheduler_init::default_num_threads();
|
||||
tbb::mutex histogramWriteLock;
|
||||
|
||||
CalcHist2D_8uInvoker body(_ptrs, _deltas, imsize, hist, dims, _tab, &histogramWriteLock);
|
||||
parallel_for(BlockedRange(0, imsize.height, grainSize), body);
|
||||
}
|
||||
|
||||
static void
|
||||
callCalcHist3D_8u( vector<uchar*>& _ptrs, const vector<int>& _deltas,
|
||||
Size imsize, Mat& hist, int dims, vector<size_t>& _tab )
|
||||
{
|
||||
CalcHist3D_8uInvoker body(_ptrs, _deltas, imsize, hist, dims, _tab);
|
||||
parallel_for(BlockedRange(0, imsize.height), body);
|
||||
}
|
||||
#endif
|
||||
|
||||
template<typename T> static void
|
||||
calcHist_( vector<uchar*>& _ptrs, const vector<int>& _deltas,
|
||||
@@ -234,6 +768,11 @@ calcHist_( vector<uchar*>& _ptrs, const vector<int>& _deltas,
|
||||
|
||||
if( dims == 1 )
|
||||
{
|
||||
#ifdef HAVE_TBB
|
||||
calcHist1D_Invoker<T> body(_ptrs, _deltas, hist, _uniranges, size[0], dims, imsize);
|
||||
parallel_for(BlockedRange(0, imsize.height), body);
|
||||
return;
|
||||
#endif
|
||||
double a = uniranges[0], b = uniranges[1];
|
||||
int sz = size[0], d0 = deltas[0], step0 = deltas[1];
|
||||
const T* p0 = (const T*)ptrs[0];
|
||||
@@ -259,6 +798,11 @@ calcHist_( vector<uchar*>& _ptrs, const vector<int>& _deltas,
|
||||
}
|
||||
else if( dims == 2 )
|
||||
{
|
||||
#ifdef HAVE_TBB
|
||||
calcHist2D_Invoker<T> body(_ptrs, _deltas, hist, _uniranges, size, dims, imsize, hstep);
|
||||
parallel_for(BlockedRange(0, imsize.height), body);
|
||||
return;
|
||||
#endif
|
||||
double a0 = uniranges[0], b0 = uniranges[1], a1 = uniranges[2], b1 = uniranges[3];
|
||||
int sz0 = size[0], sz1 = size[1];
|
||||
int d0 = deltas[0], step0 = deltas[1],
|
||||
@@ -290,6 +834,14 @@ calcHist_( vector<uchar*>& _ptrs, const vector<int>& _deltas,
|
||||
}
|
||||
else if( dims == 3 )
|
||||
{
|
||||
#ifdef HAVE_TBB
|
||||
if( calcHist3D_Invoker<T>::isFit(hist, imsize) )
|
||||
{
|
||||
calcHist3D_Invoker<T> body(_ptrs, _deltas, imsize, hist, uniranges, dims, hstep, size);
|
||||
parallel_for(BlockedRange(0, imsize.height), body);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
double a0 = uniranges[0], b0 = uniranges[1],
|
||||
a1 = uniranges[2], b1 = uniranges[3],
|
||||
a2 = uniranges[4], b2 = uniranges[5];
|
||||
@@ -441,8 +993,20 @@ calcHist_8u( vector<uchar*>& _ptrs, const vector<int>& _deltas,
|
||||
|
||||
if( dims == 1 )
|
||||
{
|
||||
#ifdef HAVE_TBB
|
||||
if( CalcHist1D_8uInvoker::isFit(hist, imsize) )
|
||||
{
|
||||
int treadsNumber = tbb::task_scheduler_init::default_num_threads();
|
||||
int grainSize = imsize.height/treadsNumber;
|
||||
tbb::mutex histogramWriteLock;
|
||||
|
||||
CalcHist1D_8uInvoker body(_ptrs, _deltas, imsize, hist, dims, _tab, &histogramWriteLock);
|
||||
parallel_for(BlockedRange(0, imsize.height, grainSize), body);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
int d0 = deltas[0], step0 = deltas[1];
|
||||
int matH[256] = {0};
|
||||
int matH[256] = { 0, };
|
||||
const uchar* p0 = (const uchar*)ptrs[0];
|
||||
|
||||
for( ; imsize.height--; p0 += step0, mask += mstep )
|
||||
@@ -489,6 +1053,13 @@ calcHist_8u( vector<uchar*>& _ptrs, const vector<int>& _deltas,
|
||||
}
|
||||
else if( dims == 2 )
|
||||
{
|
||||
#ifdef HAVE_TBB
|
||||
if( CalcHist2D_8uInvoker::isFit(hist, imsize) )
|
||||
{
|
||||
callCalcHist2D_8u(_ptrs, _deltas, imsize, hist, dims, _tab);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
int d0 = deltas[0], step0 = deltas[1],
|
||||
d1 = deltas[2], step1 = deltas[3];
|
||||
const uchar* p0 = (const uchar*)ptrs[0];
|
||||
@@ -514,6 +1085,13 @@ calcHist_8u( vector<uchar*>& _ptrs, const vector<int>& _deltas,
|
||||
}
|
||||
else if( dims == 3 )
|
||||
{
|
||||
#ifdef HAVE_TBB
|
||||
if( CalcHist3D_8uInvoker::isFit(hist, imsize) )
|
||||
{
|
||||
callCalcHist3D_8u(_ptrs, _deltas, imsize, hist, dims, _tab);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
int d0 = deltas[0], step0 = deltas[1],
|
||||
d1 = deltas[2], step1 = deltas[3],
|
||||
d2 = deltas[4], step2 = deltas[5];
|
||||
@@ -2404,61 +2982,206 @@ cvCalcProbDensity( const CvHistogram* hist, const CvHistogram* hist_mask,
|
||||
}
|
||||
}
|
||||
|
||||
class EqualizeHistCalcHist_Invoker
|
||||
{
|
||||
public:
|
||||
enum {HIST_SZ = 256};
|
||||
|
||||
#ifdef HAVE_TBB
|
||||
typedef tbb::mutex* MutextPtr;
|
||||
#else
|
||||
typedef void* MutextPtr;
|
||||
#endif
|
||||
|
||||
EqualizeHistCalcHist_Invoker(cv::Mat& src, int* histogram, MutextPtr histogramLock)
|
||||
: src_(src), globalHistogram_(histogram), histogramLock_(histogramLock)
|
||||
{ }
|
||||
|
||||
void operator()( const cv::BlockedRange& rowRange ) const
|
||||
{
|
||||
int localHistogram[HIST_SZ] = {0, };
|
||||
|
||||
const size_t sstep = src_.step;
|
||||
|
||||
int width = src_.cols;
|
||||
int height = rowRange.end() - rowRange.begin();
|
||||
|
||||
if (src_.isContinuous())
|
||||
{
|
||||
width *= height;
|
||||
height = 1;
|
||||
}
|
||||
|
||||
for (const uchar* ptr = src_.ptr<uchar>(rowRange.begin()); height--; ptr += sstep)
|
||||
{
|
||||
int x = 0;
|
||||
for (; x <= width - 4; x += 4)
|
||||
{
|
||||
int t0 = ptr[x], t1 = ptr[x+1];
|
||||
localHistogram[t0]++; localHistogram[t1]++;
|
||||
t0 = ptr[x+2]; t1 = ptr[x+3];
|
||||
localHistogram[t0]++; localHistogram[t1]++;
|
||||
}
|
||||
|
||||
for (; x < width; ++x, ++ptr)
|
||||
localHistogram[ptr[x]]++;
|
||||
}
|
||||
|
||||
#ifdef HAVE_TBB
|
||||
tbb::mutex::scoped_lock lock(*histogramLock_);
|
||||
#endif
|
||||
|
||||
for( int i = 0; i < HIST_SZ; i++ )
|
||||
globalHistogram_[i] += localHistogram[i];
|
||||
}
|
||||
|
||||
static bool isWorthParallel( const cv::Mat& src )
|
||||
{
|
||||
#ifdef HAVE_TBB
|
||||
return ( src.total() >= 640*480 );
|
||||
#else
|
||||
(void)src;
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
private:
|
||||
EqualizeHistCalcHist_Invoker& operator=(const EqualizeHistCalcHist_Invoker&);
|
||||
|
||||
cv::Mat& src_;
|
||||
int* globalHistogram_;
|
||||
MutextPtr histogramLock_;
|
||||
};
|
||||
|
||||
class EqualizeHistLut_Invoker
|
||||
{
|
||||
public:
|
||||
EqualizeHistLut_Invoker( cv::Mat& src, cv::Mat& dst, int* lut )
|
||||
: src_(src),
|
||||
dst_(dst),
|
||||
lut_(lut)
|
||||
{ }
|
||||
|
||||
void operator()( const cv::BlockedRange& rowRange ) const
|
||||
{
|
||||
const size_t sstep = src_.step;
|
||||
const size_t dstep = dst_.step;
|
||||
|
||||
int width = src_.cols;
|
||||
int height = rowRange.end() - rowRange.begin();
|
||||
int* lut = lut_;
|
||||
|
||||
if (src_.isContinuous() && dst_.isContinuous())
|
||||
{
|
||||
width *= height;
|
||||
height = 1;
|
||||
}
|
||||
|
||||
const uchar* sptr = src_.ptr<uchar>(rowRange.begin());
|
||||
uchar* dptr = dst_.ptr<uchar>(rowRange.begin());
|
||||
|
||||
for (; height--; sptr += sstep, dptr += dstep)
|
||||
{
|
||||
int x = 0;
|
||||
for (; x <= width - 4; x += 4)
|
||||
{
|
||||
int v0 = sptr[x];
|
||||
int v1 = sptr[x+1];
|
||||
int x0 = lut[v0];
|
||||
int x1 = lut[v1];
|
||||
dptr[x] = (uchar)x0;
|
||||
dptr[x+1] = (uchar)x1;
|
||||
|
||||
v0 = sptr[x+2];
|
||||
v1 = sptr[x+3];
|
||||
x0 = lut[v0];
|
||||
x1 = lut[v1];
|
||||
dptr[x+2] = (uchar)x0;
|
||||
dptr[x+3] = (uchar)x1;
|
||||
}
|
||||
|
||||
for (; x < width; ++x)
|
||||
dptr[x] = (uchar)lut[sptr[x]];
|
||||
}
|
||||
}
|
||||
|
||||
static bool isWorthParallel( const cv::Mat& src )
|
||||
{
|
||||
#ifdef HAVE_TBB
|
||||
return ( src.total() >= 640*480 );
|
||||
#else
|
||||
(void)src;
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
private:
|
||||
EqualizeHistLut_Invoker& operator=(const EqualizeHistLut_Invoker&);
|
||||
|
||||
cv::Mat& src_;
|
||||
cv::Mat& dst_;
|
||||
int* lut_;
|
||||
};
|
||||
|
||||
CV_IMPL void cvEqualizeHist( const CvArr* srcarr, CvArr* dstarr )
|
||||
{
|
||||
CvMat sstub, *src = cvGetMat(srcarr, &sstub);
|
||||
CvMat dstub, *dst = cvGetMat(dstarr, &dstub);
|
||||
|
||||
CV_Assert( CV_ARE_SIZES_EQ(src, dst) && CV_ARE_TYPES_EQ(src, dst) &&
|
||||
CV_MAT_TYPE(src->type) == CV_8UC1 );
|
||||
CvSize size = cvGetMatSize(src);
|
||||
if( CV_IS_MAT_CONT(src->type & dst->type) )
|
||||
{
|
||||
size.width *= size.height;
|
||||
size.height = 1;
|
||||
cv::equalizeHist(cv::cvarrToMat(srcarr), cv::cvarrToMat(dstarr));
|
||||
}
|
||||
int x, y;
|
||||
const int hist_sz = 256;
|
||||
int hist[hist_sz];
|
||||
memset(hist, 0, sizeof(hist));
|
||||
|
||||
for( y = 0; y < size.height; y++ )
|
||||
{
|
||||
const uchar* sptr = src->data.ptr + src->step*y;
|
||||
for( x = 0; x < size.width; x++ )
|
||||
hist[sptr[x]]++;
|
||||
}
|
||||
|
||||
float scale = 255.f/(size.width*size.height);
|
||||
int sum = 0;
|
||||
uchar lut[hist_sz+1];
|
||||
|
||||
for( int i = 0; i < hist_sz; i++ )
|
||||
{
|
||||
sum += hist[i];
|
||||
int val = cvRound(sum*scale);
|
||||
lut[i] = CV_CAST_8U(val);
|
||||
}
|
||||
|
||||
lut[0] = 0;
|
||||
for( y = 0; y < size.height; y++ )
|
||||
{
|
||||
const uchar* sptr = src->data.ptr + src->step*y;
|
||||
uchar* dptr = dst->data.ptr + dst->step*y;
|
||||
for( x = 0; x < size.width; x++ )
|
||||
dptr[x] = lut[sptr[x]];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void cv::equalizeHist( InputArray _src, OutputArray _dst )
|
||||
{
|
||||
Mat src = _src.getMat();
|
||||
CV_Assert( src.type() == CV_8UC1 );
|
||||
|
||||
_dst.create( src.size(), src.type() );
|
||||
Mat dst = _dst.getMat();
|
||||
CvMat _csrc = src, _cdst = dst;
|
||||
cvEqualizeHist( &_csrc, &_cdst );
|
||||
|
||||
if(src.empty())
|
||||
return;
|
||||
|
||||
#ifdef HAVE_TBB
|
||||
tbb::mutex histogramLockInstance;
|
||||
EqualizeHistCalcHist_Invoker::MutextPtr histogramLock = &histogramLockInstance;
|
||||
#else
|
||||
EqualizeHistCalcHist_Invoker::MutextPtr histogramLock = 0;
|
||||
#endif
|
||||
|
||||
const int hist_sz = EqualizeHistCalcHist_Invoker::HIST_SZ;
|
||||
int hist[hist_sz] = {0,};
|
||||
int lut[hist_sz];
|
||||
|
||||
EqualizeHistCalcHist_Invoker calcBody(src, hist, histogramLock);
|
||||
EqualizeHistLut_Invoker lutBody(src, dst, lut);
|
||||
cv::BlockedRange heightRange(0, src.rows);
|
||||
|
||||
if(EqualizeHistCalcHist_Invoker::isWorthParallel(src))
|
||||
parallel_for(heightRange, calcBody);
|
||||
else
|
||||
calcBody(heightRange);
|
||||
|
||||
int i = 0;
|
||||
while (!hist[i]) ++i;
|
||||
|
||||
int total = (int)src.total();
|
||||
if (hist[i] == total)
|
||||
{
|
||||
dst.setTo(i);
|
||||
return;
|
||||
}
|
||||
|
||||
float scale = (hist_sz - 1.f)/(total - hist[i]);
|
||||
int sum = 0;
|
||||
|
||||
for (lut[i++] = 0; i < hist_sz; ++i)
|
||||
{
|
||||
sum += hist[i];
|
||||
lut[i] = saturate_cast<uchar>(sum * scale);
|
||||
}
|
||||
|
||||
if(EqualizeHistLut_Invoker::isWorthParallel(src))
|
||||
parallel_for(heightRange, lutBody);
|
||||
else
|
||||
lutBody(heightRange);
|
||||
}
|
||||
|
||||
/* Implementation of RTTI and Generic Functions for CvHistogram */
|
||||
|
@@ -1241,16 +1241,206 @@ static void resizeGeneric_( const Mat& src, Mat& dst,
|
||||
template <typename T, typename WT>
|
||||
struct ResizeAreaFastNoVec
|
||||
{
|
||||
ResizeAreaFastNoVec(int /*_scale_x*/, int /*_scale_y*/,
|
||||
int /*_cn*/, int /*_step*//*, const int**/ /*_ofs*/) { }
|
||||
int operator() (const T* /*S*/, T* /*D*/, int /*w*/) const { return 0; }
|
||||
ResizeAreaFastNoVec(int, int) { }
|
||||
ResizeAreaFastNoVec(int, int, int, int) { }
|
||||
int operator() (const T*, T*, int) const
|
||||
{ return 0; }
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
#if CV_SSE2
|
||||
class ResizeAreaFastVec_SIMD_8u
|
||||
{
|
||||
public:
|
||||
ResizeAreaFastVec_SIMD_8u(int _cn, int _step) :
|
||||
cn(_cn), step(_step)
|
||||
{
|
||||
use_simd = checkHardwareSupport(CV_CPU_SSE2);
|
||||
}
|
||||
|
||||
int operator() (const uchar* S, uchar* D, int w) const
|
||||
{
|
||||
if (!use_simd)
|
||||
return 0;
|
||||
|
||||
int dx = 0;
|
||||
const uchar* S0 = S;
|
||||
const uchar* S1 = S0 + step;
|
||||
__m128i zero = _mm_setzero_si128();
|
||||
__m128i delta2 = _mm_set1_epi16(2);
|
||||
|
||||
if (cn == 1)
|
||||
{
|
||||
__m128i masklow = _mm_set1_epi16(0x00ff);
|
||||
for ( ; dx < w - 8; dx += 8, S0 += 16, S1 += 16, D += 8)
|
||||
{
|
||||
__m128i r0 = _mm_loadu_si128((const __m128i*)S0);
|
||||
__m128i r1 = _mm_loadu_si128((const __m128i*)S1);
|
||||
|
||||
__m128i s0 = _mm_add_epi16(_mm_srli_epi16(r0, 8), _mm_and_si128(r0, masklow));
|
||||
__m128i s1 = _mm_add_epi16(_mm_srli_epi16(r1, 8), _mm_and_si128(r1, masklow));
|
||||
s0 = _mm_add_epi16(_mm_add_epi16(s0, s1), delta2);
|
||||
s0 = _mm_packus_epi16(_mm_srli_epi16(s0, 2), zero);
|
||||
|
||||
_mm_storel_epi64((__m128i*)D, s0);
|
||||
}
|
||||
}
|
||||
else if (cn == 3)
|
||||
for ( ; dx < w - 6; dx += 6, S0 += 12, S1 += 12, D += 6)
|
||||
{
|
||||
__m128i r0 = _mm_loadu_si128((const __m128i*)S0);
|
||||
__m128i r1 = _mm_loadu_si128((const __m128i*)S1);
|
||||
|
||||
__m128i r0_16l = _mm_unpacklo_epi8(r0, zero);
|
||||
__m128i r0_16h = _mm_unpacklo_epi8(_mm_srli_si128(r0, 6), zero);
|
||||
__m128i r1_16l = _mm_unpacklo_epi8(r1, zero);
|
||||
__m128i r1_16h = _mm_unpacklo_epi8(_mm_srli_si128(r1, 6), zero);
|
||||
|
||||
__m128i s0 = _mm_add_epi16(r0_16l, _mm_srli_si128(r0_16l, 6));
|
||||
__m128i s1 = _mm_add_epi16(r1_16l, _mm_srli_si128(r1_16l, 6));
|
||||
s0 = _mm_add_epi16(s1, _mm_add_epi16(s0, delta2));
|
||||
s0 = _mm_packus_epi16(_mm_srli_epi16(s0, 2), zero);
|
||||
_mm_storel_epi64((__m128i*)D, s0);
|
||||
|
||||
s0 = _mm_add_epi16(r0_16h, _mm_srli_si128(r0_16h, 6));
|
||||
s1 = _mm_add_epi16(r1_16h, _mm_srli_si128(r1_16h, 6));
|
||||
s0 = _mm_add_epi16(s1, _mm_add_epi16(s0, delta2));
|
||||
s0 = _mm_packus_epi16(_mm_srli_epi16(s0, 2), zero);
|
||||
_mm_storel_epi64((__m128i*)(D+3), s0);
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_Assert(cn == 4);
|
||||
for ( ; dx < w - 8; dx += 8, S0 += 16, S1 += 16, D += 8)
|
||||
{
|
||||
__m128i r0 = _mm_loadu_si128((const __m128i*)S0);
|
||||
__m128i r1 = _mm_loadu_si128((const __m128i*)S1);
|
||||
|
||||
__m128i r0_16l = _mm_unpacklo_epi8(r0, zero);
|
||||
__m128i r0_16h = _mm_unpackhi_epi8(r0, zero);
|
||||
__m128i r1_16l = _mm_unpacklo_epi8(r1, zero);
|
||||
__m128i r1_16h = _mm_unpackhi_epi8(r1, zero);
|
||||
|
||||
__m128i s0 = _mm_add_epi16(r0_16l, _mm_srli_si128(r0_16l, 8));
|
||||
__m128i s1 = _mm_add_epi16(r1_16l, _mm_srli_si128(r1_16l, 8));
|
||||
s0 = _mm_add_epi16(s1, _mm_add_epi16(s0, delta2));
|
||||
s0 = _mm_packus_epi16(_mm_srli_epi16(s0, 2), zero);
|
||||
_mm_storel_epi64((__m128i*)D, s0);
|
||||
|
||||
s0 = _mm_add_epi16(r0_16h, _mm_srli_si128(r0_16h, 8));
|
||||
s1 = _mm_add_epi16(r1_16h, _mm_srli_si128(r1_16h, 8));
|
||||
s0 = _mm_add_epi16(s1, _mm_add_epi16(s0, delta2));
|
||||
s0 = _mm_packus_epi16(_mm_srli_epi16(s0, 2), zero);
|
||||
_mm_storel_epi64((__m128i*)(D+4), s0);
|
||||
}
|
||||
}
|
||||
|
||||
return dx;
|
||||
}
|
||||
|
||||
private:
|
||||
int cn;
|
||||
bool use_simd;
|
||||
int step;
|
||||
};
|
||||
|
||||
class ResizeAreaFastVec_SIMD_16u
|
||||
{
|
||||
public:
|
||||
ResizeAreaFastVec_SIMD_16u(int _cn, int _step) :
|
||||
cn(_cn), step(_step)
|
||||
{
|
||||
use_simd = checkHardwareSupport(CV_CPU_SSE2);
|
||||
}
|
||||
|
||||
int operator() (const ushort* S, ushort* D, int w) const
|
||||
{
|
||||
if (!use_simd)
|
||||
return 0;
|
||||
|
||||
int dx = 0;
|
||||
const ushort* S0 = (const ushort*)S;
|
||||
const ushort* S1 = (const ushort*)((const uchar*)(S) + step);
|
||||
__m128i masklow = _mm_set1_epi32(0x0000ffff);
|
||||
__m128i zero = _mm_setzero_si128();
|
||||
__m128i delta2 = _mm_set1_epi32(2);
|
||||
|
||||
#define _mm_packus_epi32(a, zero) _mm_packs_epi32(_mm_srai_epi32(_mm_slli_epi32(a, 16), 16), zero)
|
||||
|
||||
if (cn == 1)
|
||||
{
|
||||
for ( ; dx < w - 4; dx += 4, S0 += 8, S1 += 8, D += 4)
|
||||
{
|
||||
__m128i r0 = _mm_loadu_si128((const __m128i*)S0);
|
||||
__m128i r1 = _mm_loadu_si128((const __m128i*)S1);
|
||||
|
||||
__m128i s0 = _mm_add_epi32(_mm_srli_epi32(r0, 16), _mm_and_si128(r0, masklow));
|
||||
__m128i s1 = _mm_add_epi32(_mm_srli_epi32(r1, 16), _mm_and_si128(r1, masklow));
|
||||
s0 = _mm_add_epi32(_mm_add_epi32(s0, s1), delta2);
|
||||
s0 = _mm_srli_epi32(s0, 2);
|
||||
s0 = _mm_packus_epi32(s0, zero);
|
||||
|
||||
_mm_storel_epi64((__m128i*)D, s0);
|
||||
}
|
||||
}
|
||||
else if (cn == 3)
|
||||
for ( ; dx < w - 3; dx += 3, S0 += 6, S1 += 6, D += 3)
|
||||
{
|
||||
__m128i r0 = _mm_loadu_si128((const __m128i*)S0);
|
||||
__m128i r1 = _mm_loadu_si128((const __m128i*)S1);
|
||||
|
||||
__m128i r0_16l = _mm_unpacklo_epi16(r0, zero);
|
||||
__m128i r0_16h = _mm_unpacklo_epi16(_mm_srli_si128(r0, 6), zero);
|
||||
__m128i r1_16l = _mm_unpacklo_epi16(r1, zero);
|
||||
__m128i r1_16h = _mm_unpacklo_epi16(_mm_srli_si128(r1, 6), zero);
|
||||
|
||||
__m128i s0 = _mm_add_epi16(r0_16l, r0_16h);
|
||||
__m128i s1 = _mm_add_epi16(r1_16l, r1_16h);
|
||||
s0 = _mm_add_epi32(s1, _mm_add_epi32(s0, delta2));
|
||||
s0 = _mm_packus_epi32(_mm_srli_epi32(s0, 2), zero);
|
||||
_mm_storel_epi64((__m128i*)D, s0);
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_Assert(cn == 4);
|
||||
for ( ; dx < w - 4; dx += 4, S0 += 8, S1 += 8, D += 4)
|
||||
{
|
||||
__m128i r0 = _mm_loadu_si128((const __m128i*)S0);
|
||||
__m128i r1 = _mm_loadu_si128((const __m128i*)S1);
|
||||
|
||||
__m128i r0_32l = _mm_unpacklo_epi16(r0, zero);
|
||||
__m128i r0_32h = _mm_unpackhi_epi16(r0, zero);
|
||||
__m128i r1_32l = _mm_unpacklo_epi16(r1, zero);
|
||||
__m128i r1_32h = _mm_unpackhi_epi16(r1, zero);
|
||||
|
||||
__m128i s0 = _mm_add_epi32(r0_32l, r0_32h);
|
||||
__m128i s1 = _mm_add_epi32(r1_32l, r1_32h);
|
||||
s0 = _mm_add_epi32(s1, _mm_add_epi32(s0, delta2));
|
||||
s0 = _mm_packus_epi32(_mm_srli_epi32(s0, 2), zero);
|
||||
_mm_storel_epi64((__m128i*)D, s0);
|
||||
}
|
||||
}
|
||||
|
||||
#undef _mm_packus_epi32
|
||||
|
||||
return dx;
|
||||
}
|
||||
|
||||
private:
|
||||
int cn;
|
||||
int step;
|
||||
bool use_simd;
|
||||
};
|
||||
|
||||
#else
|
||||
typedef ResizeAreaFastNoVec<uchar, uchar> ResizeAreaFastVec_SIMD_8u;
|
||||
typedef ResizeAreaFastNoVec<ushort, ushort> ResizeAreaFastVec_SIMD_16u;
|
||||
#endif
|
||||
|
||||
template<typename T, typename SIMDVecOp>
|
||||
struct ResizeAreaFastVec
|
||||
{
|
||||
ResizeAreaFastVec(int _scale_x, int _scale_y, int _cn, int _step/*, const int* _ofs*/) :
|
||||
scale_x(_scale_x), scale_y(_scale_y), cn(_cn), step(_step)/*, ofs(_ofs)*/
|
||||
ResizeAreaFastVec(int _scale_x, int _scale_y, int _cn, int _step) :
|
||||
scale_x(_scale_x), scale_y(_scale_y), cn(_cn), step(_step), vecOp(_cn, _step)
|
||||
{
|
||||
fast_mode = scale_x == 2 && scale_y == 2 && (cn == 1 || cn == 3 || cn == 4);
|
||||
}
|
||||
@@ -1261,7 +1451,7 @@ struct ResizeAreaFastVec
|
||||
return 0;
|
||||
|
||||
const T* nextS = (const T*)((const uchar*)S + step);
|
||||
int dx = 0;
|
||||
int dx = vecOp(S, D, w);
|
||||
|
||||
if (cn == 1)
|
||||
for( ; dx < w; ++dx )
|
||||
@@ -1279,7 +1469,7 @@ struct ResizeAreaFastVec
|
||||
}
|
||||
else
|
||||
{
|
||||
assert(cn == 4);
|
||||
CV_Assert(cn == 4);
|
||||
for( ; dx < w; dx += 4 )
|
||||
{
|
||||
int index = dx*2;
|
||||
@@ -1298,6 +1488,7 @@ private:
|
||||
int cn;
|
||||
bool fast_mode;
|
||||
int step;
|
||||
SIMDVecOp vecOp;
|
||||
};
|
||||
|
||||
template <typename T, typename WT, typename VecOp>
|
||||
@@ -1702,10 +1893,10 @@ void cv::resize( InputArray _src, OutputArray _dst, Size dsize,
|
||||
|
||||
static ResizeAreaFastFunc areafast_tab[] =
|
||||
{
|
||||
resizeAreaFast_<uchar, int, ResizeAreaFastVec<uchar> >,
|
||||
resizeAreaFast_<uchar, int, ResizeAreaFastVec<uchar, ResizeAreaFastVec_SIMD_8u> >,
|
||||
0,
|
||||
resizeAreaFast_<ushort, float, ResizeAreaFastVec<ushort> >,
|
||||
resizeAreaFast_<short, float, ResizeAreaFastVec<short> >,
|
||||
resizeAreaFast_<ushort, float, ResizeAreaFastVec<ushort, ResizeAreaFastVec_SIMD_16u> >,
|
||||
resizeAreaFast_<short, float, ResizeAreaFastVec<short, ResizeAreaFastNoVec<short, float> > >,
|
||||
0,
|
||||
resizeAreaFast_<float, float, ResizeAreaFastNoVec<float, float> >,
|
||||
resizeAreaFast_<double, double, ResizeAreaFastNoVec<double, double> >,
|
||||
@@ -1764,9 +1955,7 @@ void cv::resize( InputArray _src, OutputArray _dst, Size dsize,
|
||||
// in case of scale_x && scale_y is equal to 2
|
||||
// INTER_AREA (fast) also is equal to INTER_LINEAR
|
||||
if( interpolation == INTER_LINEAR && is_area_fast && iscale_x == 2 && iscale_y == 2 )
|
||||
{
|
||||
interpolation = INTER_AREA;
|
||||
}
|
||||
|
||||
// true "area" interpolation is only implemented for the case (scale_x <= 1 && scale_y <= 1).
|
||||
// In other cases it is emulated using some variant of bilinear interpolation
|
||||
|
@@ -1685,12 +1685,14 @@ TEST(Imgproc_ColorBayer, accuracy) { CV_ColorBayerTest test; test.safe_run(); }
|
||||
|
||||
TEST(Imgproc_ColorBayer, regression)
|
||||
{
|
||||
cvtest::TS& ts = *cvtest::TS::ptr();
|
||||
cvtest::TS* ts = cvtest::TS::ptr();
|
||||
|
||||
Mat given = imread(string(ts.get_data_path()) + "/cvtcolor/bayer_input.png", CV_LOAD_IMAGE_GRAYSCALE);
|
||||
Mat gold = imread(string(ts.get_data_path()) + "/cvtcolor/bayer_gold.png", CV_LOAD_IMAGE_UNCHANGED);
|
||||
Mat given = imread(string(ts->get_data_path()) + "/cvtcolor/bayer_input.png", CV_LOAD_IMAGE_GRAYSCALE);
|
||||
Mat gold = imread(string(ts->get_data_path()) + "/cvtcolor/bayer_gold.png", CV_LOAD_IMAGE_UNCHANGED);
|
||||
Mat result;
|
||||
|
||||
CV_Assert(given.data != NULL && gold.data != NULL);
|
||||
|
||||
cvtColor(given, result, CV_BayerBG2GRAY);
|
||||
|
||||
EXPECT_EQ(gold.type(), result.type());
|
||||
@@ -1705,10 +1707,10 @@ TEST(Imgproc_ColorBayer, regression)
|
||||
|
||||
TEST(Imgproc_ColorBayerVNG, regression)
|
||||
{
|
||||
cvtest::TS& ts = *cvtest::TS::ptr();
|
||||
cvtest::TS* ts = cvtest::TS::ptr();
|
||||
|
||||
Mat given = imread(string(ts.get_data_path()) + "/cvtcolor/bayer_input.png", CV_LOAD_IMAGE_GRAYSCALE);
|
||||
string goldfname = string(ts.get_data_path()) + "/cvtcolor/bayerVNG_gold.png";
|
||||
Mat given = imread(string(ts->get_data_path()) + "/cvtcolor/bayer_input.png", CV_LOAD_IMAGE_GRAYSCALE);
|
||||
string goldfname = string(ts->get_data_path()) + "/cvtcolor/bayerVNG_gold.png";
|
||||
Mat gold = imread(goldfname, CV_LOAD_IMAGE_UNCHANGED);
|
||||
Mat result;
|
||||
|
||||
@@ -1731,91 +1733,94 @@ TEST(Imgproc_ColorBayerVNG, regression)
|
||||
}
|
||||
}
|
||||
|
||||
// creating Bayer pattern
|
||||
template <typename T, int depth>
|
||||
static void calculateBayerPattern(const Mat& src, Mat& bayer, const char* pattern)
|
||||
{
|
||||
Size ssize = src.size();
|
||||
const int scn = 1;
|
||||
bayer.create(ssize, CV_MAKETYPE(depth, scn));
|
||||
|
||||
if (!strcmp(pattern, "bg"))
|
||||
{
|
||||
for (int y = 0; y < ssize.height; ++y)
|
||||
for (int x = 0; x < ssize.width; ++x)
|
||||
{
|
||||
if ((x + y) % 2)
|
||||
bayer.at<T>(y, x) = static_cast<T>(src.at<Vec3b>(y, x)[1]);
|
||||
else if (x % 2)
|
||||
bayer.at<T>(y, x) = static_cast<T>(src.at<Vec3b>(y, x)[0]);
|
||||
else
|
||||
bayer.at<T>(y, x) = static_cast<T>(src.at<Vec3b>(y, x)[2]);
|
||||
}
|
||||
}
|
||||
else if (!strcmp(pattern, "gb"))
|
||||
{
|
||||
for (int y = 0; y < ssize.height; ++y)
|
||||
for (int x = 0; x < ssize.width; ++x)
|
||||
{
|
||||
if ((x + y) % 2 == 0)
|
||||
bayer.at<T>(y, x) = static_cast<T>(src.at<Vec3b>(y, x)[1]);
|
||||
else if (x % 2 == 0)
|
||||
bayer.at<T>(y, x) = static_cast<T>(src.at<Vec3b>(y, x)[0]);
|
||||
else
|
||||
bayer.at<T>(y, x) = static_cast<T>(src.at<Vec3b>(y, x)[2]);
|
||||
}
|
||||
}
|
||||
else if (!strcmp(pattern, "rg"))
|
||||
{
|
||||
for (int y = 0; y < ssize.height; ++y)
|
||||
for (int x = 0; x < ssize.width; ++x)
|
||||
{
|
||||
if ((x + y) % 2)
|
||||
bayer.at<T>(y, x) = static_cast<T>(src.at<Vec3b>(y, x)[1]);
|
||||
else if (x % 2 == 0)
|
||||
bayer.at<T>(y, x) = static_cast<T>(src.at<Vec3b>(y, x)[0]);
|
||||
else
|
||||
bayer.at<T>(y, x) = static_cast<T>(src.at<Vec3b>(y, x)[2]);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int y = 0; y < ssize.height; ++y)
|
||||
for (int x = 0; x < ssize.width; ++x)
|
||||
{
|
||||
if ((x + y) % 2 == 0)
|
||||
bayer.at<T>(y, x) = static_cast<T>(src.at<Vec3b>(y, x)[1]);
|
||||
else if (x % 2)
|
||||
bayer.at<T>(y, x) = static_cast<T>(src.at<Vec3b>(y, x)[0]);
|
||||
else
|
||||
bayer.at<T>(y, x) = static_cast<T>(src.at<Vec3b>(y, x)[2]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST(Imgproc_ColorBayerVNG_Strict, regression)
|
||||
{
|
||||
cvtest::TS& ts = *cvtest::TS::ptr();
|
||||
cvtest::TS* ts = cvtest::TS::ptr();
|
||||
const char pattern[][3] = { "bg", "gb", "rg", "gr" };
|
||||
const std::string image_name = "lena.png";
|
||||
const std::string parent_path = string(ts.get_data_path()) + "/cvtcolor_strict/";
|
||||
const std::string parent_path = string(ts->get_data_path()) + "/cvtcolor_strict/";
|
||||
|
||||
Mat src, dst, bayer, reference;
|
||||
std::string full_path = parent_path + image_name;
|
||||
src = imread(full_path, CV_LOAD_IMAGE_UNCHANGED);
|
||||
Size ssize = src.size();
|
||||
|
||||
if (src.data == NULL)
|
||||
{
|
||||
ts.set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
|
||||
ts.printf(cvtest::TS::SUMMARY, "No input image\n");
|
||||
ts.set_gtest_status();
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
|
||||
ts->printf(cvtest::TS::SUMMARY, "No input image\n");
|
||||
ts->set_gtest_status();
|
||||
return;
|
||||
}
|
||||
|
||||
int type = -1;
|
||||
for (int i = 0; i < 4; ++i)
|
||||
{
|
||||
// creating Bayer pattern
|
||||
bayer.create(ssize, CV_MAKETYPE(src.depth(), 1));
|
||||
|
||||
if (!strcmp(pattern[i], "bg"))
|
||||
{
|
||||
for (int y = 0; y < ssize.height; ++y)
|
||||
for (int x = 0; x < ssize.width; ++x)
|
||||
{
|
||||
if ((x + y) % 2)
|
||||
bayer.at<uchar>(y, x) = src.at<Vec3b>(y, x)[1];
|
||||
else if (x % 2)
|
||||
bayer.at<uchar>(y, x) = src.at<Vec3b>(y, x)[0];
|
||||
else
|
||||
bayer.at<uchar>(y, x) = src.at<Vec3b>(y, x)[2];
|
||||
}
|
||||
type = CV_BayerBG2BGR_VNG;
|
||||
}
|
||||
else if (!strcmp(pattern[i], "gb"))
|
||||
{
|
||||
for (int y = 0; y < ssize.height; ++y)
|
||||
for (int x = 0; x < ssize.width; ++x)
|
||||
{
|
||||
if ((x + y) % 2 == 0)
|
||||
bayer.at<uchar>(y, x) = src.at<Vec3b>(y, x)[1];
|
||||
else if (x % 2 == 0)
|
||||
bayer.at<uchar>(y, x) = src.at<Vec3b>(y, x)[0];
|
||||
else
|
||||
bayer.at<uchar>(y, x) = src.at<Vec3b>(y, x)[2];
|
||||
}
|
||||
type = CV_BayerGB2BGR_VNG;
|
||||
}
|
||||
else if (!strcmp(pattern[i], "rg"))
|
||||
{
|
||||
for (int y = 0; y < ssize.height; ++y)
|
||||
for (int x = 0; x < ssize.width; ++x)
|
||||
{
|
||||
if ((x + y) % 2)
|
||||
bayer.at<uchar>(y, x) = src.at<Vec3b>(y, x)[1];
|
||||
else if (x % 2 == 0)
|
||||
bayer.at<uchar>(y, x) = src.at<Vec3b>(y, x)[0];
|
||||
else
|
||||
bayer.at<uchar>(y, x) = src.at<Vec3b>(y, x)[2];
|
||||
}
|
||||
type = CV_BayerRG2BGR_VNG;
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int y = 0; y < ssize.height; ++y)
|
||||
for (int x = 0; x < ssize.width; ++x)
|
||||
{
|
||||
if ((x + y) % 2 == 0)
|
||||
bayer.at<uchar>(y, x) = src.at<Vec3b>(y, x)[1];
|
||||
else if (x % 2)
|
||||
bayer.at<uchar>(y, x) = src.at<Vec3b>(y, x)[0];
|
||||
else
|
||||
bayer.at<uchar>(y, x) = src.at<Vec3b>(y, x)[2];
|
||||
}
|
||||
type = CV_BayerGR2BGR_VNG;
|
||||
}
|
||||
calculateBayerPattern<uchar, CV_8U>(src, bayer, pattern[i]);
|
||||
CV_Assert(!bayer.empty() && bayer.type() == CV_8UC1);
|
||||
|
||||
// calculating a dst image
|
||||
cvtColor(bayer, dst, type);
|
||||
cvtColor(bayer, dst, CV_BayerBG2BGR_VNG + i);
|
||||
|
||||
// reading a reference image
|
||||
full_path = parent_path + pattern[i] + image_name;
|
||||
@@ -1829,16 +1834,17 @@ TEST(Imgproc_ColorBayerVNG_Strict, regression)
|
||||
if (reference.depth() != dst.depth() || reference.channels() != dst.channels() ||
|
||||
reference.size() != dst.size())
|
||||
{
|
||||
ts.set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
|
||||
ts.printf(cvtest::TS::SUMMARY, "\nReference channels: %d\n"
|
||||
std::cout << reference(Rect(0, 0, 5, 5)) << std::endl << std::endl << std::endl;
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
|
||||
ts->printf(cvtest::TS::SUMMARY, "\nReference channels: %d\n"
|
||||
"Actual channels: %d\n", reference.channels(), dst.channels());
|
||||
ts.printf(cvtest::TS::SUMMARY, "\nReference depth: %d\n"
|
||||
ts->printf(cvtest::TS::SUMMARY, "\nReference depth: %d\n"
|
||||
"Actual depth: %d\n", reference.depth(), dst.depth());
|
||||
ts.printf(cvtest::TS::SUMMARY, "\nReference rows: %d\n"
|
||||
ts->printf(cvtest::TS::SUMMARY, "\nReference rows: %d\n"
|
||||
"Actual rows: %d\n", reference.rows, dst.rows);
|
||||
ts.printf(cvtest::TS::SUMMARY, "\nReference cols: %d\n"
|
||||
ts->printf(cvtest::TS::SUMMARY, "\nReference cols: %d\n"
|
||||
"Actual cols: %d\n", reference.cols, dst.cols);
|
||||
ts.set_gtest_status();
|
||||
ts->set_gtest_status();
|
||||
|
||||
return;
|
||||
}
|
||||
@@ -1849,16 +1855,15 @@ TEST(Imgproc_ColorBayerVNG_Strict, regression)
|
||||
int nonZero = countNonZero(diff.reshape(1) > 1);
|
||||
if (nonZero != 0)
|
||||
{
|
||||
ts.set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
|
||||
ts.printf(cvtest::TS::SUMMARY, "\nCount non zero in absdiff: %d\n", nonZero);
|
||||
ts.set_gtest_status();
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
|
||||
ts->printf(cvtest::TS::SUMMARY, "\nCount non zero in absdiff: %d\n", nonZero);
|
||||
ts->set_gtest_status();
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void GetTestMatrix(Mat& src)
|
||||
static void getTestMatrix(Mat& src)
|
||||
{
|
||||
Size ssize(1000, 1000);
|
||||
src.create(ssize, CV_32FC3);
|
||||
@@ -1883,7 +1888,7 @@ void GetTestMatrix(Mat& src)
|
||||
}
|
||||
}
|
||||
|
||||
void validate_result(const Mat& reference, const Mat& actual, const Mat& src = Mat(), int mode = -1)
|
||||
static void validateResult(const Mat& reference, const Mat& actual, const Mat& src = Mat(), int mode = -1)
|
||||
{
|
||||
cvtest::TS* ts = cvtest::TS::ptr();
|
||||
Size ssize = reference.size();
|
||||
@@ -1924,8 +1929,7 @@ void validate_result(const Mat& reference, const Mat& actual, const Mat& src = M
|
||||
TEST(Imgproc_ColorLab_Full, accuracy)
|
||||
{
|
||||
Mat src;
|
||||
GetTestMatrix(src);
|
||||
Mat reference(src.size(), CV_32FC3);
|
||||
getTestMatrix(src);
|
||||
Size ssize = src.size();
|
||||
CV_Assert(ssize.width == ssize.height);
|
||||
|
||||
@@ -1942,12 +1946,245 @@ TEST(Imgproc_ColorLab_Full, accuracy)
|
||||
cv::Mat recons;
|
||||
cv::cvtColor(lab, recons, inverse_code);
|
||||
|
||||
validate_result(src, recons, src, forward_code);
|
||||
|
||||
// src *= 255.0f;
|
||||
// recons *= 255.0f;
|
||||
|
||||
// imshow("Test", src);
|
||||
// imshow("OpenCV", recons);
|
||||
// waitKey();
|
||||
validateResult(src, recons, src, forward_code);
|
||||
}
|
||||
|
||||
static void test_Bayer2RGB_EdgeAware_8u(const Mat& src, Mat& dst, int code)
|
||||
{
|
||||
if (dst.empty())
|
||||
dst.create(src.size(), CV_MAKETYPE(src.depth(), 3));
|
||||
Size size = src.size();
|
||||
size.width -= 1;
|
||||
size.height -= 1;
|
||||
|
||||
int dcn = dst.channels();
|
||||
CV_Assert(dcn == 3);
|
||||
|
||||
int step = src.step;
|
||||
const uchar* S = src.ptr<uchar>(1) + 1;
|
||||
uchar* D = dst.ptr<uchar>(1) + dcn;
|
||||
|
||||
int start_with_green = code == CV_BayerGB2BGR_EA || code == CV_BayerGR2BGR_EA ? 1 : 0;
|
||||
int blue = code == CV_BayerGB2BGR_EA || code == CV_BayerBG2BGR_EA ? 1 : 0;
|
||||
|
||||
for (int y = 1; y < size.height; ++y)
|
||||
{
|
||||
S = src.ptr<uchar>(y) + 1;
|
||||
D = dst.ptr<uchar>(y) + dcn;
|
||||
|
||||
if (start_with_green)
|
||||
{
|
||||
for (int x = 1; x < size.width; x += 2, S += 2, D += 2*dcn)
|
||||
{
|
||||
// red
|
||||
D[0] = (S[-1] + S[1]) / 2;
|
||||
D[1] = S[0];
|
||||
D[2] = (S[-step] + S[step]) / 2;
|
||||
if (!blue)
|
||||
std::swap(D[0], D[2]);
|
||||
}
|
||||
|
||||
S = src.ptr<uchar>(y) + 2;
|
||||
D = dst.ptr<uchar>(y) + 2*dcn;
|
||||
|
||||
for (int x = 2; x < size.width; x += 2, S += 2, D += 2*dcn)
|
||||
{
|
||||
// red
|
||||
D[0] = S[0];
|
||||
D[1] = (std::abs(S[-1] - S[1]) > std::abs(S[step] - S[-step]) ? (S[step] + S[-step] + 1) : (S[-1] + S[1] + 1)) / 2;
|
||||
D[2] = ((S[-step-1] + S[-step+1] + S[step-1] + S[step+1] + 2) / 4);
|
||||
if (!blue)
|
||||
std::swap(D[0], D[2]);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int x = 1; x < size.width; x += 2, S += 2, D += 2*dcn)
|
||||
{
|
||||
D[0] = S[0];
|
||||
D[1] = (std::abs(S[-1] - S[1]) > std::abs(S[step] - S[-step]) ? (S[step] + S[-step] + 1) : (S[-1] + S[1] + 1)) / 2;
|
||||
D[2] = ((S[-step-1] + S[-step+1] + S[step-1] + S[step+1] + 2) / 4);
|
||||
if (!blue)
|
||||
std::swap(D[0], D[2]);
|
||||
}
|
||||
|
||||
S = src.ptr<uchar>(y) + 2;
|
||||
D = dst.ptr<uchar>(y) + 2*dcn;
|
||||
|
||||
for (int x = 2; x < size.width; x += 2, S += 2, D += 2*dcn)
|
||||
{
|
||||
D[0] = (S[-1] + S[1] + 1) / 2;
|
||||
D[1] = S[0];
|
||||
D[2] = (S[-step] + S[step] + 1) / 2;
|
||||
if (!blue)
|
||||
std::swap(D[0], D[2]);
|
||||
}
|
||||
}
|
||||
|
||||
D = dst.ptr<uchar>(y + 1) - dcn;
|
||||
for (int i = 0; i < dcn; ++i)
|
||||
{
|
||||
D[i] = D[-dcn + i];
|
||||
D[-static_cast<int>(dst.step)+dcn+i] = D[-static_cast<int>(dst.step)+(dcn<<1)+i];
|
||||
}
|
||||
|
||||
start_with_green ^= 1;
|
||||
blue ^= 1;
|
||||
}
|
||||
|
||||
++size.width;
|
||||
uchar* firstRow = dst.data, *lastRow = dst.data + size.height * dst.step;
|
||||
size.width *= dcn;
|
||||
for (int x = 0; x < size.width; ++x)
|
||||
{
|
||||
firstRow[x] = firstRow[dst.step + x];
|
||||
lastRow[x] = lastRow[-static_cast<int>(dst.step)+x];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static void checkData(const Mat& actual, const Mat& reference, cvtest::TS* ts, const char* type,
|
||||
bool& next, const char* bayer_type)
|
||||
{
|
||||
EXPECT_EQ(actual.size(), reference.size());
|
||||
EXPECT_EQ(actual.channels(), reference.channels());
|
||||
EXPECT_EQ(actual.depth(), reference.depth());
|
||||
|
||||
Size size = reference.size();
|
||||
int dcn = reference.channels();
|
||||
size.width *= dcn;
|
||||
|
||||
for (int y = 0; y < size.height && next; ++y)
|
||||
{
|
||||
const T* A = reinterpret_cast<const T*>(actual.data + actual.step * y);
|
||||
const T* R = reinterpret_cast<const T*>(reference.data + reference.step * y);
|
||||
|
||||
for (int x = 0; x < size.width && next; ++x)
|
||||
if (std::abs(A[x] - R[x]) > 1)
|
||||
{
|
||||
#define SUM cvtest::TS::SUMMARY
|
||||
ts->printf(SUM, "\nReference value: %d\n", static_cast<int>(R[x]));
|
||||
ts->printf(SUM, "Actual value: %d\n", static_cast<int>(A[x]));
|
||||
ts->printf(SUM, "(y, x): (%d, %d)\n", y, x / reference.channels());
|
||||
ts->printf(SUM, "Channel pos: %d\n", x % reference.channels());
|
||||
ts->printf(SUM, "Pattern: %s\n", type);
|
||||
ts->printf(SUM, "Bayer image type: %s", bayer_type);
|
||||
#undef SUM
|
||||
|
||||
Mat diff;
|
||||
absdiff(actual, reference, diff);
|
||||
EXPECT_EQ(countNonZero(diff.reshape(1) > 1), 0);
|
||||
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
|
||||
ts->set_gtest_status();
|
||||
|
||||
next = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST(ImgProc_BayerEdgeAwareDemosaicing, accuracy)
|
||||
{
|
||||
cvtest::TS* ts = cvtest::TS::ptr();
|
||||
const std::string image_name = "lena.png";
|
||||
const std::string parent_path = string(ts->get_data_path()) + "/cvtcolor_strict/";
|
||||
|
||||
Mat src, bayer;
|
||||
std::string full_path = parent_path + image_name;
|
||||
src = imread(full_path, CV_LOAD_IMAGE_UNCHANGED);
|
||||
|
||||
if (src.data == NULL)
|
||||
{
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
|
||||
ts->printf(cvtest::TS::SUMMARY, "No input image\n");
|
||||
ts->set_gtest_status();
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
COLOR_BayerBG2BGR_EA = 127,
|
||||
COLOR_BayerGB2BGR_EA = 128,
|
||||
COLOR_BayerRG2BGR_EA = 129,
|
||||
COLOR_BayerGR2BGR_EA = 130,
|
||||
*/
|
||||
|
||||
bool next = true;
|
||||
const char* types[] = { "bg", "gb", "rg", "gr" };
|
||||
for (int i = 0; i < 4 && next; ++i)
|
||||
{
|
||||
calculateBayerPattern<uchar, CV_8U>(src, bayer, types[i]);
|
||||
Mat reference;
|
||||
test_Bayer2RGB_EdgeAware_8u(bayer, reference, CV_BayerBG2BGR_EA + i);
|
||||
|
||||
for (int t = 0; t <= 1; ++t)
|
||||
{
|
||||
if (t == 1)
|
||||
calculateBayerPattern<unsigned short int, CV_16U>(src, bayer, types[i]);
|
||||
|
||||
CV_Assert(!bayer.empty() && (bayer.type() == CV_8UC1 || bayer.type() == CV_16UC1));
|
||||
|
||||
Mat actual;
|
||||
cv::demosaicing(bayer, actual, CV_BayerBG2BGR_EA + i);
|
||||
|
||||
if (t == 0)
|
||||
checkData<unsigned char>(actual, reference, ts, types[i], next, "CV_8U");
|
||||
else
|
||||
{
|
||||
Mat tmp;
|
||||
reference.convertTo(tmp, CV_16U);
|
||||
checkData<unsigned short int>(actual, tmp, ts, types[i], next, "CV_16U");
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST(ImgProc_Bayer2RGBA, accuracy)
|
||||
{
|
||||
cvtest::TS* ts = cvtest::TS::ptr();
|
||||
Mat raw = imread(string(ts->get_data_path()) + "/cvtcolor/bayer_input.png", CV_LOAD_IMAGE_GRAYSCALE);
|
||||
Mat rgb, reference;
|
||||
|
||||
CV_Assert(raw.channels() == 1);
|
||||
CV_Assert(raw.depth() == CV_8U);
|
||||
CV_Assert(!raw.empty());
|
||||
|
||||
for (int code = CV_BayerBG2BGR; code <= CV_BayerGR2BGR; ++code)
|
||||
{
|
||||
cvtColor(raw, rgb, code);
|
||||
cvtColor(rgb, reference, CV_BGR2BGRA);
|
||||
|
||||
Mat actual;
|
||||
cvtColor(raw, actual, code, 4);
|
||||
|
||||
EXPECT_EQ(reference.size(), actual.size());
|
||||
EXPECT_EQ(reference.depth(), actual.depth());
|
||||
EXPECT_EQ(reference.channels(), actual.channels());
|
||||
|
||||
Size ssize = raw.size();
|
||||
int cn = reference.channels();
|
||||
ssize.width *= cn;
|
||||
bool next = true;
|
||||
for (int y = 0; y < ssize.height && next; ++y)
|
||||
{
|
||||
const uchar* rD = reference.ptr<uchar>(y);
|
||||
const uchar* D = actual.ptr<uchar>(y);
|
||||
for (int x = 0; x < ssize.width && next; ++x)
|
||||
if (abs(rD[x] - D[x]) >= 1)
|
||||
{
|
||||
next = false;
|
||||
ts->printf(cvtest::TS::SUMMARY, "Error in: (%d, %d)\n", x / cn, y);
|
||||
ts->printf(cvtest::TS::SUMMARY, "Reference value: %d\n", rD[x]);
|
||||
ts->printf(cvtest::TS::SUMMARY, "Actual value: %d\n", D[x]);
|
||||
ts->printf(cvtest::TS::SUMMARY, "Src value: %d\n", raw.ptr<uchar>(y)[x]);
|
||||
ts->printf(cvtest::TS::SUMMARY, "Size: (%d, %d)\n", reference.rows, reference.cols);
|
||||
|
||||
Mat diff;
|
||||
absdiff(actual, reference, diff);
|
||||
EXPECT_EQ(countNonZero(diff.reshape(1) > 1), 0);
|
||||
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
|
||||
ts->set_gtest_status();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -3,6 +3,19 @@
|
||||
import os, sys, re, string, glob
|
||||
from optparse import OptionParser
|
||||
|
||||
# Black list for classes and methods that does not implemented in Java API
|
||||
# Created to exclude referencies to them in @see tag
|
||||
JAVADOC_ENTITY_BLACK_LIST = set(["org.opencv.core.Core#abs", \
|
||||
"org.opencv.core.Core#theRNG", \
|
||||
"org.opencv.core.Core#extractImageCOI", \
|
||||
"org.opencv.core.PCA", \
|
||||
"org.opencv.core.SVD", \
|
||||
"org.opencv.core.RNG", \
|
||||
"org.opencv.imgproc.Imgproc#createMorphologyFilter", \
|
||||
"org.opencv.imgproc.Imgproc#createLinearFilter", \
|
||||
"org.opencv.imgproc.Imgproc#createSeparableLinearFilter", \
|
||||
"org.opencv.imgproc.FilterEngine"])
|
||||
|
||||
class JavadocGenerator(object):
|
||||
def __init__(self, definitions = {}, modules= [], javadoc_marker = "//javadoc:"):
|
||||
self.definitions = definitions
|
||||
@@ -214,9 +227,9 @@ class JavadocGenerator(object):
|
||||
for see in decl["seealso"]:
|
||||
seedecl = self.definitions.get(see,None)
|
||||
if seedecl:
|
||||
doc += prefix + " * @see " + self.getJavaName(seedecl, "#") + "\n"
|
||||
else:
|
||||
doc += prefix + " * @see " + see.replace("::",".") + "\n"
|
||||
javadoc_name = self.getJavaName(seedecl, "#")
|
||||
if (javadoc_name not in JAVADOC_ENTITY_BLACK_LIST):
|
||||
doc += prefix + " * @see " + javadoc_name + "\n"
|
||||
prefix = " *\n"
|
||||
|
||||
#doc += prefix + " * File: " + decl["file"] + " (line " + str(decl["line"]) + ")\n"
|
||||
|
@@ -344,7 +344,7 @@ public abstract class CameraBridgeViewBase extends SurfaceView implements Surfac
|
||||
* @param supportedSizes
|
||||
* @param surfaceWidth
|
||||
* @param surfaceHeight
|
||||
* @return
|
||||
* @return optimal frame size
|
||||
*/
|
||||
protected Size calculateCameraFrameSize(List<?> supportedSizes, ListItemAccessor accessor, int surfaceWidth, int surfaceHeight) {
|
||||
int calcWidth = 0;
|
||||
|
@@ -31,7 +31,7 @@ public class OpenCVLoader
|
||||
* @param Version OpenCV library version.
|
||||
* @param AppContext application context for connecting to the service.
|
||||
* @param Callback object, that implements LoaderCallbackInterface for handling the connection status.
|
||||
* @return Returns true if initialization of OpenCV is successful.
|
||||
* @return Returns true if initialization of OpenCV is successful.
|
||||
*/
|
||||
public static boolean initAsync(String Version, Context AppContext,
|
||||
LoaderCallbackInterface Callback)
|
||||
|
@@ -64,11 +64,11 @@ int CV_SLMLTest::run_test_case( int testCaseIdx )
|
||||
if( code == cvtest::TS::OK )
|
||||
{
|
||||
get_error( testCaseIdx, CV_TEST_ERROR, &test_resps1 );
|
||||
fname1 = tempfile();
|
||||
fname1 = tempfile(".yml.gz");
|
||||
save( fname1.c_str() );
|
||||
load( fname1.c_str() );
|
||||
get_error( testCaseIdx, CV_TEST_ERROR, &test_resps2 );
|
||||
fname2 = tempfile();
|
||||
fname2 = tempfile(".yml.gz");
|
||||
save( fname2.c_str() );
|
||||
}
|
||||
else
|
||||
|
@@ -27,7 +27,7 @@ PERF_TEST_P(surf, detect, testing::Values(SURF_IMAGES))
|
||||
|
||||
TEST_CYCLE() detector(frame, mask, points);
|
||||
|
||||
SANITY_CHECK_KEYPOINTS(points);
|
||||
SANITY_CHECK_KEYPOINTS(points, 1e-3);
|
||||
}
|
||||
|
||||
PERF_TEST_P(surf, extract, testing::Values(SURF_IMAGES))
|
||||
@@ -67,6 +67,6 @@ PERF_TEST_P(surf, full, testing::Values(SURF_IMAGES))
|
||||
|
||||
TEST_CYCLE() detector(frame, mask, points, descriptors, false);
|
||||
|
||||
SANITY_CHECK_KEYPOINTS(points);
|
||||
SANITY_CHECK_KEYPOINTS(points, 1e-3);
|
||||
SANITY_CHECK(descriptors, 1e-4);
|
||||
}
|
||||
|
@@ -534,12 +534,14 @@ public:
|
||||
int shrinkage;
|
||||
};
|
||||
|
||||
enum { NO_REJECT = 1, DOLLAR = 2, /*PASCAL = 4,*/ DEFAULT = NO_REJECT};
|
||||
|
||||
// An empty cascade will be created.
|
||||
// Param minScale is a minimum scale relative to the original size of the image on which cascade will be applyed.
|
||||
// Param minScale is a maximum scale relative to the original size of the image on which cascade will be applyed.
|
||||
// Param scales is a number of scales from minScale to maxScale.
|
||||
// Param rejfactor is used for NMS.
|
||||
CV_WRAP SCascade(const double minScale = 0.4, const double maxScale = 5., const int scales = 55, const int rejfactor = 1);
|
||||
// Param rejCriteria is used for NMS.
|
||||
CV_WRAP SCascade(const double minScale = 0.4, const double maxScale = 5., const int scales = 55, const int rejCriteria = 1);
|
||||
|
||||
CV_WRAP virtual ~SCascade();
|
||||
|
||||
@@ -571,7 +573,7 @@ private:
|
||||
double maxScale;
|
||||
|
||||
int scales;
|
||||
int rejfactor;
|
||||
int rejCriteria;
|
||||
};
|
||||
|
||||
CV_EXPORTS bool initModule_objdetect(void);
|
||||
|
@@ -14,11 +14,7 @@ PERF_TEST_P(ImageName_MinSize, CascadeClassifierLBPFrontalFace,
|
||||
testing::Combine(testing::Values( std::string("cv/shared/lena.png"),
|
||||
std::string("cv/shared/1_itseez-0000289.png"),
|
||||
std::string("cv/shared/1_itseez-0000492.png"),
|
||||
std::string("cv/shared/1_itseez-0000573.png"),
|
||||
std::string("cv/shared/1_itseez-0000892.png"),
|
||||
std::string("cv/shared/1_itseez-0001238.png"),
|
||||
std::string("cv/shared/1_itseez-0001438.png"),
|
||||
std::string("cv/shared/1_itseez-0002524.png")),
|
||||
std::string("cv/shared/1_itseez-0000573.png")),
|
||||
testing::Values(24, 30, 40, 50, 60, 70, 80, 90)
|
||||
)
|
||||
)
|
||||
|
@@ -49,7 +49,7 @@ CV_INIT_ALGORITHM(SCascade, "CascadeDetector.SCascade",
|
||||
obj.info()->addParam(obj, "minScale", obj.minScale);
|
||||
obj.info()->addParam(obj, "maxScale", obj.maxScale);
|
||||
obj.info()->addParam(obj, "scales", obj.scales);
|
||||
obj.info()->addParam(obj, "rejfactor", obj.rejfactor));
|
||||
obj.info()->addParam(obj, "rejCriteria", obj.rejCriteria));
|
||||
|
||||
bool initModule_objdetect(void)
|
||||
{
|
||||
|
@@ -422,7 +422,7 @@ struct cv::SCascade::Fields
|
||||
};
|
||||
|
||||
cv::SCascade::SCascade(const double mins, const double maxs, const int nsc, const int rej)
|
||||
: fields(0), minScale(mins), maxScale(maxs), scales(nsc), rejfactor(rej) {}
|
||||
: fields(0), minScale(mins), maxScale(maxs), scales(nsc), rejCriteria(rej) {}
|
||||
|
||||
cv::SCascade::~SCascade() { delete fields;}
|
||||
|
||||
@@ -439,6 +439,57 @@ bool cv::SCascade::load(const FileNode& fn)
|
||||
return fields->fill(fn);
|
||||
}
|
||||
|
||||
namespace {
|
||||
typedef cv::SCascade::Detection Detection;
|
||||
typedef std::vector<Detection> dvector;
|
||||
|
||||
|
||||
struct ConfidenceGt
|
||||
{
|
||||
bool operator()(const Detection& a, const Detection& b) const
|
||||
{
|
||||
return a.confidence > b.confidence;
|
||||
}
|
||||
};
|
||||
|
||||
static float overlap(const cv::Rect &a, const cv::Rect &b)
|
||||
{
|
||||
int w = std::min(a.x + a.width, b.x + b.width) - std::max(a.x, b.x);
|
||||
int h = std::min(a.y + a.height, b.y + b.height) - std::max(a.y, b.y);
|
||||
|
||||
return (w < 0 || h < 0)? 0.f : (float)(w * h);
|
||||
}
|
||||
|
||||
void DollarNMS(dvector& objects)
|
||||
{
|
||||
static const float DollarThreshold = 0.65f;
|
||||
std::sort(objects.begin(), objects.end(), ConfidenceGt());
|
||||
|
||||
for (dvector::iterator dIt = objects.begin(); dIt != objects.end(); ++dIt)
|
||||
{
|
||||
const Detection &a = *dIt;
|
||||
for (dvector::iterator next = dIt + 1; next != objects.end(); )
|
||||
{
|
||||
const Detection &b = *next;
|
||||
|
||||
const float ovl = overlap(a.bb, b.bb) / std::min(a.bb.area(), b.bb.area());
|
||||
|
||||
if (ovl > DollarThreshold)
|
||||
next = objects.erase(next);
|
||||
else
|
||||
++next;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void suppress(int type, std::vector<Detection>& objects)
|
||||
{
|
||||
CV_Assert(type == cv::SCascade::DOLLAR);
|
||||
DollarNMS(objects);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void cv::SCascade::detectNoRoi(const cv::Mat& image, std::vector<Detection>& objects) const
|
||||
{
|
||||
Fields& fld = *fields;
|
||||
@@ -459,6 +510,8 @@ void cv::SCascade::detectNoRoi(const cv::Mat& image, std::vector<Detection>& obj
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (rejCriteria != NO_REJECT) suppress(rejCriteria, objects);
|
||||
}
|
||||
|
||||
void cv::SCascade::detect(cv::InputArray _image, cv::InputArray _rois, std::vector<Detection>& objects) const
|
||||
@@ -506,6 +559,8 @@ void cv::SCascade::detect(cv::InputArray _image, cv::InputArray _rois, std::vect
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (rejCriteria != NO_REJECT) suppress(rejCriteria, objects);
|
||||
}
|
||||
|
||||
void cv::SCascade::detect(InputArray _image, InputArray _rois, OutputArray _rects, OutputArray _confs) const
|
||||
|
@@ -19,7 +19,7 @@ typedef TestBaseWithParam<String> match;
|
||||
typedef std::tr1::tuple<String, int> matchVector_t;
|
||||
typedef TestBaseWithParam<matchVector_t> matchVector;
|
||||
|
||||
#ifdef HAVE_OPENCV_NONFREE
|
||||
#ifdef HAVE_OPENCV_NONFREE_TODO_FIND_WHY_SURF_IS_NOT_ABLE_TO_STITCH_PANOS
|
||||
#define TEST_DETECTORS testing::Values("surf", "orb")
|
||||
#else
|
||||
#define TEST_DETECTORS testing::Values<String>("orb")
|
||||
@@ -57,7 +57,11 @@ PERF_TEST_P(stitch, a123, TEST_DETECTORS)
|
||||
stopTimer();
|
||||
}
|
||||
|
||||
SANITY_CHECK(pano, 2);
|
||||
Mat pano_small;
|
||||
if (!pano.empty())
|
||||
resize(pano, pano_small, Size(320, 240), 0, 0, INTER_AREA);
|
||||
|
||||
SANITY_CHECK(pano_small, 5);
|
||||
}
|
||||
|
||||
PERF_TEST_P(stitch, b12, TEST_DETECTORS)
|
||||
@@ -91,7 +95,11 @@ PERF_TEST_P(stitch, b12, TEST_DETECTORS)
|
||||
stopTimer();
|
||||
}
|
||||
|
||||
SANITY_CHECK(pano, 2);
|
||||
Mat pano_small;
|
||||
if (!pano.empty())
|
||||
resize(pano, pano_small, Size(320, 240), 0, 0, INTER_AREA);
|
||||
|
||||
SANITY_CHECK(pano_small, 5);
|
||||
}
|
||||
|
||||
PERF_TEST_P( match, bestOf2Nearest, TEST_DETECTORS)
|
||||
@@ -137,7 +145,11 @@ PERF_TEST_P( match, bestOf2Nearest, TEST_DETECTORS)
|
||||
matcher->collectGarbage();
|
||||
}
|
||||
|
||||
SANITY_CHECK_MATCHES(pairwise_matches.matches);
|
||||
std::vector<DMatch>& matches = pairwise_matches.matches;
|
||||
if (GetParam() == "orb") matches.resize(0);
|
||||
for(size_t q = 0; q < matches.size(); ++q)
|
||||
if (matches[q].imgIdx < 0) { matches.resize(q); break;}
|
||||
SANITY_CHECK_MATCHES(matches);
|
||||
}
|
||||
|
||||
PERF_TEST_P( matchVector, bestOf2NearestVectorFeatures, testing::Combine(
|
||||
@@ -193,6 +205,8 @@ PERF_TEST_P( matchVector, bestOf2NearestVectorFeatures, testing::Combine(
|
||||
}
|
||||
|
||||
|
||||
std::vector<DMatch>& matches = pairwise_matches[0].matches;
|
||||
std::vector<DMatch>& matches = pairwise_matches[detectorName == "surf" ? 1 : 0].matches;
|
||||
for(size_t q = 0; q < matches.size(); ++q)
|
||||
if (matches[q].imgIdx < 0) { matches.resize(q); break;}
|
||||
SANITY_CHECK_MATCHES(matches);
|
||||
}
|
||||
|
@@ -350,7 +350,7 @@ void SurfFeaturesFinder::find(const Mat &image, ImageFeatures &features)
|
||||
Mat gray_image;
|
||||
CV_Assert(image.type() == CV_8UC3);
|
||||
cvtColor(image, gray_image, CV_BGR2GRAY);
|
||||
if (surf == 0)
|
||||
if (surf.empty())
|
||||
{
|
||||
detector_->detect(gray_image, features.keypoints);
|
||||
extractor_->compute(gray_image, features.keypoints, features.descriptors);
|
||||
|
@@ -433,8 +433,8 @@
|
||||
// Defines this to true iff Google Test can use POSIX regular expressions.
|
||||
#ifndef GTEST_HAS_POSIX_RE
|
||||
# if GTEST_OS_LINUX_ANDROID
|
||||
// On Android, <regex.h> is only available starting with Gingerbread.
|
||||
# define GTEST_HAS_POSIX_RE (__ANDROID_API__ >= 9)
|
||||
// On Android, <regex.h> is only available starting with Froyo.
|
||||
# define GTEST_HAS_POSIX_RE (__ANDROID_API__ >= 8)
|
||||
# else
|
||||
# define GTEST_HAS_POSIX_RE (!GTEST_OS_WINDOWS)
|
||||
#endif
|
||||
|
@@ -66,13 +66,13 @@ parse_patterns = (
|
||||
{'name': "opencv_cxx_flags_debug", 'default': "", 'pattern': re.compile("^OPENCV_EXTRA_C_FLAGS_DEBUG:INTERNAL=(.*)$")},
|
||||
{'name': "opencv_cxx_flags_release", 'default': "", 'pattern': re.compile("^OPENCV_EXTRA_C_FLAGS_RELEASE:INTERNAL=(.*)$")},
|
||||
{'name': "cxx_flags_android", 'default': None, 'pattern': re.compile("^ANDROID_CXX_FLAGS:INTERNAL=(.*)$")},
|
||||
{'name': "cxx_compiler_path", 'default': None, 'pattern': re.compile("^CMAKE_CXX_COMPILER:FILEPATH=(.*)$")},
|
||||
{'name': "ndk_path", 'default': None, 'pattern': re.compile("^(?:ANDROID_NDK|ANDROID_STANDALONE_TOOLCHAIN)?:PATH=(.*)$")},
|
||||
{'name': "android_abi", 'default': None, 'pattern': re.compile("^ANDROID_ABI:STRING=(.*)$")},
|
||||
{'name': "android_executable", 'default': None, 'pattern': re.compile("^ANDROID_EXECUTABLE:FILEPATH=(.*android.*)$")},
|
||||
{'name': "is_x64", 'default': "OFF", 'pattern': re.compile("^CUDA_64_BIT_DEVICE_CODE:BOOL=(ON)$")},#ugly(
|
||||
{'name': "cmake_generator", 'default': None, 'pattern': re.compile("^CMAKE_GENERATOR:INTERNAL=(.+)$")},
|
||||
{'name': "cxx_compiler", 'default': None, 'pattern': re.compile("^CMAKE_CXX_COMPILER:FILEPATH=(.+)$")},
|
||||
{'name': "cxx_compiler_arg1", 'default': None, 'pattern': re.compile("^CMAKE_CXX_COMPILER_ARG1:[A-Z]+=(.+)$")},
|
||||
{'name': "with_cuda", 'default': "OFF", 'pattern': re.compile("^WITH_CUDA:BOOL=(ON)$")},
|
||||
{'name': "cuda_library", 'default': None, 'pattern': re.compile("^CUDA_CUDA_LIBRARY:FILEPATH=(.+)$")},
|
||||
{'name': "core_dependencies", 'default': None, 'pattern': re.compile("^opencv_core_LIB_DEPENDS:STATIC=(.+)$")},
|
||||
@@ -199,20 +199,21 @@ def getRunningProcessExePathByName(name):
|
||||
except:
|
||||
return None
|
||||
|
||||
class RunInfo(object):
|
||||
def setCallback(self, name, callback):
|
||||
setattr(self, name, callback)
|
||||
|
||||
def __init__(self, path, options):
|
||||
class TestSuite(object):
|
||||
def __init__(self, options, path = None):
|
||||
self.options = options
|
||||
self.path = path
|
||||
self.error = None
|
||||
self.setUp = None
|
||||
self.tearDown = None
|
||||
self.nameprefix = "opencv_" + options.mode + "_"
|
||||
self.adb = None
|
||||
self.targetos = None
|
||||
self.nameprefix = "opencv_" + self.options.mode + "_"
|
||||
for p in parse_patterns:
|
||||
setattr(self, p["name"], p["default"])
|
||||
cachefile = open(os.path.join(path, "CMakeCache.txt"), "rt")
|
||||
|
||||
if self.path:
|
||||
cachefile = open(os.path.join(self.path, "CMakeCache.txt"), "rt")
|
||||
try:
|
||||
for l in cachefile.readlines():
|
||||
ll = l.strip()
|
||||
@@ -228,11 +229,21 @@ class RunInfo(object):
|
||||
pass
|
||||
cachefile.close()
|
||||
|
||||
# detect target platform
|
||||
if self.android_executable or self.android_abi or self.ndk_path:
|
||||
self.targetos = "android"
|
||||
else:
|
||||
self.targetos = hostos
|
||||
|
||||
self.initialize()
|
||||
|
||||
def initialize(self):
|
||||
# fix empty tests dir
|
||||
if not self.tests_dir:
|
||||
self.tests_dir = self.path
|
||||
self.tests_dir = os.path.normpath(self.tests_dir)
|
||||
# add path to adb
|
||||
|
||||
# compute path to adb
|
||||
if self.android_executable:
|
||||
self.adb = os.path.join(os.path.dirname(os.path.dirname(self.android_executable)), ("platform-tools/adb","platform-tools/adb.exe")[hostos == 'nt'])
|
||||
if not os.path.isfile(self.adb) or not os.access(self.adb, os.X_OK):
|
||||
@@ -240,20 +251,14 @@ class RunInfo(object):
|
||||
else:
|
||||
self.adb = None
|
||||
|
||||
# detect target platform
|
||||
if self.android_executable or self.android_abi or self.ndk_path:
|
||||
self.targetos = "android"
|
||||
else:
|
||||
self.targetos = hostos
|
||||
|
||||
if self.targetos == "android":
|
||||
# fix adb tool location
|
||||
if not self.adb:
|
||||
self.adb = getRunningProcessExePathByName("adb")
|
||||
if not self.adb:
|
||||
self.adb = "adb"
|
||||
if options.adb_serial:
|
||||
self.adb = [self.adb, "-s", options.adb_serial]
|
||||
if self.options.adb_serial:
|
||||
self.adb = [self.adb, "-s", self.options.adb_serial]
|
||||
else:
|
||||
self.adb = [self.adb]
|
||||
try:
|
||||
@@ -261,7 +266,7 @@ class RunInfo(object):
|
||||
except OSError:
|
||||
self.adb = []
|
||||
# remember current device serial. Needed if another device is connected while this script runs
|
||||
if self.adb and not options.adb_serial:
|
||||
if self.adb and not self.options.adb_serial:
|
||||
adb_res = self.runAdb("devices")
|
||||
if not adb_res:
|
||||
self.error = "Could not run adb command: %s (for %s)" % (self.error, self.path)
|
||||
@@ -276,11 +281,8 @@ class RunInfo(object):
|
||||
self.error = "Too many (%s) devices are connected. Please specify single device using --serial option:\n\n" % (len(connected_devices)) + adb_res
|
||||
self.adb = []
|
||||
else:
|
||||
options.adb_serial = connected_devices[0].split("\t")[0]
|
||||
self.adb = self.adb + ["-s", options.adb_serial]
|
||||
if self.adb:
|
||||
print "adb command:", " ".join(self.adb)
|
||||
|
||||
self.options.adb_serial = connected_devices[0].split("\t")[0]
|
||||
self.adb = self.adb + ["-s", self.options.adb_serial]
|
||||
if self.adb:
|
||||
# construct name for aapt tool
|
||||
self.aapt = [os.path.join(os.path.dirname(self.adb[0]), ("aapt","aapt.exe")[hostos == 'nt'])]
|
||||
@@ -295,14 +297,17 @@ class RunInfo(object):
|
||||
|
||||
# fix test path
|
||||
if "Visual Studio" in self.cmake_generator:
|
||||
if options.configuration:
|
||||
self.tests_dir = os.path.join(self.tests_dir, options.configuration)
|
||||
if self.options.configuration:
|
||||
self.tests_dir = os.path.join(self.tests_dir, self.options.configuration)
|
||||
else:
|
||||
self.tests_dir = os.path.join(self.tests_dir, self.build_type)
|
||||
elif not self.is_x64 and self.cxx_compiler:
|
||||
#one more attempt to detect x64 compiler
|
||||
try:
|
||||
output = Popen([self.cxx_compiler, "-v"], stdout=PIPE, stderr=PIPE).communicate()
|
||||
compiler = [self.cxx_compiler]
|
||||
if self.cxx_compiler_arg1:
|
||||
compiler.append(self.cxx_compiler_arg1)
|
||||
output = Popen(compiler + ["-v"], stdout=PIPE, stderr=PIPE).communicate()
|
||||
if not output[0] and "x86_64" in output[1]:
|
||||
self.is_x64 = True
|
||||
except OSError:
|
||||
@@ -499,9 +504,11 @@ class RunInfo(object):
|
||||
fd = os.fdopen(tmpfile[0], "w+b")
|
||||
fd.write(SIMD_DETECTION_PROGRAM)
|
||||
fd.close();
|
||||
options = [self.cxx_compiler_path]
|
||||
options = [self.cxx_compiler]
|
||||
if self.cxx_compiler_arg1:
|
||||
options.append(self.cxx_compiler_arg1)
|
||||
cxx_flags = self.cxx_flags + " " + self.cxx_flags_release + " " + self.opencv_cxx_flags + " " + self.opencv_cxx_flags_release
|
||||
if self.targetos == "android":
|
||||
if self.targetos == "android" and self.cxx_flags_android:
|
||||
cxx_flags = self.cxx_flags_android + " " + cxx_flags
|
||||
|
||||
prev_option = None
|
||||
@@ -634,18 +641,18 @@ class RunInfo(object):
|
||||
logfile = userlog[0][userlog[0].find(":")+1:]
|
||||
|
||||
if self.targetos == "android" and exe.endswith(".apk"):
|
||||
print "running java tests:", exe
|
||||
print "Run java tests:", exe
|
||||
try:
|
||||
# get package info
|
||||
output = Popen(self.aapt + ["dump", "xmltree", exe, "AndroidManifest.xml"], stdout=PIPE, stderr=_stderr).communicate()
|
||||
if not output[0]:
|
||||
print >> _stderr, "failed to get manifest info from", exe
|
||||
print >> _stderr, "fail to dump manifest from", exe
|
||||
return
|
||||
tags = re.split(r"[ ]+E: ", output[0])
|
||||
# get package name
|
||||
manifest_tag = [t for t in tags if t.startswith("manifest ")]
|
||||
if not manifest_tag:
|
||||
print >> _stderr, "failed to get manifest info from", exe
|
||||
print >> _stderr, "fail to read package name from", exe
|
||||
return
|
||||
pkg_name = re.search(r"^[ ]+A: package=\"(?P<pkg>.*?)\" \(Raw: \"(?P=pkg)\"\)\r?$", manifest_tag[0], flags=re.MULTILINE).group("pkg")
|
||||
# get test instrumentation info
|
||||
@@ -663,7 +670,7 @@ class RunInfo(object):
|
||||
pkg_target += self.options.junit_package
|
||||
else:
|
||||
pkg_target = self.options.junit_package
|
||||
#uninstall already installed package
|
||||
# uninstall previously installed package
|
||||
print >> _stderr, "Uninstalling old", pkg_name, "from device..."
|
||||
Popen(self.adb + ["uninstall", pkg_name], stdout=PIPE, stderr=_stderr).communicate()
|
||||
print >> _stderr, "Installing new", exe, "to device...",
|
||||
@@ -675,10 +682,10 @@ class RunInfo(object):
|
||||
print >> _stderr, "Failed to install", exe, "to device"
|
||||
return
|
||||
print >> _stderr, "Running jUnit tests for ", pkg_target
|
||||
if self.setUp is not None:
|
||||
if self.setUp:
|
||||
self.setUp()
|
||||
Popen(self.adb + ["shell", "am instrument -w -e package " + pkg_target + " " + pkg_name + "/" + pkg_runner], stdout=_stdout, stderr=_stderr).wait()
|
||||
if self.tearDown is not None:
|
||||
if self.tearDown:
|
||||
self.tearDown()
|
||||
except OSError:
|
||||
pass
|
||||
@@ -710,10 +717,10 @@ class RunInfo(object):
|
||||
else:
|
||||
command = exename + " " + " ".join(args)
|
||||
print >> _stderr, "Run command:", command
|
||||
if self.setUp is not None:
|
||||
if self.setUp:
|
||||
self.setUp()
|
||||
Popen(self.adb + ["shell", "export OPENCV_TEST_DATA_PATH=" + self.test_data_path + "&& cd " + andoidcwd + "&& ./" + command], stdout=_stdout, stderr=_stderr).wait()
|
||||
if self.tearDown is not None:
|
||||
Popen(self.adb + ["shell", "export OPENCV_TEST_DATA_PATH=" + self.options.test_data_path + "&& cd " + andoidcwd + "&& ./" + command], stdout=_stdout, stderr=_stderr).wait()
|
||||
if self.tearDown:
|
||||
self.tearDown()
|
||||
# try get log
|
||||
if not self.options.help:
|
||||
@@ -758,6 +765,7 @@ class RunInfo(object):
|
||||
|
||||
try:
|
||||
shutil.rmtree(temp_path)
|
||||
pass
|
||||
except:
|
||||
pass
|
||||
|
||||
@@ -767,8 +775,12 @@ class RunInfo(object):
|
||||
return None
|
||||
|
||||
def runTests(self, tests, _stdout, _stderr, workingDir, args = []):
|
||||
if not self.isRunnable():
|
||||
print >> _stderr, "Error:", self.error
|
||||
if self.error:
|
||||
return []
|
||||
if self.adb and self.targetos == "android":
|
||||
print "adb command:", " ".join(self.adb)
|
||||
if not tests:
|
||||
tests = self.tests
|
||||
logs = []
|
||||
@@ -802,7 +814,6 @@ if __name__ == "__main__":
|
||||
|
||||
parser = OptionParser()
|
||||
parser.add_option("-t", "--tests", dest="tests", help="comma-separated list of modules to test", metavar="SUITS", default="")
|
||||
|
||||
parser.add_option("-w", "--cwd", dest="cwd", help="working directory for tests", metavar="PATH", default=".")
|
||||
parser.add_option("-a", "--accuracy", dest="accuracy", help="look for accuracy tests instead of performance tests", action="store_true", default=False)
|
||||
parser.add_option("-l", "--longname", dest="useLongNames", action="store_true", help="generate log files with long names", default=False)
|
||||
@@ -812,6 +823,7 @@ if __name__ == "__main__":
|
||||
parser.add_option("", "--package", dest="junit_package", help="Android: run jUnit tests for specified package", metavar="package", default="")
|
||||
parser.add_option("", "--help-tests", dest="help", help="Show help for test executable", action="store_true", default=False)
|
||||
parser.add_option("", "--check", dest="check", help="Shortcut for '--perf_min_samples=1 --perf_force_samples=1'", action="store_true", default=False)
|
||||
parser.add_option("", "--list", dest="list", help="List available tests", action="store_true", default=False)
|
||||
|
||||
(options, args) = parser.parse_args(argv)
|
||||
|
||||
@@ -823,7 +835,7 @@ if __name__ == "__main__":
|
||||
run_args = getRunArgs(args[1:] or ['.'])
|
||||
|
||||
if len(run_args) == 0:
|
||||
print >> sys.stderr, "Usage:\n", os.path.basename(sys.argv[0]), "<build_path>"
|
||||
print >> sys.stderr, "Usage:", os.path.basename(sys.argv[0]), "[options] [build_path]"
|
||||
exit(1)
|
||||
|
||||
tests = [s.strip() for s in options.tests.split(",") if s]
|
||||
@@ -833,17 +845,25 @@ if __name__ == "__main__":
|
||||
test_args = [a for a in test_args if not a.startswith("--gtest_output=")]
|
||||
|
||||
if options.check:
|
||||
test_args.extend(["--perf_min_samples=1", "--perf_force_samples=1"])
|
||||
if not [a for a in test_args if a.startswith("--perf_min_samples=")] :
|
||||
test_args.extend(["--perf_min_samples=1"])
|
||||
if not [a for a in test_args if a.startswith("--perf_force_samples=")] :
|
||||
test_args.extend(["--perf_force_samples=1"])
|
||||
if not [a for a in test_args if a.startswith("--perf_verify_sanity")] :
|
||||
test_args.extend(["--perf_verify_sanity"])
|
||||
|
||||
logs = []
|
||||
test_list = []
|
||||
for path in run_args:
|
||||
info = RunInfo(path, options)
|
||||
#print vars(info),"\n"
|
||||
if not info.isRunnable():
|
||||
print >> sys.stderr, "Error:", info.error
|
||||
suite = TestSuite(options, path)
|
||||
#print vars(suite),"\n"
|
||||
if options.list:
|
||||
test_list.extend(suite.tests)
|
||||
else:
|
||||
info.test_data_path = options.test_data_path
|
||||
logs.extend(info.runTests(tests, sys.stdout, sys.stderr, options.cwd, test_args))
|
||||
logs.extend(suite.runTests(tests, sys.stdout, sys.stderr, options.cwd, test_args))
|
||||
|
||||
if options.list:
|
||||
print os.linesep.join(test_list) or "No tests found"
|
||||
|
||||
if logs:
|
||||
print >> sys.stderr, "Collected: ", " ".join(logs)
|
||||
|
@@ -1340,6 +1340,7 @@ GTEST_API_ bool IsAsciiWhiteSpace(char ch);
|
||||
GTEST_API_ bool IsAsciiWordChar(char ch);
|
||||
GTEST_API_ bool IsValidEscape(char ch);
|
||||
GTEST_API_ bool AtomMatchesChar(bool escaped, char pattern, char ch);
|
||||
GTEST_API_ std::string FormatRegexSyntaxError(const char* regex, int index);
|
||||
GTEST_API_ bool ValidateRegex(const char* regex);
|
||||
GTEST_API_ bool MatchRegexAtHead(const char* regex, const char* str);
|
||||
GTEST_API_ bool MatchRepetitionAndRegexAtHead(
|
||||
|
@@ -20,7 +20,8 @@ const std::string command_line_keys =
|
||||
"{ perf_force_samples |100 |force set maximum number of samples for all tests}"
|
||||
"{ perf_seed |809564 |seed for random numbers generator}"
|
||||
"{ perf_threads |-1 |the number of worker threads, if parallel execution is enabled}"
|
||||
"{ perf_write_sanity | |allow to create new records for sanity checks}"
|
||||
"{ perf_write_sanity | |create new records for sanity checks}"
|
||||
"{ perf_verify_sanity | |fail tests having no regression data for sanity checks}"
|
||||
#ifdef ANDROID
|
||||
"{ perf_time_limit |6.0 |default time limit for a single test (in seconds)}"
|
||||
"{ perf_affinity_mask |0 |set affinity mask for the main thread}"
|
||||
@@ -45,6 +46,7 @@ static uint64 param_seed;
|
||||
static double param_time_limit;
|
||||
static int param_threads;
|
||||
static bool param_write_sanity;
|
||||
static bool param_verify_sanity;
|
||||
#ifdef HAVE_CUDA
|
||||
static bool param_run_cpu;
|
||||
static int param_cuda_device;
|
||||
@@ -307,23 +309,25 @@ double Regression::getElem(cv::Mat& m, int y, int x, int cn)
|
||||
|
||||
void Regression::write(cv::Mat m)
|
||||
{
|
||||
if (!m.empty() && m.dims < 2) return;
|
||||
|
||||
double min, max;
|
||||
cv::minMaxLoc(m, &min, &max);
|
||||
cv::minMaxIdx(m, &min, &max);
|
||||
write() << "min" << min << "max" << max;
|
||||
|
||||
write() << "last" << "{" << "x" << m.cols-1 << "y" << m.rows-1
|
||||
<< "val" << getElem(m, m.rows-1, m.cols-1, m.channels()-1) << "}";
|
||||
write() << "last" << "{" << "x" << m.size.p[1] - 1 << "y" << m.size.p[0] - 1
|
||||
<< "val" << getElem(m, m.size.p[0] - 1, m.size.p[1] - 1, m.channels() - 1) << "}";
|
||||
|
||||
int x, y, cn;
|
||||
x = regRNG.uniform(0, m.cols);
|
||||
y = regRNG.uniform(0, m.rows);
|
||||
x = regRNG.uniform(0, m.size.p[1]);
|
||||
y = regRNG.uniform(0, m.size.p[0]);
|
||||
cn = regRNG.uniform(0, m.channels());
|
||||
write() << "rng1" << "{" << "x" << x << "y" << y;
|
||||
if(cn > 0) write() << "cn" << cn;
|
||||
write() << "val" << getElem(m, y, x, cn) << "}";
|
||||
|
||||
x = regRNG.uniform(0, m.cols);
|
||||
y = regRNG.uniform(0, m.rows);
|
||||
x = regRNG.uniform(0, m.size.p[1]);
|
||||
y = regRNG.uniform(0, m.size.p[0]);
|
||||
cn = regRNG.uniform(0, m.channels());
|
||||
write() << "rng2" << "{" << "x" << x << "y" << y;
|
||||
if (cn > 0) write() << "cn" << cn;
|
||||
@@ -341,8 +345,10 @@ static double evalEps(double expected, double actual, double _eps, ERROR_TYPE er
|
||||
|
||||
void Regression::verify(cv::FileNode node, cv::Mat actual, double _eps, std::string argname, ERROR_TYPE err)
|
||||
{
|
||||
if (!actual.empty() && actual.dims < 2) return;
|
||||
|
||||
double actual_min, actual_max;
|
||||
cv::minMaxLoc(actual, &actual_min, &actual_max);
|
||||
cv::minMaxIdx(actual, &actual_min, &actual_max);
|
||||
|
||||
double expect_min = (double)node["min"];
|
||||
double eps = evalEps(expect_min, actual_min, _eps, err);
|
||||
@@ -355,12 +361,12 @@ void Regression::verify(cv::FileNode node, cv::Mat actual, double _eps, std::str
|
||||
<< argname << " has unexpected maximal value" << std::endl;
|
||||
|
||||
cv::FileNode last = node["last"];
|
||||
double actual_last = getElem(actual, actual.rows - 1, actual.cols - 1, actual.channels() - 1);
|
||||
double actual_last = getElem(actual, actual.size.p[0] - 1, actual.size.p[1] - 1, actual.channels() - 1);
|
||||
int expect_cols = (int)last["x"] + 1;
|
||||
int expect_rows = (int)last["y"] + 1;
|
||||
ASSERT_EQ(expect_cols, actual.cols)
|
||||
ASSERT_EQ(expect_cols, actual.size.p[1])
|
||||
<< argname << " has unexpected number of columns" << std::endl;
|
||||
ASSERT_EQ(expect_rows, actual.rows)
|
||||
ASSERT_EQ(expect_rows, actual.size.p[0])
|
||||
<< argname << " has unexpected number of rows" << std::endl;
|
||||
|
||||
double expect_last = (double)last["val"];
|
||||
@@ -374,6 +380,8 @@ void Regression::verify(cv::FileNode node, cv::Mat actual, double _eps, std::str
|
||||
int cn1 = rng1["cn"];
|
||||
|
||||
double expect_rng1 = (double)rng1["val"];
|
||||
// it is safe to use x1 and y1 without checks here because we have already
|
||||
// verified that mat size is the same as recorded
|
||||
double actual_rng1 = getElem(actual, y1, x1, cn1);
|
||||
|
||||
eps = evalEps(expect_rng1, actual_rng1, _eps, err);
|
||||
@@ -492,10 +500,10 @@ void Regression::verify(cv::FileNode node, cv::InputArray array, double eps, ERR
|
||||
std::cout << " Expected: " << std::endl << expected << std::endl << " Actual:" << std::endl << actual << std::endl;
|
||||
|
||||
double max;
|
||||
cv::minMaxLoc(diff.reshape(1), 0, &max);
|
||||
cv::minMaxIdx(diff.reshape(1), 0, &max);
|
||||
|
||||
FAIL() << " Absolute difference (=" << max << ") between argument \""
|
||||
<< node.name() << "[" << idx << "]\" and expected value is bugger than " << eps;
|
||||
<< node.name() << "[" << idx << "]\" and expected value is greater than " << eps;
|
||||
}
|
||||
}
|
||||
else if (err == ERROR_RELATIVE)
|
||||
@@ -505,7 +513,7 @@ void Regression::verify(cv::FileNode node, cv::InputArray array, double eps, ERR
|
||||
if (violations > 0)
|
||||
{
|
||||
FAIL() << " Relative difference (" << maxv << " of " << maxa << " allowed) between argument \""
|
||||
<< node.name() << "[" << idx << "]\" and expected value is bugger than " << eps << " in " << violations << " points";
|
||||
<< node.name() << "[" << idx << "]\" and expected value is greater than " << eps << " in " << violations << " points";
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -546,10 +554,10 @@ void Regression::verify(cv::FileNode node, cv::InputArray array, double eps, ERR
|
||||
std::cout << " Expected: " << std::endl << expected << std::endl << " Actual:" << std::endl << actual << std::endl;
|
||||
|
||||
double max;
|
||||
cv::minMaxLoc(diff.reshape(1), 0, &max);
|
||||
cv::minMaxIdx(diff.reshape(1), 0, &max);
|
||||
|
||||
FAIL() << " Difference (=" << max << ") between argument1 \"" << node.name()
|
||||
<< "\" and expected value is bugger than " << eps;
|
||||
<< "\" and expected value is greater than " << eps;
|
||||
}
|
||||
}
|
||||
else if (err == ERROR_RELATIVE)
|
||||
@@ -559,7 +567,7 @@ void Regression::verify(cv::FileNode node, cv::InputArray array, double eps, ERR
|
||||
if (violations > 0)
|
||||
{
|
||||
FAIL() << " Relative difference (" << maxv << " of " << maxa << " allowed) between argument \"" << node.name()
|
||||
<< "\" and expected value is bugger than " << eps << " in " << violations << " points";
|
||||
<< "\" and expected value is greater than " << eps << " in " << violations << " points";
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -599,10 +607,15 @@ Regression& Regression::operator() (const std::string& name, cv::InputArray arra
|
||||
|
||||
write() << nodename << "{";
|
||||
}
|
||||
// TODO: verify that name is alphanumeric, current error message is useless
|
||||
write() << name << "{";
|
||||
write(array);
|
||||
write() << "}";
|
||||
}
|
||||
else if(param_verify_sanity)
|
||||
{
|
||||
ADD_FAILURE() << " No regression data for " << name << " argument";
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
@@ -660,6 +673,7 @@ void TestBase::Init(int argc, const char* const argv[])
|
||||
param_time_limit = std::max(0., args.get<double>("perf_time_limit"));
|
||||
param_force_samples = args.get<unsigned int>("perf_force_samples");
|
||||
param_write_sanity = args.has("perf_write_sanity");
|
||||
param_verify_sanity = args.has("perf_verify_sanity");
|
||||
param_threads = args.get<int>("perf_threads");
|
||||
#ifdef ANDROID
|
||||
param_affinity_mask = args.get<int>("perf_affinity_mask");
|
||||
@@ -974,7 +988,7 @@ void TestBase::validateMetrics()
|
||||
if (m.gstddev > DBL_EPSILON)
|
||||
{
|
||||
EXPECT_GT(/*m.gmean * */1., /*m.gmean * */ 2 * sinh(m.gstddev * param_max_deviation))
|
||||
<< " Test results are not reliable ((mean-sigma,mean+sigma) deviation interval is bigger than measured time interval).";
|
||||
<< " Test results are not reliable ((mean-sigma,mean+sigma) deviation interval is greater than measured time interval).";
|
||||
}
|
||||
|
||||
EXPECT_LE(m.outliers, std::max((unsigned int)cvCeil(m.samples * param_max_outliers / 100.), 1u))
|
||||
@@ -1153,12 +1167,17 @@ void TestBase::RunPerfTestBody()
|
||||
if (e.code == CV_GpuApiCallError)
|
||||
cv::gpu::resetDevice();
|
||||
#endif
|
||||
FAIL() << "Expected: PerfTestBody() doesn't throw an exception.\n Actual: it throws:\n " << e.what();
|
||||
FAIL() << "Expected: PerfTestBody() doesn't throw an exception.\n Actual: it throws cv::Exception:\n " << e.what();
|
||||
}
|
||||
catch(std::exception e)
|
||||
{
|
||||
metrics.terminationReason = performance_metrics::TERM_EXCEPTION;
|
||||
FAIL() << "Expected: PerfTestBody() doesn't throw an exception.\n Actual: it throws std::exception:\n " << e.what();
|
||||
}
|
||||
catch(...)
|
||||
{
|
||||
metrics.terminationReason = performance_metrics::TERM_EXCEPTION;
|
||||
FAIL() << "Expected: PerfTestBody() doesn't throw an exception.\n Actual: it throws.";
|
||||
FAIL() << "Expected: PerfTestBody() doesn't throw an exception.\n Actual: it throws...";
|
||||
}
|
||||
}
|
||||
|
||||
|
@@ -29,5 +29,5 @@ PERF_TEST_P(ImagePair, OpticalFlowDual_TVL1, testing::Values(impair("cv/optflow/
|
||||
tvl1(frame1, frame2, flow);
|
||||
}
|
||||
|
||||
SANITY_CHECK(flow);
|
||||
SANITY_CHECK(flow, 0.5);
|
||||
}
|
||||
|
@@ -41,7 +41,7 @@ void CV_BackgroundSubtractorTest::run(int)
|
||||
Algorithm::create<BackgroundSubtractorGMG>("BackgroundSubtractor.GMG");
|
||||
Mat fgmask;
|
||||
|
||||
if (fgbg == NULL)
|
||||
if (fgbg.empty())
|
||||
CV_Error(CV_StsError,"Failed to create Algorithm\n");
|
||||
|
||||
/**
|
||||
|
@@ -107,10 +107,41 @@ namespace
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool isFlowCorrect(Point2f u)
|
||||
{
|
||||
return !cvIsNaN(u.x) && !cvIsNaN(u.y) && (fabs(u.x) < 1e9) && (fabs(u.y) < 1e9);
|
||||
}
|
||||
|
||||
double calcRMSE(const Mat_<Point2f>& flow1, const Mat_<Point2f>& flow2)
|
||||
{
|
||||
double sum = 0.0;
|
||||
int counter = 0;
|
||||
|
||||
for (int i = 0; i < flow1.rows; ++i)
|
||||
{
|
||||
for (int j = 0; j < flow1.cols; ++j)
|
||||
{
|
||||
const Point2f u1 = flow1(i, j);
|
||||
const Point2f u2 = flow2(i, j);
|
||||
|
||||
if (isFlowCorrect(u1) && isFlowCorrect(u2))
|
||||
{
|
||||
const Point2f diff = u1 - u2;
|
||||
sum += diff.ddot(diff);
|
||||
++counter;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return sqrt(sum / (1e-9 + counter));
|
||||
}
|
||||
}
|
||||
|
||||
TEST(Video_calcOpticalFlowDual_TVL1, Regression)
|
||||
{
|
||||
const double MAX_RMSE = 0.02;
|
||||
|
||||
const string frame1_path = TS::ptr()->get_data_path() + "optflow/RubberWhale1.png";
|
||||
const string frame2_path = TS::ptr()->get_data_path() + "optflow/RubberWhale2.png";
|
||||
const string gold_flow_path = TS::ptr()->get_data_path() + "optflow/tvl1_flow.flo";
|
||||
@@ -130,7 +161,11 @@ TEST(Video_calcOpticalFlowDual_TVL1, Regression)
|
||||
#else
|
||||
Mat_<Point2f> gold;
|
||||
readOpticalFlowFromFile(gold, gold_flow_path);
|
||||
double err = norm(gold, flow, NORM_INF);
|
||||
EXPECT_EQ(0.0f, err);
|
||||
|
||||
ASSERT_EQ(gold.rows, flow.rows);
|
||||
ASSERT_EQ(gold.cols, flow.cols);
|
||||
|
||||
const double err = calcRMSE(gold, flow);
|
||||
EXPECT_LE(err, MAX_RMSE);
|
||||
#endif
|
||||
}
|
||||
|
@@ -1,5 +1,7 @@
|
||||
package org.opencv.samples.tutorial5;
|
||||
|
||||
import java.text.SimpleDateFormat;
|
||||
import java.util.Date;
|
||||
import java.util.List;
|
||||
import java.util.ListIterator;
|
||||
|
||||
@@ -9,23 +11,31 @@ import org.opencv.android.OpenCVLoader;
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.android.CameraBridgeViewBase.CvCameraViewListener;
|
||||
|
||||
import android.annotation.SuppressLint;
|
||||
import android.app.Activity;
|
||||
import android.hardware.Camera.Size;
|
||||
import android.os.Bundle;
|
||||
import android.os.Environment;
|
||||
import android.util.Log;
|
||||
import android.view.Menu;
|
||||
import android.view.MenuItem;
|
||||
import android.view.MotionEvent;
|
||||
import android.view.SubMenu;
|
||||
import android.view.SurfaceView;
|
||||
import android.view.View;
|
||||
import android.view.View.OnTouchListener;
|
||||
import android.view.WindowManager;
|
||||
import android.widget.Toast;
|
||||
|
||||
public class Sample5CameraControl extends Activity implements CvCameraViewListener, OnTouchListener {
|
||||
private static final String TAG = "OCVSample::Activity";
|
||||
|
||||
private SampleJavaCameraView mOpenCvCameraView;
|
||||
private List<Size> mResolutionList;
|
||||
private MenuItem[] mEffectMenuItems;
|
||||
private SubMenu mColorEffectsMenu;
|
||||
private MenuItem[] mResolutionMenuItems;
|
||||
private SubMenu mResolutionMenu;
|
||||
|
||||
private BaseLoaderCallback mLoaderCallback = new BaseLoaderCallback(this) {
|
||||
@Override
|
||||
@@ -100,28 +110,68 @@ public class Sample5CameraControl extends Activity implements CvCameraViewListen
|
||||
public boolean onCreateOptionsMenu(Menu menu) {
|
||||
List<String> effects = mOpenCvCameraView.getEffectList();
|
||||
|
||||
if (effects == null) {
|
||||
Log.e(TAG, "Color effects are not supported by device!");
|
||||
return true;
|
||||
}
|
||||
|
||||
mColorEffectsMenu = menu.addSubMenu("Color Effect");
|
||||
mEffectMenuItems = new MenuItem[effects.size()];
|
||||
|
||||
int idx = 0;
|
||||
ListIterator<String> itr = effects.listIterator();
|
||||
while(itr.hasNext()) {
|
||||
String element = itr.next();
|
||||
mEffectMenuItems[idx] = menu.add(element);
|
||||
ListIterator<String> effectItr = effects.listIterator();
|
||||
while(effectItr.hasNext()) {
|
||||
String element = effectItr.next();
|
||||
mEffectMenuItems[idx] = mColorEffectsMenu.add(1, idx, Menu.NONE, element);
|
||||
idx++;
|
||||
}
|
||||
|
||||
mResolutionMenu = menu.addSubMenu("Resolution");
|
||||
mResolutionList = mOpenCvCameraView.getResolutionList();
|
||||
mResolutionMenuItems = new MenuItem[mResolutionList.size()];
|
||||
|
||||
ListIterator<Size> resolutionItr = mResolutionList.listIterator();
|
||||
idx = 0;
|
||||
while(resolutionItr.hasNext()) {
|
||||
Size element = resolutionItr.next();
|
||||
mResolutionMenuItems[idx] = mResolutionMenu.add(2, idx, Menu.NONE,
|
||||
Integer.valueOf(element.width).toString() + "x" + Integer.valueOf(element.height).toString());
|
||||
idx++;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
public boolean onOptionsItemSelected(MenuItem item) {
|
||||
Log.i(TAG, "called onOptionsItemSelected; selected item: " + item);
|
||||
if (item.getGroupId() == 1)
|
||||
{
|
||||
mOpenCvCameraView.setEffect((String) item.getTitle());
|
||||
Toast.makeText(this, mOpenCvCameraView.getEffect(), Toast.LENGTH_SHORT).show();
|
||||
}
|
||||
else if (item.getGroupId() == 2)
|
||||
{
|
||||
int id = item.getItemId();
|
||||
Size resolution = mResolutionList.get(id);
|
||||
mOpenCvCameraView.setResolution(resolution);
|
||||
resolution = mOpenCvCameraView.getResolution();
|
||||
String caption = Integer.valueOf(resolution.width).toString() + "x" + Integer.valueOf(resolution.height).toString();
|
||||
Toast.makeText(this, caption, Toast.LENGTH_SHORT).show();
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
@SuppressLint("SimpleDateFormat")
|
||||
@Override
|
||||
public boolean onTouch(View v, MotionEvent event) {
|
||||
Log.i(TAG,"onTouch event");
|
||||
mOpenCvCameraView.takePicture(Environment.getExternalStorageDirectory().getPath() + "/sample_picture.jpg");
|
||||
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd_HH-mm-ss");
|
||||
String currentDateandTime = sdf.format(new Date());
|
||||
String fileName = Environment.getExternalStorageDirectory().getPath() +
|
||||
"/sample_picture_" + currentDateandTime + ".jpg";
|
||||
mOpenCvCameraView.takePicture(fileName);
|
||||
Toast.makeText(this, fileName + " saved", Toast.LENGTH_SHORT).show();
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
@@ -10,6 +10,7 @@ import android.graphics.Bitmap;
|
||||
import android.graphics.BitmapFactory;
|
||||
import android.hardware.Camera;
|
||||
import android.hardware.Camera.PictureCallback;
|
||||
import android.hardware.Camera.Size;
|
||||
import android.util.AttributeSet;
|
||||
import android.util.Log;
|
||||
|
||||
@@ -25,6 +26,10 @@ public class SampleJavaCameraView extends JavaCameraView {
|
||||
return mCamera.getParameters().getSupportedColorEffects();
|
||||
}
|
||||
|
||||
public boolean isEffectSupported() {
|
||||
return (mCamera.getParameters().getColorEffect() != null);
|
||||
}
|
||||
|
||||
public String getEffect() {
|
||||
return mCamera.getParameters().getColorEffect();
|
||||
}
|
||||
@@ -35,6 +40,21 @@ public class SampleJavaCameraView extends JavaCameraView {
|
||||
mCamera.setParameters(params);
|
||||
}
|
||||
|
||||
public List<Size> getResolutionList() {
|
||||
return mCamera.getParameters().getSupportedPreviewSizes();
|
||||
}
|
||||
|
||||
public void setResolution(Size resolution) {
|
||||
disconnectCamera();
|
||||
mMaxHeight = resolution.height;
|
||||
mMaxWidth = resolution.width;
|
||||
connectCamera(getWidth(), getHeight());
|
||||
}
|
||||
|
||||
public Size getResolution() {
|
||||
return mCamera.getParameters().getPreviewSize();
|
||||
}
|
||||
|
||||
public void takePicture(final String fileName) {
|
||||
Log.i(TAG, "Tacking picture");
|
||||
PictureCallback callback = new PictureCallback() {
|
||||
@@ -48,6 +68,7 @@ public class SampleJavaCameraView extends JavaCameraView {
|
||||
try {
|
||||
FileOutputStream out = new FileOutputStream(mPictureFileName);
|
||||
picture.compress(Bitmap.CompressFormat.JPEG, 90, out);
|
||||
picture.recycle();
|
||||
mCamera.startPreview();
|
||||
} catch (Exception e) {
|
||||
e.printStackTrace();
|
||||
|
@@ -535,7 +535,7 @@ void DetectorQualityEvaluator::readAlgorithm ()
|
||||
{
|
||||
defaultDetector = FeatureDetector::create( algName );
|
||||
specificDetector = FeatureDetector::create( algName );
|
||||
if( defaultDetector == 0 )
|
||||
if( defaultDetector.empty() )
|
||||
{
|
||||
printf( "Algorithm can not be read\n" );
|
||||
exit(-1);
|
||||
@@ -769,14 +769,14 @@ void DescriptorQualityEvaluator::readAlgorithm( )
|
||||
defaultDescMatcher = GenericDescriptorMatcher::create( algName );
|
||||
specificDescMatcher = GenericDescriptorMatcher::create( algName );
|
||||
|
||||
if( defaultDescMatcher == 0 )
|
||||
if( defaultDescMatcher.empty() )
|
||||
{
|
||||
Ptr<DescriptorExtractor> extractor = DescriptorExtractor::create( algName );
|
||||
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create( matcherName );
|
||||
defaultDescMatcher = new VectorDescriptorMatch( extractor, matcher );
|
||||
specificDescMatcher = new VectorDescriptorMatch( extractor, matcher );
|
||||
|
||||
if( extractor == 0 || matcher == 0 )
|
||||
if( extractor.empty() || matcher.empty() )
|
||||
{
|
||||
printf("Algorithm can not be read\n");
|
||||
exit(-1);
|
||||
|
@@ -32,7 +32,7 @@ int main(int argc, char** argv)
|
||||
std::string params_filename = std::string(argv[4]);
|
||||
|
||||
Ptr<GenericDescriptorMatcher> descriptorMatcher = GenericDescriptorMatcher::create(alg_name, params_filename);
|
||||
if( descriptorMatcher == 0 )
|
||||
if( descriptorMatcher.empty() )
|
||||
{
|
||||
printf ("Cannot create descriptor\n");
|
||||
return 0;
|
||||
|
@@ -55,7 +55,7 @@ if(BUILD_EXAMPLES AND OCV_DEPENDENCIES_FOUND)
|
||||
endforeach()
|
||||
endif()
|
||||
|
||||
if (NOT WIN32)
|
||||
if (INSTALL_C_EXAMPLES AND NOT WIN32)
|
||||
file(GLOB install_list *.c *.cpp *.jpg *.png *.data makefile.* build_all.sh *.dsp *.cmd )
|
||||
install(FILES ${install_list}
|
||||
DESTINATION share/opencv/samples/${project}
|
||||
|
Reference in New Issue
Block a user