Python samples adapted for Python3 compatibility

Common fixes:
- print function
- int / float division
- map, zip iterators in py3 but lists in py2

Known bugs with opencv 3.0.0
- digits.py, called via digits_video.py: https://github.com/Itseez/opencv/issues/4969
- gaussian_mix.py: https://github.com/Itseez/opencv/pull/4232
- video_v4l2.py: https://github.com/Itseez/opencv/pull/5474

Not working:
- letter_recog.py due to changed ml_StatModel.train() signature
This commit is contained in:
flp
2015-12-13 02:43:58 +01:00
parent 5cdf0e3e89
commit 4ed2d6328b
23 changed files with 218 additions and 131 deletions

View File

@@ -6,6 +6,9 @@ Simple example of stereo image matching and point cloud generation.
Resulting .ply file cam be easily viewed using MeshLab ( http://meshlab.sourceforge.net/ )
'''
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2
@@ -25,13 +28,13 @@ def write_ply(fn, verts, colors):
verts = verts.reshape(-1, 3)
colors = colors.reshape(-1, 3)
verts = np.hstack([verts, colors])
with open(fn, 'w') as f:
f.write(ply_header % dict(vert_num=len(verts)))
np.savetxt(f, verts, '%f %f %f %d %d %d')
with open(fn, 'wb') as f:
f.write((ply_header % dict(vert_num=len(verts))).encode('utf-8'))
np.savetxt(f, verts, fmt='%f %f %f %d %d %d ')
if __name__ == '__main__':
print 'loading images...'
print('loading images...')
imgL = cv2.pyrDown( cv2.imread('../data/aloeL.jpg') ) # downscale images for faster processing
imgR = cv2.pyrDown( cv2.imread('../data/aloeR.jpg') )
@@ -50,10 +53,10 @@ if __name__ == '__main__':
speckleRange = 32
)
print 'computing disparity...'
print('computing disparity...')
disp = stereo.compute(imgL, imgR).astype(np.float32) / 16.0
print 'generating 3d point cloud...',
print('generating 3d point cloud...',)
h, w = imgL.shape[:2]
f = 0.8*w # guess for focal length
Q = np.float32([[1, 0, 0, -0.5*w],
@@ -67,7 +70,7 @@ if __name__ == '__main__':
out_colors = colors[mask]
out_fn = 'out.ply'
write_ply('out.ply', out_points, out_colors)
print '%s saved' % 'out.ply'
print('%s saved' % 'out.ply')
cv2.imshow('left', imgL)
cv2.imshow('disparity', (disp-min_disp)/num_disp)