fixed #1140 and made some other updates of features2d docs
This commit is contained in:
parent
3be51ded5d
commit
4f86b30abc
@ -31,6 +31,12 @@ cv::BaseRowFilter
|
||||
cv::BaseColumnFilter
|
||||
cv::Moments
|
||||
|
||||
###################################### features2d###################################
|
||||
cv::BOWKMeansTrainer::cluster
|
||||
cv::BOWTrainer::BOWTrainer
|
||||
cv::BOWTrainer::clear
|
||||
cv::AdjusterAdapter::clone
|
||||
|
||||
######################################## calib3d ###################################
|
||||
CvLevMarq
|
||||
Mat cv::findFundamentalMat( InputArray points1, InputArray points2, OutputArray mask, int method=FM_RANSAC, double param1=3., double param2=0.99)
|
||||
|
@ -57,7 +57,7 @@ DescriptorExtractor::compute
|
||||
|
||||
:param image: Image.
|
||||
|
||||
:param keypoints: Keypoints. Keypoints for which a descriptor cannot be computed are removed.
|
||||
:param keypoints: Keypoints. Keypoints for which a descriptor cannot be computed are removed. Somtimes new keypoints can be added, eg SIFT duplicates keypoint with several dominant orientations (for each orientation).
|
||||
|
||||
:param descriptors: Descriptors. Row i is the descriptor for keypoint i.
|
||||
|
||||
|
@ -158,9 +158,9 @@ DescriptorMatcher::train
|
||||
|
||||
DescriptorMatcher::match
|
||||
----------------------------
|
||||
.. ocv:function:: void DescriptorMatcher::match( const Mat& queryDescriptors, const Mat& trainDescriptors, vector<DMatch>& matches, const Mat& mask=Mat() ) const
|
||||
.. ocv:function:: void DescriptorMatcher::match( const Mat& queryDescriptors, const Mat& trainDescriptors, vector<DMatch>& matches, const Mat& mask=Mat() ) const
|
||||
|
||||
.. ocv:function:: void DescriptorMatcher::match( const Mat& queryDescriptors, vector<DMatch>& matches, const vector<Mat>& masks=vector<Mat>() )
|
||||
.. ocv:function:: void DescriptorMatcher::match( const Mat& queryDescriptors, vector<DMatch>& matches, const vector<Mat>& masks=vector<Mat>() )
|
||||
|
||||
Finds the best match for each descriptor from a query set.
|
||||
|
||||
|
@ -8,10 +8,6 @@ between different algorithms solving the same problem. All objects that implemen
|
||||
inherit the
|
||||
:ref:`FeatureDetector` interface.
|
||||
|
||||
.. index:: KeyPoint
|
||||
|
||||
.. KeyPoint:
|
||||
|
||||
KeyPoint
|
||||
--------
|
||||
.. ocv:class:: KeyPoint
|
||||
@ -68,11 +64,6 @@ Data structure for salient point detectors ::
|
||||
|
||||
..
|
||||
|
||||
|
||||
.. index:: FeatureDetector
|
||||
|
||||
.. _FeatureDetector:
|
||||
|
||||
FeatureDetector
|
||||
---------------
|
||||
.. ocv:class:: FeatureDetector
|
||||
@ -100,9 +91,6 @@ Abstract base class for 2D image feature detectors ::
|
||||
...
|
||||
};
|
||||
|
||||
|
||||
.. index:: FeatureDetector::detect
|
||||
|
||||
FeatureDetector::detect
|
||||
---------------------------
|
||||
.. ocv:function:: void FeatureDetector::detect( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const
|
||||
@ -123,8 +111,6 @@ FeatureDetector::detect
|
||||
|
||||
:param masks: Masks for each input image specifying where to look for keypoints (optional). ``masks[i]`` is a mask for ``images[i]`` . Each element of the ``masks`` vector must be a char matrix with non-zero values in the region of interest.
|
||||
|
||||
.. index:: FeatureDetector::read
|
||||
|
||||
FeatureDetector::read
|
||||
-------------------------
|
||||
.. ocv:function:: void FeatureDetector::read( const FileNode& fn )
|
||||
@ -133,8 +119,6 @@ FeatureDetector::read
|
||||
|
||||
:param fn: File node from which the detector is read.
|
||||
|
||||
.. index:: FeatureDetector::write
|
||||
|
||||
FeatureDetector::write
|
||||
--------------------------
|
||||
.. ocv:function:: void FeatureDetector::write( FileStorage& fs ) const
|
||||
@ -143,8 +127,6 @@ FeatureDetector::write
|
||||
|
||||
:param fs: File storage where the detector is written.
|
||||
|
||||
.. index:: FeatureDetector::create
|
||||
|
||||
FeatureDetector::create
|
||||
---------------------------
|
||||
.. ocv:function:: Ptr<FeatureDetector> FeatureDetector::create( const string& detectorType )
|
||||
@ -169,10 +151,6 @@ Also a combined format is supported: feature detector adapter name ( ``"Grid"``
|
||||
:ref:`PyramidAdaptedFeatureDetector` ) + feature detector name (see above),
|
||||
for example: ``"GridFAST"``, ``"PyramidSTAR"`` .
|
||||
|
||||
.. index:: FastFeatureDetector
|
||||
|
||||
.. _FastFeatureDetector:
|
||||
|
||||
FastFeatureDetector
|
||||
-------------------
|
||||
.. ocv:class:: FastFeatureDetector
|
||||
@ -190,11 +168,6 @@ Wrapping class for feature detection using the
|
||||
...
|
||||
};
|
||||
|
||||
|
||||
.. index:: GoodFeaturesToTrackDetector
|
||||
|
||||
.. _GoodFeaturesToTrackDetector:
|
||||
|
||||
GoodFeaturesToTrackDetector
|
||||
---------------------------
|
||||
.. ocv:class:: GoodFeaturesToTrackDetector
|
||||
@ -233,11 +206,6 @@ Wrapping class for feature detection using the
|
||||
...
|
||||
};
|
||||
|
||||
|
||||
.. index:: MserFeatureDetector
|
||||
|
||||
.. _MserFeatureDetector:
|
||||
|
||||
MserFeatureDetector
|
||||
-------------------
|
||||
.. ocv:class:: MserFeatureDetector
|
||||
@ -260,10 +228,6 @@ Wrapping class for feature detection using the
|
||||
};
|
||||
|
||||
|
||||
.. index:: StarFeatureDetector
|
||||
|
||||
.. _StarFeatureDetector:
|
||||
|
||||
StarFeatureDetector
|
||||
-------------------
|
||||
.. ocv:class:: StarFeatureDetector
|
||||
@ -283,11 +247,6 @@ Wrapping class for feature detection using the
|
||||
...
|
||||
};
|
||||
|
||||
|
||||
.. index:: SiftFeatureDetector
|
||||
|
||||
.. _SiftFeatureDetector:
|
||||
|
||||
SiftFeatureDetector
|
||||
-------------------
|
||||
.. ocv:class:: SiftFeatureDetector
|
||||
@ -312,11 +271,6 @@ Wrapping class for feature detection using the
|
||||
...
|
||||
};
|
||||
|
||||
|
||||
.. index:: SurfFeatureDetector
|
||||
|
||||
.. _SurfFeatureDetector:
|
||||
|
||||
SurfFeatureDetector
|
||||
-------------------
|
||||
.. ocv:class:: SurfFeatureDetector
|
||||
@ -336,10 +290,6 @@ Wrapping class for feature detection using the
|
||||
};
|
||||
|
||||
|
||||
.. index:: OrbFeatureDetector
|
||||
|
||||
.. _OrbFeatureDetector:
|
||||
|
||||
OrbFeatureDetector
|
||||
-------------------
|
||||
.. ocv:class:: OrbFeatureDetector
|
||||
@ -357,11 +307,6 @@ Wrapping class for feature detection using the
|
||||
...
|
||||
};
|
||||
|
||||
|
||||
.. index:: SimpleBlobDetector
|
||||
|
||||
.. _SimpleBlobDetector:
|
||||
|
||||
SimpleBlobDetector
|
||||
-------------------
|
||||
.. ocv:class:: SimpleBlobDetector
|
||||
@ -419,11 +364,6 @@ This class performs several filtrations of returned blobs. You should set ``filt
|
||||
|
||||
Default values of parameters are tuned to extract dark circular blobs.
|
||||
|
||||
|
||||
.. index:: GridAdaptedFeatureDetector
|
||||
|
||||
.. _GridAdaptedFeatureDetector:
|
||||
|
||||
GridAdaptedFeatureDetector
|
||||
--------------------------
|
||||
.. ocv:class:: GridAdaptedFeatureDetector
|
||||
@ -449,11 +389,6 @@ Class adapting a detector to partition the source image into a grid and detect p
|
||||
...
|
||||
};
|
||||
|
||||
|
||||
.. index:: PyramidAdaptedFeatureDetector
|
||||
|
||||
.. _PyramidAdaptedFeatureDetector:
|
||||
|
||||
PyramidAdaptedFeatureDetector
|
||||
-----------------------------
|
||||
.. ocv:class:: PyramidAdaptedFeatureDetector
|
||||
@ -472,11 +407,8 @@ Class adapting a detector to detect points over multiple levels of a Gaussian py
|
||||
};
|
||||
|
||||
|
||||
.. index:: DynamicAdaptedFeatureDetector
|
||||
|
||||
DynamicAdaptedFeatureDetector
|
||||
-----------------------------
|
||||
|
||||
.. ocv:class:: DynamicAdaptedFeatureDetector
|
||||
|
||||
Adaptively adjusting detector that iteratively detects features until the desired number is found ::
|
||||
@ -516,10 +448,6 @@ Example of creating ``DynamicAdaptedFeatureDetector`` : ::
|
||||
Ptr<FeatureDetector> detector(new DynamicAdaptedFeatureDetector (100, 110, 10,
|
||||
new FastAdjuster(20,true)));
|
||||
|
||||
|
||||
|
||||
.. index:: DynamicAdaptedFeatureDetector::DynamicAdaptedFeatureDetector
|
||||
|
||||
DynamicAdaptedFeatureDetector::DynamicAdaptedFeatureDetector
|
||||
----------------------------------------------------------------
|
||||
.. ocv:function:: DynamicAdaptedFeatureDetector::DynamicAdaptedFeatureDetector( const Ptr<AdjusterAdapter>& adjuster, int min_features, int max_features, int max_iters )
|
||||
@ -534,11 +462,8 @@ DynamicAdaptedFeatureDetector::DynamicAdaptedFeatureDetector
|
||||
|
||||
:param max_iters: Maximum number of times to try adjusting the feature detector parameters. For :ref:`FastAdjuster` , this number can be high, but with ``Star`` or ``Surf`` many iterations can be time-comsuming. At each iteration the detector is rerun.
|
||||
|
||||
.. index:: AdjusterAdapter
|
||||
|
||||
AdjusterAdapter
|
||||
---------------
|
||||
|
||||
.. ocv:class:: AdjusterAdapter
|
||||
|
||||
Class providing an interface for adjusting parameters of a feature detector. This interface is used by :ref:`DynamicAdaptedFeatureDetector` . It is a wrapper for :ref:`FeatureDetector` that enables adjusting parameters after feature detection. ::
|
||||
@ -546,10 +471,12 @@ Class providing an interface for adjusting parameters of a feature detector. Thi
|
||||
class AdjusterAdapter: public FeatureDetector
|
||||
{
|
||||
public:
|
||||
virtual ~AdjusterAdapter() {}
|
||||
virtual void tooFew(int min, int n_detected) = 0;
|
||||
virtual void tooMany(int max, int n_detected) = 0;
|
||||
virtual bool good() const = 0;
|
||||
virtual ~AdjusterAdapter() {}
|
||||
virtual void tooFew(int min, int n_detected) = 0;
|
||||
virtual void tooMany(int max, int n_detected) = 0;
|
||||
virtual bool good() const = 0;
|
||||
virtual Ptr<AdjusterAdapter> clone() const = 0;
|
||||
static Ptr<AdjusterAdapter> create( const string& detectorType );
|
||||
};
|
||||
|
||||
|
||||
@ -558,9 +485,6 @@ See
|
||||
:ref:`StarAdjuster`,
|
||||
:ref:`SurfAdjuster` for concrete implementations.
|
||||
|
||||
|
||||
.. index:: AdjusterAdapter::tooFew
|
||||
|
||||
AdjusterAdapter::tooFew
|
||||
---------------------------
|
||||
.. ocv:function:: void AdjusterAdapter::tooFew(int min, int n_detected)
|
||||
@ -578,9 +502,6 @@ Example: ::
|
||||
thresh_--;
|
||||
}
|
||||
|
||||
|
||||
.. index:: AdjusterAdapter::tooMany
|
||||
|
||||
AdjusterAdapter::tooMany
|
||||
----------------------------
|
||||
.. ocv:function:: void AdjusterAdapter::tooMany(int max, int n_detected)
|
||||
@ -599,8 +520,6 @@ Example: ::
|
||||
}
|
||||
|
||||
|
||||
.. index:: AdjusterAdapter::good
|
||||
|
||||
AdjusterAdapter::good
|
||||
-------------------------
|
||||
.. ocv:function:: bool AdjusterAdapter::good() const
|
||||
@ -614,12 +533,14 @@ Example: ::
|
||||
return (thresh_ > 1) && (thresh_ < 200);
|
||||
}
|
||||
|
||||
AdjusterAdapter::create
|
||||
-------------------------
|
||||
.. ocv:function:: Ptr<AdjusterAdapter> AdjusterAdapter::create( const string& detectorType )
|
||||
|
||||
.. index:: FastAdjuster
|
||||
Creates adjuster adapter by name ``detectorType``. The detector name is the same as in :ocv:func:`FeatureDetector::create`, but now supported ``"FAST"``, ``"STAR"`` and ``"SURF"`` only.
|
||||
|
||||
FastAdjuster
|
||||
------------
|
||||
|
||||
.. ocv:class:: FastAdjuster
|
||||
|
||||
:ref:`AdjusterAdapter` for :ref:`FastFeatureDetector`. This class decreases or increases the threshold value by 1. ::
|
||||
@ -631,11 +552,8 @@ FastAdjuster
|
||||
...
|
||||
};
|
||||
|
||||
.. index:: StarAdjuster
|
||||
|
||||
StarAdjuster
|
||||
------------
|
||||
|
||||
.. ocv:class:: StarAdjuster
|
||||
|
||||
:ref:`AdjusterAdapter` for :ref:`StarFeatureDetector`. This class adjusts the ``responseThreshhold`` of ``StarFeatureDetector``. ::
|
||||
@ -646,11 +564,8 @@ StarAdjuster
|
||||
...
|
||||
};
|
||||
|
||||
.. index:: SurfAdjuster
|
||||
|
||||
SurfAdjuster
|
||||
------------
|
||||
|
||||
.. ocv:class:: SurfAdjuster
|
||||
|
||||
:ref:`AdjusterAdapter` for :ref:`SurfFeatureDetector`. This class adjusts the ``hessianThreshold`` of ``SurfFeatureDetector``. ::
|
||||
@ -661,8 +576,6 @@ SurfAdjuster
|
||||
...
|
||||
};
|
||||
|
||||
.. index:: FeatureDetector
|
||||
|
||||
FeatureDetector
|
||||
---------------
|
||||
.. ocv:class:: FeatureDetector
|
||||
|
@ -5,10 +5,6 @@ Object Categorization
|
||||
|
||||
This section describes approaches based on local 2D features and used to categorize objects.
|
||||
|
||||
.. index:: BOWTrainer
|
||||
|
||||
.. _BOWTrainer:
|
||||
|
||||
BOWTrainer
|
||||
----------
|
||||
.. ocv:class:: BOWTrainer
|
||||
@ -36,9 +32,6 @@ Lixin Fan, Jutta Willamowski, Cedric Bray, 2004. ::
|
||||
...
|
||||
};
|
||||
|
||||
|
||||
.. index:: BOWTrainer::add
|
||||
|
||||
BOWTrainer::add
|
||||
-------------------
|
||||
.. ocv:function:: void BOWTrainer::add( const Mat& descriptors )
|
||||
@ -47,7 +40,6 @@ BOWTrainer::add
|
||||
|
||||
:param descriptors: Descriptors to add to a training set. Each row of the ``descriptors`` matrix is a descriptor.
|
||||
|
||||
.. index:: BOWTrainer::getDescriptors
|
||||
|
||||
BOWTrainer::getDescriptors
|
||||
------------------------------
|
||||
@ -83,7 +75,8 @@ BOWKMeansTrainer
|
||||
----------------
|
||||
.. ocv:class:: BOWKMeansTrainer
|
||||
|
||||
:ref:`kmeans` -based class to train visual vocabulary using the *bag of visual words* approach ::
|
||||
:ref:`kmeans` -based class to train visual vocabulary using the *bag of visual words* approach.
|
||||
::
|
||||
|
||||
class BOWKMeansTrainer : public BOWTrainer
|
||||
{
|
||||
@ -100,14 +93,11 @@ BOWKMeansTrainer
|
||||
...
|
||||
};
|
||||
|
||||
BOWKMeansTrainer::BOWKMeansTrainer
|
||||
----------------
|
||||
.. ocv:function:: BOWKMeansTrainer::BOWKMeansTrainer( int clusterCount, const TermCriteria& termcrit=TermCriteria(), int attempts=3, int flags=KMEANS_PP_CENTERS );
|
||||
|
||||
To understand constructor parameters, see
|
||||
:ref:`kmeans` function
|
||||
arguments.
|
||||
|
||||
.. index:: BOWImgDescriptorExtractor
|
||||
|
||||
.. _BOWImgDescriptorExtractor:
|
||||
To understand constructor parameters, see :ref:`kmeans` function arguments.
|
||||
|
||||
BOWImgDescriptorExtractor
|
||||
-------------------------
|
||||
|
Loading…
Reference in New Issue
Block a user