Python samples adapted for Python3 compatibility
Common fixes: - print function - int / float division - map, zip iterators in py3 but lists in py2 Known bugs with opencv 3.0.0 - digits.py, called via digits_video.py: https://github.com/Itseez/opencv/issues/4969 - gaussian_mix.py: https://github.com/Itseez/opencv/pull/4232 - video_v4l2.py: https://github.com/Itseez/opencv/pull/5474 Not working: - letter_recog.py due to changed ml_StatModel.train() signature
This commit is contained in:
@@ -25,6 +25,9 @@ USAGE:
|
||||
Models: RTrees, KNearest, Boost, SVM, MLP
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
@@ -58,22 +61,22 @@ class LetterStatModel(object):
|
||||
|
||||
class RTrees(LetterStatModel):
|
||||
def __init__(self):
|
||||
self.model = cv2.RTrees()
|
||||
self.model = cv2.ml.RTrees_create()
|
||||
|
||||
def train(self, samples, responses):
|
||||
sample_n, var_n = samples.shape
|
||||
var_types = np.array([cv2.CV_VAR_NUMERICAL] * var_n + [cv2.CV_VAR_CATEGORICAL], np.uint8)
|
||||
var_types = np.array([cv2.ml.VAR_NUMERICAL] * var_n + [cv2.ml.VAR_CATEGORICAL], np.uint8)
|
||||
#CvRTParams(10,10,0,false,15,0,true,4,100,0.01f,CV_TERMCRIT_ITER));
|
||||
params = dict(max_depth=10 )
|
||||
self.model.train(samples, cv2.CV_ROW_SAMPLE, responses, varType = var_types, params = params)
|
||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses, varType = var_types, params = params)
|
||||
|
||||
def predict(self, samples):
|
||||
return np.float32( [self.model.predict(s) for s in samples] )
|
||||
return [self.model.predict(s) for s in samples]
|
||||
|
||||
|
||||
class KNearest(LetterStatModel):
|
||||
def __init__(self):
|
||||
self.model = cv2.KNearest()
|
||||
self.model = cv2.ml.KNearest_create()
|
||||
|
||||
def train(self, samples, responses):
|
||||
self.model.train(samples, responses)
|
||||
@@ -85,16 +88,16 @@ class KNearest(LetterStatModel):
|
||||
|
||||
class Boost(LetterStatModel):
|
||||
def __init__(self):
|
||||
self.model = cv2.Boost()
|
||||
self.model = cv2.ml.Boost_create()
|
||||
|
||||
def train(self, samples, responses):
|
||||
sample_n, var_n = samples.shape
|
||||
new_samples = self.unroll_samples(samples)
|
||||
new_responses = self.unroll_responses(responses)
|
||||
var_types = np.array([cv2.CV_VAR_NUMERICAL] * var_n + [cv2.CV_VAR_CATEGORICAL, cv2.CV_VAR_CATEGORICAL], np.uint8)
|
||||
var_types = np.array([cv2.ml.VAR_NUMERICAL] * var_n + [cv2.ml.VAR_CATEGORICAL, cv2.ml.VAR_CATEGORICAL], np.uint8)
|
||||
#CvBoostParams(CvBoost::REAL, 100, 0.95, 5, false, 0 )
|
||||
params = dict(max_depth=5) #, use_surrogates=False)
|
||||
self.model.train(new_samples, cv2.CV_ROW_SAMPLE, new_responses, varType = var_types, params=params)
|
||||
self.model.train(new_samples, cv2.ml.ROW_SAMPLE, new_responses, varType = var_types, params=params)
|
||||
|
||||
def predict(self, samples):
|
||||
new_samples = self.unroll_samples(samples)
|
||||
@@ -105,11 +108,11 @@ class Boost(LetterStatModel):
|
||||
|
||||
class SVM(LetterStatModel):
|
||||
def __init__(self):
|
||||
self.model = cv2.SVM()
|
||||
self.model = cv2.ml.SVM_create()
|
||||
|
||||
def train(self, samples, responses):
|
||||
params = dict( kernel_type = cv2.SVM_LINEAR,
|
||||
svm_type = cv2.SVM_C_SVC,
|
||||
params = dict( kernel_type = cv2.ml.SVM_LINEAR,
|
||||
svm_type = cv2.ml.SVM_C_SVC,
|
||||
C = 1 )
|
||||
self.model.train(samples, responses, params = params)
|
||||
|
||||
@@ -119,7 +122,7 @@ class SVM(LetterStatModel):
|
||||
|
||||
class MLP(LetterStatModel):
|
||||
def __init__(self):
|
||||
self.model = cv2.ANN_MLP()
|
||||
self.model = cv2.ml.ANN_MLP_create()
|
||||
|
||||
def train(self, samples, responses):
|
||||
sample_n, var_n = samples.shape
|
||||
@@ -130,7 +133,7 @@ class MLP(LetterStatModel):
|
||||
|
||||
# CvANN_MLP_TrainParams::BACKPROP,0.001
|
||||
params = dict( term_crit = (cv2.TERM_CRITERIA_COUNT, 300, 0.01),
|
||||
train_method = cv2.ANN_MLP_TRAIN_PARAMS_BACKPROP,
|
||||
train_method = cv2.ml.ANN_MLP_TRAIN_PARAMS_BACKPROP,
|
||||
bp_dw_scale = 0.001,
|
||||
bp_moment_scale = 0.0 )
|
||||
self.model.train(samples, np.float32(new_responses), None, params = params)
|
||||
@@ -144,7 +147,7 @@ if __name__ == '__main__':
|
||||
import getopt
|
||||
import sys
|
||||
|
||||
print __doc__
|
||||
print(__doc__)
|
||||
|
||||
models = [RTrees, KNearest, Boost, SVM, MLP] # NBayes
|
||||
models = dict( [(cls.__name__.lower(), cls) for cls in models] )
|
||||
@@ -155,7 +158,7 @@ if __name__ == '__main__':
|
||||
args.setdefault('--model', 'rtrees')
|
||||
args.setdefault('--data', '../data/letter-recognition.data')
|
||||
|
||||
print 'loading data %s ...' % args['--data']
|
||||
print('loading data %s ...' % args['--data'])
|
||||
samples, responses = load_base(args['--data'])
|
||||
Model = models[args['--model']]
|
||||
model = Model()
|
||||
@@ -163,20 +166,20 @@ if __name__ == '__main__':
|
||||
train_n = int(len(samples)*model.train_ratio)
|
||||
if '--load' in args:
|
||||
fn = args['--load']
|
||||
print 'loading model from %s ...' % fn
|
||||
print('loading model from %s ...' % fn)
|
||||
model.load(fn)
|
||||
else:
|
||||
print 'training %s ...' % Model.__name__
|
||||
print('training %s ...' % Model.__name__)
|
||||
model.train(samples[:train_n], responses[:train_n])
|
||||
|
||||
print 'testing...'
|
||||
print('testing...')
|
||||
train_rate = np.mean(model.predict(samples[:train_n]) == responses[:train_n])
|
||||
test_rate = np.mean(model.predict(samples[train_n:]) == responses[train_n:])
|
||||
|
||||
print 'train rate: %f test rate: %f' % (train_rate*100, test_rate*100)
|
||||
print('train rate: %f test rate: %f' % (train_rate*100, test_rate*100))
|
||||
|
||||
if '--save' in args:
|
||||
fn = args['--save']
|
||||
print 'saving model to %s ...' % fn
|
||||
print('saving model to %s ...' % fn)
|
||||
model.save(fn)
|
||||
cv2.destroyAllWindows()
|
||||
|
Reference in New Issue
Block a user