Image Segmentation .cpp tutorial
Distance Transform tutorial fixes Distance Transform fixes v.2 Distance Transform fixes v.3 Distance Transform fixes v.4
This commit is contained in:
168
samples/cpp/tutorial_code/ImgTrans/imageSegmentation.cpp
Normal file
168
samples/cpp/tutorial_code/ImgTrans/imageSegmentation.cpp
Normal file
@@ -0,0 +1,168 @@
|
||||
/**
|
||||
* @function Watershed_and_Distance_Transform.cpp
|
||||
* @brief Sample code showing how to segment overlapping objects using Laplacian filtering, in addition to Watershed and Distance Transformation
|
||||
* @author OpenCV Team
|
||||
*/
|
||||
|
||||
#include <opencv2/opencv.hpp>
|
||||
#include <iostream>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
int main(int, char** argv)
|
||||
{
|
||||
//! [load_image]
|
||||
// Load the image
|
||||
Mat src = imread(argv[1]);
|
||||
|
||||
// Check if everything was fine
|
||||
if (!src.data)
|
||||
return -1;
|
||||
|
||||
// Show source image
|
||||
imshow("Source Image", src);
|
||||
//! [load_image]
|
||||
|
||||
//! [black_bg]
|
||||
// Change the background from white to black, since that will help later to extract
|
||||
// better results during the use of Distance Transform
|
||||
for( int x = 0; x < src.rows; x++ ) {
|
||||
for( int y = 0; y < src.cols; y++ ) {
|
||||
if ( src.at<Vec3b>(x, y) == Vec3b(255,255,255) ) {
|
||||
src.at<Vec3b>(x, y)[0] = 0;
|
||||
src.at<Vec3b>(x, y)[1] = 0;
|
||||
src.at<Vec3b>(x, y)[2] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Show output image
|
||||
imshow("Black Background Image", src);
|
||||
//! [black_bg]
|
||||
|
||||
//! [sharp]
|
||||
// Create a kernel that we will use for accuting/sharpening our image
|
||||
Mat kernel = (Mat_<float>(3,3) <<
|
||||
1, 1, 1,
|
||||
1, -8, 1,
|
||||
1, 1, 1); // an approximation of second derivative, a quite strong kernel
|
||||
|
||||
// do the laplacian filtering as it is
|
||||
// well, we need to convert everything in something more deeper then CV_8U
|
||||
// because the kernel has some negative values,
|
||||
// and we can expect in general to have a Laplacian image with negative values
|
||||
// BUT a 8bits unsigned int (the one we are working with) can contain values from 0 to 255
|
||||
// so the possible negative number will be truncated
|
||||
Mat imgLaplacian;
|
||||
Mat sharp = src; // copy source image to another temporary one
|
||||
filter2D(sharp, imgLaplacian, CV_32F, kernel);
|
||||
src.convertTo(sharp, CV_32F);
|
||||
Mat imgResult = sharp - imgLaplacian;
|
||||
|
||||
// convert back to 8bits gray scale
|
||||
imgResult.convertTo(imgResult, CV_8UC3);
|
||||
imgLaplacian.convertTo(imgLaplacian, CV_8UC3);
|
||||
|
||||
// imshow( "Laplace Filtered Image", imgLaplacian );
|
||||
imshow( "New Sharped Image", imgResult );
|
||||
//! [sharp]
|
||||
|
||||
src = imgResult; // copy back
|
||||
|
||||
//! [bin]
|
||||
// Create binary image from source image
|
||||
Mat bw;
|
||||
cvtColor(src, bw, CV_BGR2GRAY);
|
||||
threshold(bw, bw, 40, 255, CV_THRESH_BINARY | CV_THRESH_OTSU);
|
||||
imshow("Binary Image", bw);
|
||||
//! [bin]
|
||||
|
||||
//! [dist]
|
||||
// Perform the distance transform algorithm
|
||||
Mat dist;
|
||||
distanceTransform(bw, dist, CV_DIST_L2, 3);
|
||||
|
||||
// Normalize the distance image for range = {0.0, 1.0}
|
||||
// so we can visualize and threshold it
|
||||
normalize(dist, dist, 0, 1., NORM_MINMAX);
|
||||
imshow("Distance Transform Image", dist);
|
||||
//! [dist]
|
||||
|
||||
//! [peaks]
|
||||
// Threshold to obtain the peaks
|
||||
// This will be the markers for the foreground objects
|
||||
threshold(dist, dist, .4, 1., CV_THRESH_BINARY);
|
||||
|
||||
// Dilate a bit the dist image
|
||||
Mat kernel1 = Mat::ones(3, 3, CV_8UC1);
|
||||
dilate(dist, dist, kernel1);
|
||||
imshow("Peaks", dist);
|
||||
//! [peaks]
|
||||
|
||||
//! [seeds]
|
||||
// Create the CV_8U version of the distance image
|
||||
// It is needed for findContours()
|
||||
Mat dist_8u;
|
||||
dist.convertTo(dist_8u, CV_8U);
|
||||
|
||||
// Find total markers
|
||||
vector<vector<Point> > contours;
|
||||
findContours(dist_8u, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
|
||||
|
||||
// Create the marker image for the watershed algorithm
|
||||
Mat markers = Mat::zeros(dist.size(), CV_32SC1);
|
||||
|
||||
// Draw the foreground markers
|
||||
for (size_t i = 0; i < contours.size(); i++)
|
||||
drawContours(markers, contours, static_cast<int>(i), Scalar::all(static_cast<int>(i)+1), -1);
|
||||
|
||||
// Draw the background marker
|
||||
circle(markers, Point(5,5), 3, CV_RGB(255,255,255), -1);
|
||||
imshow("Markers", markers*10000);
|
||||
//! [seeds]
|
||||
|
||||
//! [watershed]
|
||||
// Perform the watershed algorithm
|
||||
watershed(src, markers);
|
||||
|
||||
Mat mark = Mat::zeros(markers.size(), CV_8UC1);
|
||||
markers.convertTo(mark, CV_8UC1);
|
||||
bitwise_not(mark, mark);
|
||||
// imshow("Markers_v2", mark); // uncomment this if you want to see how the mark
|
||||
// image looks like at that point
|
||||
|
||||
// Generate random colors
|
||||
vector<Vec3b> colors;
|
||||
for (size_t i = 0; i < contours.size(); i++)
|
||||
{
|
||||
int b = theRNG().uniform(0, 255);
|
||||
int g = theRNG().uniform(0, 255);
|
||||
int r = theRNG().uniform(0, 255);
|
||||
|
||||
colors.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r));
|
||||
}
|
||||
|
||||
// Create the result image
|
||||
Mat dst = Mat::zeros(markers.size(), CV_8UC3);
|
||||
|
||||
// Fill labeled objects with random colors
|
||||
for (int i = 0; i < markers.rows; i++)
|
||||
{
|
||||
for (int j = 0; j < markers.cols; j++)
|
||||
{
|
||||
int index = markers.at<int>(i,j);
|
||||
if (index > 0 && index <= static_cast<int>(contours.size()))
|
||||
dst.at<Vec3b>(i,j) = colors[index-1];
|
||||
else
|
||||
dst.at<Vec3b>(i,j) = Vec3b(0,0,0);
|
||||
}
|
||||
}
|
||||
|
||||
// Visualize the final image
|
||||
imshow("Final Result", dst);
|
||||
//! [watershed]
|
||||
|
||||
waitKey(0);
|
||||
return 0;
|
||||
}
|
Reference in New Issue
Block a user