move gpu version of soft cascade to dedicated module
This commit is contained in:
674
modules/softcascade/src/detector_cuda.cpp
Normal file
674
modules/softcascade/src/detector_cuda.cpp
Normal file
@@ -0,0 +1,674 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "opencv2/gpu/stream_accessor.hpp"
|
||||
|
||||
#if !defined (HAVE_CUDA)
|
||||
cv::softcascade::SCascade::SCascade(const double, const double, const int, const int) { throw_nogpu(); }
|
||||
|
||||
cv::softcascade::SCascade::~SCascade() { throw_nogpu(); }
|
||||
|
||||
bool cv::softcascade::SCascade::load(const FileNode&) { throw_nogpu(); return false;}
|
||||
|
||||
void cv::softcascade::SCascade::detect(InputArray, InputArray, OutputArray, cv::gpu::Stream&) const { throw_nogpu(); }
|
||||
|
||||
void cv::softcascade::SCascade::read(const FileNode& fn) { Algorithm::read(fn); }
|
||||
|
||||
cv::gpu::ChannelsProcessor::ChannelsProcessor() { throw_nogpu(); }
|
||||
cv::gpu::ChannelsProcessor::~ChannelsProcessor() { throw_nogpu(); }
|
||||
|
||||
cv::Ptr<cv::gpu::ChannelsProcessor> cv::gpu::ChannelsProcessor::create(const int, const int, const int)
|
||||
{ throw_nogpu(); return cv::Ptr<cv::gpu::ChannelsProcessor>(0); }
|
||||
|
||||
#else
|
||||
# include "cuda_invoker.hpp"
|
||||
|
||||
cv::softcascade::device::Level::Level(int idx, const Octave& oct, const float scale, const int w, const int h)
|
||||
: octave(idx), step(oct.stages), relScale(scale / oct.scale)
|
||||
{
|
||||
workRect.x = cvRound(w / (float)oct.shrinkage);
|
||||
workRect.y = cvRound(h / (float)oct.shrinkage);
|
||||
|
||||
objSize.x = cv::saturate_cast<uchar>(oct.size.x * relScale);
|
||||
objSize.y = cv::saturate_cast<uchar>(oct.size.y * relScale);
|
||||
|
||||
// according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool's and Dallal's papers
|
||||
if (fabs(relScale - 1.f) < FLT_EPSILON)
|
||||
scaling[0] = scaling[1] = 1.f;
|
||||
else
|
||||
{
|
||||
scaling[0] = (relScale < 1.f) ? 0.89f * ::pow(relScale, 1.099f / ::log(2.0f)) : 1.f;
|
||||
scaling[1] = relScale * relScale;
|
||||
}
|
||||
}
|
||||
|
||||
namespace cv { namespace softcascade { namespace device {
|
||||
|
||||
void fillBins(cv::gpu::PtrStepSzb hogluv, const cv::gpu::PtrStepSzf& nangle,
|
||||
const int fw, const int fh, const int bins, cudaStream_t stream);
|
||||
|
||||
void suppress(const cv::gpu::PtrStepSzb& objects, cv::gpu::PtrStepSzb overlaps, cv::gpu::PtrStepSzi ndetections,
|
||||
cv::gpu::PtrStepSzb suppressed, cudaStream_t stream);
|
||||
|
||||
void bgr2Luv(const cv::gpu::PtrStepSzb& bgr, cv::gpu::PtrStepSzb luv);
|
||||
void gray2hog(const cv::gpu::PtrStepSzb& gray, cv::gpu::PtrStepSzb mag, const int bins);
|
||||
void shrink(const cv::gpu::PtrStepSzb& channels, cv::gpu::PtrStepSzb shrunk);
|
||||
}}}
|
||||
|
||||
struct cv::softcascade::SCascade::Fields
|
||||
{
|
||||
static Fields* parseCascade(const FileNode &root, const float mins, const float maxs, const int totals, const int method)
|
||||
{
|
||||
static const char *const SC_STAGE_TYPE = "stageType";
|
||||
static const char *const SC_BOOST = "BOOST";
|
||||
static const char *const SC_FEATURE_TYPE = "featureType";
|
||||
static const char *const SC_ICF = "ICF";
|
||||
static const char *const SC_ORIG_W = "width";
|
||||
static const char *const SC_ORIG_H = "height";
|
||||
static const char *const SC_FEATURE_FORMAT = "featureFormat";
|
||||
static const char *const SC_SHRINKAGE = "shrinkage";
|
||||
static const char *const SC_OCTAVES = "octaves";
|
||||
static const char *const SC_OCT_SCALE = "scale";
|
||||
static const char *const SC_OCT_WEAKS = "weaks";
|
||||
static const char *const SC_TREES = "trees";
|
||||
static const char *const SC_WEAK_THRESHOLD = "treeThreshold";
|
||||
static const char *const SC_FEATURES = "features";
|
||||
static const char *const SC_INTERNAL = "internalNodes";
|
||||
static const char *const SC_LEAF = "leafValues";
|
||||
static const char *const SC_F_CHANNEL = "channel";
|
||||
static const char *const SC_F_RECT = "rect";
|
||||
|
||||
// only Ada Boost supported
|
||||
std::string stageTypeStr = (std::string)root[SC_STAGE_TYPE];
|
||||
CV_Assert(stageTypeStr == SC_BOOST);
|
||||
|
||||
// only HOG-like integral channel features supported
|
||||
std::string featureTypeStr = (std::string)root[SC_FEATURE_TYPE];
|
||||
CV_Assert(featureTypeStr == SC_ICF);
|
||||
|
||||
int origWidth = (int)root[SC_ORIG_W];
|
||||
int origHeight = (int)root[SC_ORIG_H];
|
||||
|
||||
std::string fformat = (std::string)root[SC_FEATURE_FORMAT];
|
||||
bool useBoxes = (fformat == "BOX");
|
||||
ushort shrinkage = cv::saturate_cast<ushort>((int)root[SC_SHRINKAGE]);
|
||||
|
||||
FileNode fn = root[SC_OCTAVES];
|
||||
if (fn.empty()) return 0;
|
||||
|
||||
std::vector<device::Octave> voctaves;
|
||||
std::vector<float> vstages;
|
||||
std::vector<device::Node> vnodes;
|
||||
std::vector<float> vleaves;
|
||||
|
||||
FileNodeIterator it = fn.begin(), it_end = fn.end();
|
||||
for (ushort octIndex = 0; it != it_end; ++it, ++octIndex)
|
||||
{
|
||||
FileNode fns = *it;
|
||||
float scale = powf(2.f,saturate_cast<float>((int)fns[SC_OCT_SCALE]));
|
||||
bool isUPOctave = scale >= 1;
|
||||
|
||||
ushort nweaks = saturate_cast<ushort>((int)fns[SC_OCT_WEAKS]);
|
||||
|
||||
ushort2 size;
|
||||
size.x = cvRound(origWidth * scale);
|
||||
size.y = cvRound(origHeight * scale);
|
||||
|
||||
device::Octave octave(octIndex, nweaks, shrinkage, size, scale);
|
||||
CV_Assert(octave.stages > 0);
|
||||
voctaves.push_back(octave);
|
||||
|
||||
FileNode ffs = fns[SC_FEATURES];
|
||||
if (ffs.empty()) return 0;
|
||||
|
||||
std::vector<cv::Rect> feature_rects;
|
||||
std::vector<int> feature_channels;
|
||||
|
||||
FileNodeIterator ftrs = ffs.begin(), ftrs_end = ffs.end();
|
||||
int feature_offset = 0;
|
||||
for (; ftrs != ftrs_end; ++ftrs, ++feature_offset )
|
||||
{
|
||||
cv::FileNode ftn = (*ftrs)[SC_F_RECT];
|
||||
cv::FileNodeIterator r_it = ftn.begin();
|
||||
int x = (int)*(r_it++);
|
||||
int y = (int)*(r_it++);
|
||||
int w = (int)*(r_it++);
|
||||
int h = (int)*(r_it++);
|
||||
|
||||
if (useBoxes)
|
||||
{
|
||||
if (isUPOctave)
|
||||
{
|
||||
w -= x;
|
||||
h -= y;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (!isUPOctave)
|
||||
{
|
||||
w += x;
|
||||
h += y;
|
||||
}
|
||||
}
|
||||
feature_rects.push_back(cv::Rect(x, y, w, h));
|
||||
feature_channels.push_back((int)(*ftrs)[SC_F_CHANNEL]);
|
||||
}
|
||||
|
||||
fns = fns[SC_TREES];
|
||||
if (fn.empty()) return false;
|
||||
|
||||
// for each stage (~ decision tree with H = 2)
|
||||
FileNodeIterator st = fns.begin(), st_end = fns.end();
|
||||
for (; st != st_end; ++st )
|
||||
{
|
||||
FileNode octfn = *st;
|
||||
float threshold = (float)octfn[SC_WEAK_THRESHOLD];
|
||||
vstages.push_back(threshold);
|
||||
|
||||
FileNode intfns = octfn[SC_INTERNAL];
|
||||
FileNodeIterator inIt = intfns.begin(), inIt_end = intfns.end();
|
||||
for (; inIt != inIt_end;)
|
||||
{
|
||||
inIt +=2;
|
||||
int featureIdx = (int)(*(inIt++));
|
||||
|
||||
float orig_threshold = (float)(*(inIt++));
|
||||
unsigned int th = saturate_cast<unsigned int>((int)orig_threshold);
|
||||
cv::Rect& r = feature_rects[featureIdx];
|
||||
uchar4 rect;
|
||||
rect.x = saturate_cast<uchar>(r.x);
|
||||
rect.y = saturate_cast<uchar>(r.y);
|
||||
rect.z = saturate_cast<uchar>(r.width);
|
||||
rect.w = saturate_cast<uchar>(r.height);
|
||||
|
||||
unsigned int channel = saturate_cast<unsigned int>(feature_channels[featureIdx]);
|
||||
vnodes.push_back(device::Node(rect, channel, th));
|
||||
}
|
||||
|
||||
intfns = octfn[SC_LEAF];
|
||||
inIt = intfns.begin(), inIt_end = intfns.end();
|
||||
for (; inIt != inIt_end; ++inIt)
|
||||
{
|
||||
vleaves.push_back((float)(*inIt));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
cv::Mat hoctaves(1, (int) (voctaves.size() * sizeof(device::Octave)), CV_8UC1, (uchar*)&(voctaves[0]));
|
||||
CV_Assert(!hoctaves.empty());
|
||||
|
||||
cv::Mat hstages(cv::Mat(vstages).reshape(1,1));
|
||||
CV_Assert(!hstages.empty());
|
||||
|
||||
cv::Mat hnodes(1, (int) (vnodes.size() * sizeof(device::Node)), CV_8UC1, (uchar*)&(vnodes[0]) );
|
||||
CV_Assert(!hnodes.empty());
|
||||
|
||||
cv::Mat hleaves(cv::Mat(vleaves).reshape(1,1));
|
||||
CV_Assert(!hleaves.empty());
|
||||
|
||||
Fields* fields = new Fields(mins, maxs, totals, origWidth, origHeight, shrinkage, 0,
|
||||
hoctaves, hstages, hnodes, hleaves, method);
|
||||
fields->voctaves = voctaves;
|
||||
fields->createLevels(DEFAULT_FRAME_HEIGHT, DEFAULT_FRAME_WIDTH);
|
||||
|
||||
return fields;
|
||||
}
|
||||
|
||||
bool check(float mins,float maxs, int scales)
|
||||
{
|
||||
bool updated = (minScale == mins) || (maxScale == maxs) || (totals = scales);
|
||||
|
||||
minScale = mins;
|
||||
maxScale = maxScale;
|
||||
totals = scales;
|
||||
|
||||
return updated;
|
||||
}
|
||||
|
||||
int createLevels(const int fh, const int fw)
|
||||
{
|
||||
std::vector<device::Level> vlevels;
|
||||
float logFactor = (::log(maxScale) - ::log(minScale)) / (totals -1);
|
||||
|
||||
float scale = minScale;
|
||||
int dcs = 0;
|
||||
for (int sc = 0; sc < totals; ++sc)
|
||||
{
|
||||
int width = (int)::std::max(0.0f, fw - (origObjWidth * scale));
|
||||
int height = (int)::std::max(0.0f, fh - (origObjHeight * scale));
|
||||
|
||||
float logScale = ::log(scale);
|
||||
int fit = fitOctave(voctaves, logScale);
|
||||
|
||||
device::Level level(fit, voctaves[fit], scale, width, height);
|
||||
|
||||
if (!width || !height)
|
||||
break;
|
||||
else
|
||||
{
|
||||
vlevels.push_back(level);
|
||||
if (voctaves[fit].scale < 1) ++dcs;
|
||||
}
|
||||
|
||||
if (::fabs(scale - maxScale) < FLT_EPSILON) break;
|
||||
scale = ::std::min(maxScale, ::expf(::log(scale) + logFactor));
|
||||
}
|
||||
|
||||
cv::Mat hlevels = cv::Mat(1, (int) (vlevels.size() * sizeof(device::Level)), CV_8UC1, (uchar*)&(vlevels[0]) );
|
||||
CV_Assert(!hlevels.empty());
|
||||
levels.upload(hlevels);
|
||||
downscales = dcs;
|
||||
return dcs;
|
||||
}
|
||||
|
||||
bool update(int fh, int fw, int shr)
|
||||
{
|
||||
shrunk.create(fh / shr * HOG_LUV_BINS, fw / shr, CV_8UC1);
|
||||
integralBuffer.create(shrunk.rows, shrunk.cols, CV_32SC1);
|
||||
|
||||
hogluv.create((fh / shr) * HOG_LUV_BINS + 1, fw / shr + 1, CV_32SC1);
|
||||
hogluv.setTo(cv::Scalar::all(0));
|
||||
|
||||
overlaps.create(1, 5000, CV_8UC1);
|
||||
suppressed.create(1, sizeof(Detection) * 51, CV_8UC1);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
Fields( const float mins, const float maxs, const int tts, const int ow, const int oh, const int shr, const int ds,
|
||||
cv::Mat hoctaves, cv::Mat hstages, cv::Mat hnodes, cv::Mat hleaves, int method)
|
||||
: minScale(mins), maxScale(maxs), totals(tts), origObjWidth(ow), origObjHeight(oh), shrinkage(shr), downscales(ds)
|
||||
{
|
||||
update(DEFAULT_FRAME_HEIGHT, DEFAULT_FRAME_WIDTH, shr);
|
||||
octaves.upload(hoctaves);
|
||||
stages.upload(hstages);
|
||||
nodes.upload(hnodes);
|
||||
leaves.upload(hleaves);
|
||||
|
||||
preprocessor = ChannelsProcessor::create(shrinkage, 6, method);
|
||||
}
|
||||
|
||||
void detect(cv::gpu::GpuMat& objects, cv::gpu::Stream& s) const
|
||||
{
|
||||
if (s)
|
||||
s.enqueueMemSet(objects, 0);
|
||||
else
|
||||
cudaMemset(objects.data, 0, sizeof(Detection));
|
||||
|
||||
cudaSafeCall( cudaGetLastError());
|
||||
|
||||
device::CascadeInvoker<device::GK107PolicyX4> invoker
|
||||
= device::CascadeInvoker<device::GK107PolicyX4>(levels, stages, nodes, leaves);
|
||||
|
||||
cudaStream_t stream = cv::gpu::StreamAccessor::getStream(s);
|
||||
invoker(mask, hogluv, objects, downscales, stream);
|
||||
}
|
||||
|
||||
void suppress(cv::gpu::GpuMat& objects, cv::gpu::Stream& s)
|
||||
{
|
||||
cv::gpu::GpuMat ndetections = cv::gpu::GpuMat(objects, cv::Rect(0, 0, sizeof(Detection), 1));
|
||||
ensureSizeIsEnough(objects.rows, objects.cols, CV_8UC1, overlaps);
|
||||
|
||||
if (s)
|
||||
{
|
||||
s.enqueueMemSet(overlaps, 0);
|
||||
s.enqueueMemSet(suppressed, 0);
|
||||
}
|
||||
else
|
||||
{
|
||||
overlaps.setTo(0);
|
||||
suppressed.setTo(0);
|
||||
}
|
||||
|
||||
cudaStream_t stream = cv::gpu::StreamAccessor::getStream(s);
|
||||
device::suppress(objects, overlaps, ndetections, suppressed, stream);
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
typedef std::vector<device::Octave>::const_iterator octIt_t;
|
||||
static int fitOctave(const std::vector<device::Octave>& octs, const float& logFactor)
|
||||
{
|
||||
float minAbsLog = FLT_MAX;
|
||||
int res = 0;
|
||||
for (int oct = 0; oct < (int)octs.size(); ++oct)
|
||||
{
|
||||
const device::Octave& octave =octs[oct];
|
||||
float logOctave = ::log(octave.scale);
|
||||
float logAbsScale = ::fabs(logFactor - logOctave);
|
||||
|
||||
if(logAbsScale < minAbsLog)
|
||||
{
|
||||
res = oct;
|
||||
minAbsLog = logAbsScale;
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
cv::Ptr<ChannelsProcessor> preprocessor;
|
||||
|
||||
// scales range
|
||||
float minScale;
|
||||
float maxScale;
|
||||
|
||||
int totals;
|
||||
|
||||
int origObjWidth;
|
||||
int origObjHeight;
|
||||
|
||||
const int shrinkage;
|
||||
int downscales;
|
||||
|
||||
|
||||
// 160x120x10
|
||||
cv::gpu::GpuMat shrunk;
|
||||
|
||||
// temporal mat for integral
|
||||
cv::gpu::GpuMat integralBuffer;
|
||||
|
||||
// 161x121x10
|
||||
cv::gpu::GpuMat hogluv;
|
||||
|
||||
|
||||
// used for suppression
|
||||
cv::gpu::GpuMat suppressed;
|
||||
// used for area overlap computing during
|
||||
cv::gpu::GpuMat overlaps;
|
||||
|
||||
|
||||
// Cascade from xml
|
||||
cv::gpu::GpuMat octaves;
|
||||
cv::gpu::GpuMat stages;
|
||||
cv::gpu::GpuMat nodes;
|
||||
cv::gpu::GpuMat leaves;
|
||||
cv::gpu::GpuMat levels;
|
||||
|
||||
|
||||
// For ROI
|
||||
cv::gpu::GpuMat mask;
|
||||
cv::gpu::GpuMat genRoiTmp;
|
||||
|
||||
// cv::gpu::GpuMat collected;
|
||||
|
||||
|
||||
std::vector<device::Octave> voctaves;
|
||||
|
||||
// DeviceInfo info;
|
||||
|
||||
enum { BOOST = 0 };
|
||||
enum
|
||||
{
|
||||
DEFAULT_FRAME_WIDTH = 640,
|
||||
DEFAULT_FRAME_HEIGHT = 480,
|
||||
HOG_LUV_BINS = 10
|
||||
};
|
||||
};
|
||||
|
||||
cv::softcascade::SCascade::SCascade(const double mins, const double maxs, const int sc, const int fl)
|
||||
: fields(0), minScale(mins), maxScale(maxs), scales(sc), flags(fl) {}
|
||||
|
||||
cv::softcascade::SCascade::~SCascade() { delete fields; }
|
||||
|
||||
bool cv::softcascade::SCascade::load(const FileNode& fn)
|
||||
{
|
||||
if (fields) delete fields;
|
||||
fields = Fields::parseCascade(fn, (float)minScale, (float)maxScale, scales, flags);
|
||||
return fields != 0;
|
||||
}
|
||||
|
||||
void cv::softcascade::SCascade::detect(InputArray _image, InputArray _rois, OutputArray _objects, cv::gpu::Stream& s) const
|
||||
{
|
||||
CV_Assert(fields);
|
||||
|
||||
// only color images and precomputed integrals are supported
|
||||
int type = _image.type();
|
||||
CV_Assert(type == CV_8UC3 || type == CV_32SC1 || (!_rois.empty()));
|
||||
|
||||
const cv::gpu::GpuMat image = _image.getGpuMat();
|
||||
|
||||
if (_objects.empty()) _objects.create(1, 4096 * sizeof(Detection), CV_8UC1);
|
||||
|
||||
cv::gpu::GpuMat rois = _rois.getGpuMat(), objects = _objects.getGpuMat();
|
||||
|
||||
/// roi
|
||||
Fields& flds = *fields;
|
||||
int shr = flds.shrinkage;
|
||||
|
||||
flds.mask.create( rois.cols / shr, rois.rows / shr, rois.type());
|
||||
|
||||
cv::gpu::resize(rois, flds.genRoiTmp, cv::Size(), 1.f / shr, 1.f / shr, CV_INTER_AREA, s);
|
||||
cv::gpu::transpose(flds.genRoiTmp, flds.mask, s);
|
||||
|
||||
if (type == CV_8UC3)
|
||||
{
|
||||
flds.update(image.rows, image.cols, flds.shrinkage);
|
||||
|
||||
if (flds.check((float)minScale, (float)maxScale, scales))
|
||||
flds.createLevels(image.rows, image.cols);
|
||||
|
||||
flds.preprocessor->apply(image, flds.shrunk);
|
||||
cv::gpu::integralBuffered(flds.shrunk, flds.hogluv, flds.integralBuffer, s);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (s)
|
||||
s.enqueueCopy(image, flds.hogluv);
|
||||
else
|
||||
image.copyTo(flds.hogluv);
|
||||
}
|
||||
|
||||
flds.detect(objects, s);
|
||||
|
||||
if ( (flags && NMS_MASK) != NO_REJECT)
|
||||
{
|
||||
cv::gpu::GpuMat spr(objects, cv::Rect(0, 0, flds.suppressed.cols, flds.suppressed.rows));
|
||||
flds.suppress(objects, s);
|
||||
flds.suppressed.copyTo(spr);
|
||||
}
|
||||
}
|
||||
|
||||
void cv::softcascade::SCascade::read(const FileNode& fn)
|
||||
{
|
||||
Algorithm::read(fn);
|
||||
}
|
||||
|
||||
namespace {
|
||||
|
||||
using cv::InputArray;
|
||||
using cv::OutputArray;
|
||||
using cv::gpu::Stream;
|
||||
using cv::gpu::GpuMat;
|
||||
|
||||
inline void setZero(cv::gpu::GpuMat& m, cv::gpu::Stream& s)
|
||||
{
|
||||
if (s)
|
||||
s.enqueueMemSet(m, 0);
|
||||
else
|
||||
m.setTo(0);
|
||||
}
|
||||
|
||||
struct GenricPreprocessor : public cv::softcascade::ChannelsProcessor
|
||||
{
|
||||
GenricPreprocessor(const int s, const int b) : cv::softcascade::ChannelsProcessor(), shrinkage(s), bins(b) {}
|
||||
virtual ~GenricPreprocessor() {}
|
||||
|
||||
virtual void apply(InputArray _frame, OutputArray _shrunk, cv::gpu::Stream& s = cv::gpu::Stream::Null())
|
||||
{
|
||||
const cv::gpu::GpuMat frame = _frame.getGpuMat();
|
||||
|
||||
_shrunk.create(frame.rows * (4 + bins) / shrinkage, frame.cols / shrinkage, CV_8UC1);
|
||||
cv::gpu::GpuMat shrunk = _shrunk.getGpuMat();
|
||||
|
||||
channels.create(frame.rows * (4 + bins), frame.cols, CV_8UC1);
|
||||
setZero(channels, s);
|
||||
|
||||
cv::gpu::cvtColor(frame, gray, CV_BGR2GRAY, s);
|
||||
createHogBins(s);
|
||||
|
||||
createLuvBins(frame, s);
|
||||
|
||||
cv::gpu::resize(channels, shrunk, cv::Size(), 1.f / shrinkage, 1.f / shrinkage, CV_INTER_AREA, s);
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
void createHogBins(cv::gpu::Stream& s)
|
||||
{
|
||||
static const int fw = gray.cols;
|
||||
static const int fh = gray.rows;
|
||||
|
||||
fplane.create(fh * HOG_BINS, fw, CV_32FC1);
|
||||
|
||||
cv::gpu::GpuMat dfdx(fplane, cv::Rect(0, 0, fw, fh));
|
||||
cv::gpu::GpuMat dfdy(fplane, cv::Rect(0, fh, fw, fh));
|
||||
|
||||
cv::gpu::Sobel(gray, dfdx, CV_32F, 1, 0, sobelBuf, 3, 1, cv::BORDER_DEFAULT, -1, s);
|
||||
cv::gpu::Sobel(gray, dfdy, CV_32F, 0, 1, sobelBuf, 3, 1, cv::BORDER_DEFAULT, -1, s);
|
||||
|
||||
cv::gpu::GpuMat mag(fplane, cv::Rect(0, 2 * fh, fw, fh));
|
||||
cv::gpu::GpuMat ang(fplane, cv::Rect(0, 3 * fh, fw, fh));
|
||||
|
||||
cv::gpu::cartToPolar(dfdx, dfdy, mag, ang, true, s);
|
||||
|
||||
// normalize magnitude to uchar interval and angles to 6 bins
|
||||
cv::gpu::GpuMat nmag(fplane, cv::Rect(0, 4 * fh, fw, fh));
|
||||
cv::gpu::GpuMat nang(fplane, cv::Rect(0, 5 * fh, fw, fh));
|
||||
|
||||
cv::gpu::multiply(mag, cv::Scalar::all(1.f / (8 *::log(2.0f))), nmag, 1, -1, s);
|
||||
cv::gpu::multiply(ang, cv::Scalar::all(1.f / 60.f), nang, 1, -1, s);
|
||||
|
||||
//create uchar magnitude
|
||||
cv::gpu::GpuMat cmag(channels, cv::Rect(0, fh * HOG_BINS, fw, fh));
|
||||
if (s)
|
||||
s.enqueueConvert(nmag, cmag, CV_8UC1);
|
||||
else
|
||||
nmag.convertTo(cmag, CV_8UC1);
|
||||
|
||||
cudaStream_t stream = cv::gpu::StreamAccessor::getStream(s);
|
||||
cv::softcascade::device::fillBins(channels, nang, fw, fh, HOG_BINS, stream);
|
||||
}
|
||||
|
||||
void createLuvBins(const cv::gpu::GpuMat& colored, cv::gpu::Stream& s)
|
||||
{
|
||||
static const int fw = colored.cols;
|
||||
static const int fh = colored.rows;
|
||||
|
||||
cv::gpu::cvtColor(colored, luv, CV_BGR2Luv, s);
|
||||
|
||||
std::vector<cv::gpu::GpuMat> splited;
|
||||
for(int i = 0; i < LUV_BINS; ++i)
|
||||
{
|
||||
splited.push_back(cv::gpu::GpuMat(channels, cv::Rect(0, fh * (7 + i), fw, fh)));
|
||||
}
|
||||
|
||||
cv::gpu::split(luv, splited, s);
|
||||
}
|
||||
|
||||
enum {HOG_BINS = 6, LUV_BINS = 3};
|
||||
|
||||
const int shrinkage;
|
||||
const int bins;
|
||||
|
||||
cv::gpu::GpuMat gray;
|
||||
cv::gpu::GpuMat luv;
|
||||
cv::gpu::GpuMat channels;
|
||||
|
||||
// preallocated buffer for floating point operations
|
||||
cv::gpu::GpuMat fplane;
|
||||
cv::gpu::GpuMat sobelBuf;
|
||||
};
|
||||
|
||||
|
||||
struct SeparablePreprocessor : public cv::softcascade::ChannelsProcessor
|
||||
{
|
||||
SeparablePreprocessor(const int s, const int b) : cv::softcascade::ChannelsProcessor(), shrinkage(s), bins(b) {}
|
||||
virtual ~SeparablePreprocessor() {}
|
||||
|
||||
virtual void apply(InputArray _frame, OutputArray _shrunk, cv::gpu::Stream& s = cv::gpu::Stream::Null())
|
||||
{
|
||||
const cv::gpu::GpuMat frame = _frame.getGpuMat();
|
||||
cv::gpu::GaussianBlur(frame, bgr, cv::Size(3, 3), -1.0);
|
||||
|
||||
_shrunk.create(frame.rows * (4 + bins) / shrinkage, frame.cols / shrinkage, CV_8UC1);
|
||||
cv::gpu::GpuMat shrunk = _shrunk.getGpuMat();
|
||||
|
||||
channels.create(frame.rows * (4 + bins), frame.cols, CV_8UC1);
|
||||
setZero(channels, s);
|
||||
|
||||
cv::gpu::cvtColor(bgr, gray, CV_BGR2GRAY);
|
||||
cv::softcascade::device::gray2hog(gray, channels(cv::Rect(0, 0, bgr.cols, bgr.rows * (bins + 1))), bins);
|
||||
|
||||
cv::gpu::GpuMat luv(channels, cv::Rect(0, bgr.rows * (bins + 1), bgr.cols, bgr.rows * 3));
|
||||
cv::softcascade::device::bgr2Luv(bgr, luv);
|
||||
cv::softcascade::device::shrink(channels, shrunk);
|
||||
}
|
||||
|
||||
private:
|
||||
const int shrinkage;
|
||||
const int bins;
|
||||
|
||||
cv::gpu::GpuMat bgr;
|
||||
cv::gpu::GpuMat gray;
|
||||
cv::gpu::GpuMat channels;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
cv::Ptr<cv::softcascade::ChannelsProcessor> cv::softcascade::ChannelsProcessor::create(const int s, const int b, const int m)
|
||||
{
|
||||
CV_Assert((m && SEPARABLE) || (m && GENERIC));
|
||||
|
||||
if (m && GENERIC)
|
||||
return cv::Ptr<cv::softcascade::ChannelsProcessor>(new GenricPreprocessor(s, b));
|
||||
|
||||
return cv::Ptr<cv::softcascade::ChannelsProcessor>(new SeparablePreprocessor(s, b));
|
||||
}
|
||||
|
||||
cv::softcascade::ChannelsProcessor::ChannelsProcessor() { }
|
||||
cv::softcascade::ChannelsProcessor::~ChannelsProcessor() { }
|
||||
|
||||
#endif
|
||||
Reference in New Issue
Block a user