move gpu version of soft cascade to dedicated module

This commit is contained in:
marina.kolpakova
2013-03-03 11:11:42 +04:00
parent 9b00c14fff
commit 5120322cea
16 changed files with 504 additions and 249 deletions

View File

@@ -0,0 +1,566 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <opencv2/gpu/device/common.hpp>
#include <opencv2/gpu/device/saturate_cast.hpp>
#include <cuda_invoker.hpp>
#include <float.h>
#include <stdio.h>
namespace cv { namespace softcascade { namespace device {
template <int FACTOR>
__device__ __forceinline__ uchar shrink(const uchar* ptr, const int pitch, const int y, const int x)
{
int out = 0;
#pragma unroll
for(int dy = 0; dy < FACTOR; ++dy)
#pragma unroll
for(int dx = 0; dx < FACTOR; ++dx)
{
out += ptr[dy * pitch + dx];
}
return static_cast<uchar>(out / (FACTOR * FACTOR));
}
template<int FACTOR>
__global__ void shrink(const uchar* __restrict__ hogluv, const int inPitch,
uchar* __restrict__ shrank, const int outPitch )
{
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const uchar* ptr = hogluv + (FACTOR * y) * inPitch + (FACTOR * x);
shrank[ y * outPitch + x] = shrink<FACTOR>(ptr, inPitch, y, x);
}
void shrink(const cv::gpu::PtrStepSzb& channels, cv::gpu::PtrStepSzb shrunk)
{
dim3 block(32, 8);
dim3 grid(shrunk.cols / 32, shrunk.rows / 8);
shrink<4><<<grid, block>>>((uchar*)channels.ptr(), channels.step, (uchar*)shrunk.ptr(), shrunk.step);
cudaSafeCall(cudaDeviceSynchronize());
}
__device__ __forceinline__ void luv(const float& b, const float& g, const float& r, uchar& __l, uchar& __u, uchar& __v)
{
// rgb -> XYZ
float x = 0.412453f * r + 0.357580f * g + 0.180423f * b;
float y = 0.212671f * r + 0.715160f * g + 0.072169f * b;
float z = 0.019334f * r + 0.119193f * g + 0.950227f * b;
// computed for D65
const float _ur = 0.19783303699678276f;
const float _vr = 0.46833047435252234f;
const float divisor = fmax((x + 15.f * y + 3.f * z), FLT_EPSILON);
const float _u = __fdividef(4.f * x, divisor);
const float _v = __fdividef(9.f * y, divisor);
float hack = static_cast<float>(__float2int_rn(y * 2047)) / 2047;
const float L = fmax(0.f, ((116.f * cbrtf(hack)) - 16.f));
const float U = 13.f * L * (_u - _ur);
const float V = 13.f * L * (_v - _vr);
// L in [0, 100], u in [-134, 220], v in [-140, 122]
__l = static_cast<uchar>( L * (255.f / 100.f));
__u = static_cast<uchar>((U + 134.f) * (255.f / (220.f + 134.f )));
__v = static_cast<uchar>((V + 140.f) * (255.f / (122.f + 140.f )));
}
__global__ void bgr2Luv_d(const uchar* rgb, const int rgbPitch, uchar* luvg, const int luvgPitch)
{
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const int x = blockIdx.x * blockDim.x + threadIdx.x;
uchar3 color = ((uchar3*)(rgb + rgbPitch * y))[x];
uchar l, u, v;
luv(color.x / 255.f, color.y / 255.f, color.z / 255.f, l, u, v);
luvg[luvgPitch * y + x] = l;
luvg[luvgPitch * (y + 480) + x] = u;
luvg[luvgPitch * (y + 2 * 480) + x] = v;
}
void bgr2Luv(const PtrStepSzb& bgr, PtrStepSzb luv)
{
dim3 block(32, 8);
dim3 grid(bgr.cols / 32, bgr.rows / 8);
bgr2Luv_d<<<grid, block>>>((const uchar*)bgr.ptr(0), bgr.step, (uchar*)luv.ptr(0), luv.step);
cudaSafeCall(cudaDeviceSynchronize());
}
template<bool isDefaultNum>
__device__ __forceinline__ int fast_angle_bin(const float& dx, const float& dy)
{
const float angle_quantum = CV_PI / 6.f;
float angle = atan2(dx, dy) + (angle_quantum / 2.f);
if (angle < 0) angle += CV_PI;
const float angle_scaling = 1.f / angle_quantum;
return static_cast<int>(angle * angle_scaling) % 6;
}
template<>
__device__ __forceinline__ int fast_angle_bin<true>(const float& dy, const float& dx)
{
int index = 0;
float max_dot = fabs(dx);
{
const float dot_product = fabs(dx * 0.8660254037844386f + dy * 0.5f);
if(dot_product > max_dot)
{
max_dot = dot_product;
index = 1;
}
}
{
const float dot_product = fabs(dy * 0.8660254037844386f + dx * 0.5f);
if(dot_product > max_dot)
{
max_dot = dot_product;
index = 2;
}
}
{
int i = 3;
float2 bin_vector_i;
bin_vector_i.x = ::cos(i * (CV_PI / 6.f));
bin_vector_i.y = ::sin(i * (CV_PI / 6.f));
const float dot_product = fabs(dx * bin_vector_i.x + dy * bin_vector_i.y);
if(dot_product > max_dot)
{
max_dot = dot_product;
index = i;
}
}
{
const float dot_product = fabs(dx * (-0.4999999999999998f) + dy * 0.8660254037844387f);
if(dot_product > max_dot)
{
max_dot = dot_product;
index = 4;
}
}
{
const float dot_product = fabs(dx * (-0.8660254037844387f) + dy * 0.49999999999999994f);
if(dot_product > max_dot)
{
max_dot = dot_product;
index = 5;
}
}
return index;
}
texture<uchar, cudaTextureType2D, cudaReadModeElementType> tgray;
template<bool isDefaultNum>
__global__ void gray2hog(PtrStepSzb mag)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const float dx = tex2D(tgray, x + 1, y + 0) - tex2D(tgray, x - 1, y - 0);
const float dy = tex2D(tgray, x + 0, y + 1) - tex2D(tgray, x - 0, y - 1);
const float magnitude = sqrtf((dx * dx) + (dy * dy)) * (1.0f / sqrtf(2));
const uchar cmag = static_cast<uchar>(magnitude);
mag( 480 * 6 + y, x) = cmag;
mag( 480 * fast_angle_bin<isDefaultNum>(dy, dx) + y, x) = cmag;
}
void gray2hog(const PtrStepSzb& gray, PtrStepSzb mag, const int bins)
{
dim3 block(32, 8);
dim3 grid(gray.cols / 32, gray.rows / 8);
cudaChannelFormatDesc desc = cudaCreateChannelDesc<uchar>();
cudaSafeCall( cudaBindTexture2D(0, tgray, gray.data, desc, gray.cols, gray.rows, gray.step) );
if (bins == 6)
gray2hog<true><<<grid, block>>>(mag);
else
gray2hog<false><<<grid, block>>>(mag);
cudaSafeCall(cudaDeviceSynchronize());
}
// ToDo: use textures or uncached load instruction.
__global__ void magToHist(const uchar* __restrict__ mag,
const float* __restrict__ angle, const int angPitch,
uchar* __restrict__ hog, const int hogPitch, const int fh)
{
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int bin = (int)(angle[y * angPitch + x]);
const uchar val = mag[y * hogPitch + x];
hog[((fh * bin) + y) * hogPitch + x] = val;
}
void fillBins(cv::gpu::PtrStepSzb hogluv, const cv::gpu::PtrStepSzf& nangle,
const int fw, const int fh, const int bins, cudaStream_t stream )
{
const uchar* mag = (const uchar*)hogluv.ptr(fh * bins);
uchar* hog = (uchar*)hogluv.ptr();
const float* angle = (const float*)nangle.ptr();
dim3 block(32, 8);
dim3 grid(fw / 32, fh / 8);
magToHist<<<grid, block, 0, stream>>>(mag, angle, nangle.step / sizeof(float), hog, hogluv.step, fh);
if (!stream)
{
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
}
__device__ __forceinline__ float overlapArea(const Detection &a, const Detection &b)
{
int w = ::min(a.x + a.w, b.x + b.w) - ::max(a.x, b.x);
int h = ::min(a.y + a.h, b.y + b.h) - ::max(a.y, b.y);
return (w < 0 || h < 0)? 0.f : (float)(w * h);
}
texture<uint4, cudaTextureType2D, cudaReadModeElementType> tdetections;
__global__ void overlap(const uint* n, uchar* overlaps)
{
const int idx = threadIdx.x;
const int total = *n;
for (int i = idx + 1; i < total; i += 192)
{
const uint4 _a = tex2D(tdetections, i, 0);
const Detection& a = *((Detection*)(&_a));
bool excluded = false;
for (int j = i + 1; j < total; ++j)
{
const uint4 _b = tex2D(tdetections, j, 0);
const Detection& b = *((Detection*)(&_b));
float ovl = overlapArea(a, b) / ::min(a.w * a.h, b.w * b.h);
if (ovl > 0.65f)
{
int suppessed = (a.confidence > b.confidence)? j : i;
overlaps[suppessed] = 1;
excluded = excluded || (suppessed == i);
}
#if defined __CUDA_ARCH__ && (__CUDA_ARCH__ >= 120)
if (__all(excluded)) break;
#endif
}
}
}
__global__ void collect(const uint* n, uchar* overlaps, uint* ctr, uint4* suppressed)
{
const int idx = threadIdx.x;
const int total = *n;
for (int i = idx; i < total; i += 192)
{
if (!overlaps[i])
{
int oidx = atomicInc(ctr, 50);
suppressed[oidx] = tex2D(tdetections, i + 1, 0);
}
}
}
void suppress(const PtrStepSzb& objects, PtrStepSzb overlaps, PtrStepSzi ndetections,
PtrStepSzb suppressed, cudaStream_t stream)
{
int block = 192;
int grid = 1;
cudaChannelFormatDesc desc = cudaCreateChannelDesc<uint4>();
size_t offset;
cudaSafeCall( cudaBindTexture2D(&offset, tdetections, objects.data, desc, objects.cols / sizeof(uint4), objects.rows, objects.step));
overlap<<<grid, block>>>((uint*)ndetections.ptr(0), (uchar*)overlaps.ptr(0));
collect<<<grid, block>>>((uint*)ndetections.ptr(0), (uchar*)overlaps.ptr(0), (uint*)suppressed.ptr(0), ((uint4*)suppressed.ptr(0)) + 1);
if (!stream)
{
cudaSafeCall( cudaGetLastError());
cudaSafeCall( cudaDeviceSynchronize());
}
}
template<typename Policy>
struct PrefixSum
{
__device_inline__ static void apply(float& impact)
{
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 300
#pragma unroll
// scan on shuffle functions
for (int i = 1; i < Policy::WARP; i *= 2)
{
const float n = __shfl_up(impact, i, Policy::WARP);
if (threadIdx.x >= i)
impact += n;
}
#else
__shared__ volatile float ptr[Policy::STA_X * Policy::STA_Y];
const int idx = threadIdx.y * Policy::STA_X + threadIdx.x;
ptr[idx] = impact;
if ( threadIdx.x >= 1) ptr [idx ] = (ptr [idx - 1] + ptr [idx]);
if ( threadIdx.x >= 2) ptr [idx ] = (ptr [idx - 2] + ptr [idx]);
if ( threadIdx.x >= 4) ptr [idx ] = (ptr [idx - 4] + ptr [idx]);
if ( threadIdx.x >= 8) ptr [idx ] = (ptr [idx - 8] + ptr [idx]);
if ( threadIdx.x >= 16) ptr [idx ] = (ptr [idx - 16] + ptr [idx]);
impact = ptr[idx];
#endif
}
};
texture<int, cudaTextureType2D, cudaReadModeElementType> thogluv;
template<bool isUp>
__device__ __forceinline__ float rescale(const Level& level, Node& node)
{
uchar4& scaledRect = node.rect;
float relScale = level.relScale;
float farea = (scaledRect.z - scaledRect.x) * (scaledRect.w - scaledRect.y);
// rescale
scaledRect.x = __float2int_rn(relScale * scaledRect.x);
scaledRect.y = __float2int_rn(relScale * scaledRect.y);
scaledRect.z = __float2int_rn(relScale * scaledRect.z);
scaledRect.w = __float2int_rn(relScale * scaledRect.w);
float sarea = (scaledRect.z - scaledRect.x) * (scaledRect.w - scaledRect.y);
const float expected_new_area = farea * relScale * relScale;
float approx = (sarea == 0)? 1: __fdividef(sarea, expected_new_area);
float rootThreshold = (node.threshold & 0x0FFFFFFFU) * approx * level.scaling[(node.threshold >> 28) > 6];
return rootThreshold;
}
template<>
__device__ __forceinline__ float rescale<true>(const Level& level, Node& node)
{
uchar4& scaledRect = node.rect;
float relScale = level.relScale;
float farea = scaledRect.z * scaledRect.w;
// rescale
scaledRect.x = __float2int_rn(relScale * scaledRect.x);
scaledRect.y = __float2int_rn(relScale * scaledRect.y);
scaledRect.z = __float2int_rn(relScale * scaledRect.z);
scaledRect.w = __float2int_rn(relScale * scaledRect.w);
float sarea = scaledRect.z * scaledRect.w;
const float expected_new_area = farea * relScale * relScale;
float approx = __fdividef(sarea, expected_new_area);
float rootThreshold = (node.threshold & 0x0FFFFFFFU) * approx * level.scaling[(node.threshold >> 28) > 6];
return rootThreshold;
}
template<bool isUp>
__device__ __forceinline__ int get(int x, int y, uchar4 area)
{
int a = tex2D(thogluv, x + area.x, y + area.y);
int b = tex2D(thogluv, x + area.z, y + area.y);
int c = tex2D(thogluv, x + area.z, y + area.w);
int d = tex2D(thogluv, x + area.x, y + area.w);
return (a - b + c - d);
}
template<>
__device__ __forceinline__ int get<true>(int x, int y, uchar4 area)
{
x += area.x;
y += area.y;
int a = tex2D(thogluv, x, y);
int b = tex2D(thogluv, x + area.z, y);
int c = tex2D(thogluv, x + area.z, y + area.w);
int d = tex2D(thogluv, x, y + area.w);
return (a - b + c - d);
}
texture<float2, cudaTextureType2D, cudaReadModeElementType> troi;
template<typename Policy>
template<bool isUp>
__device_inline__ void CascadeInvoker<Policy>::detect(Detection* objects, const uint ndetections, uint* ctr, const int downscales) const
{
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const int x = blockIdx.x;
// load Level
__shared__ Level level;
// check POI
__shared__ volatile char roiCache[Policy::STA_Y];
if (!threadIdx.y && !threadIdx.x)
((float2*)roiCache)[threadIdx.x] = tex2D(troi, blockIdx.y, x);
__syncthreads();
if (!roiCache[threadIdx.y]) return;
if (!threadIdx.x)
level = levels[downscales + blockIdx.z];
if(x >= level.workRect.x || y >= level.workRect.y) return;
int st = level.octave * level.step;
const int stEnd = st + level.step;
const int hogluvStep = gridDim.y * Policy::STA_Y;
float confidence = 0.f;
for(; st < stEnd; st += Policy::WARP)
{
const int nId = (st + threadIdx.x) * 3;
Node node = nodes[nId];
float threshold = rescale<isUp>(level, node);
int sum = get<isUp>(x, y + (node.threshold >> 28) * hogluvStep, node.rect);
int next = 1 + (int)(sum >= threshold);
node = nodes[nId + next];
threshold = rescale<isUp>(level, node);
sum = get<isUp>(x, y + (node.threshold >> 28) * hogluvStep, node.rect);
const int lShift = (next - 1) * 2 + (int)(sum >= threshold);
float impact = leaves[(st + threadIdx.x) * 4 + lShift];
PrefixSum<Policy>::apply(impact);
#if __CUDA_ARCH__ >= 120
if(__any((confidence + impact <= stages[(st + threadIdx.x)]))) st += 2048;
#endif
#if __CUDA_ARCH__ >= 300
impact = __shfl(impact, 31);
#endif
confidence += impact;
}
if(!threadIdx.x && st == stEnd && ((confidence - FLT_EPSILON) >= 0))
{
int idx = atomicInc(ctr, ndetections);
objects[idx] = Detection(__float2int_rn(x * Policy::SHRINKAGE),
__float2int_rn(y * Policy::SHRINKAGE), level.objSize.x, level.objSize.y, confidence);
}
}
template<typename Policy, bool isUp>
__global__ void soft_cascade(const CascadeInvoker<Policy> invoker, Detection* objects, const uint n, uint* ctr, const int downs)
{
invoker.template detect<isUp>(objects, n, ctr, downs);
}
template<typename Policy>
void CascadeInvoker<Policy>::operator()(const PtrStepSzb& roi, const PtrStepSzi& hogluv,
PtrStepSz<uchar4> objects, const int downscales, const cudaStream_t& stream) const
{
int fw = roi.rows;
int fh = roi.cols;
dim3 grid(fw, fh / Policy::STA_Y, downscales);
uint* ctr = (uint*)(objects.ptr(0));
Detection* det = ((Detection*)objects.ptr(0)) + 1;
uint max_det = objects.cols / sizeof(Detection);
cudaChannelFormatDesc desc = cudaCreateChannelDesc<int>();
cudaSafeCall( cudaBindTexture2D(0, thogluv, hogluv.data, desc, hogluv.cols, hogluv.rows, hogluv.step));
cudaChannelFormatDesc desc_roi = cudaCreateChannelDesc<typename Policy::roi_type>();
cudaSafeCall( cudaBindTexture2D(0, troi, roi.data, desc_roi, roi.cols / Policy::STA_Y, roi.rows, roi.step));
const CascadeInvoker<Policy> inv = *this;
soft_cascade<Policy, false><<<grid, Policy::block(), 0, stream>>>(inv, det, max_det, ctr, 0);
cudaSafeCall( cudaGetLastError());
grid = dim3(fw, fh / Policy::STA_Y, min(38, scales) - downscales);
soft_cascade<Policy, true><<<grid, Policy::block(), 0, stream>>>(inv, det, max_det, ctr, downscales);
if (!stream)
{
cudaSafeCall( cudaGetLastError());
cudaSafeCall( cudaDeviceSynchronize());
}
}
template void CascadeInvoker<GK107PolicyX4>::operator()(const PtrStepSzb& roi, const PtrStepSzi& hogluv,
PtrStepSz<uchar4> objects, const int downscales, const cudaStream_t& stream) const;
}}}