User guide converted to doxygen
This commit is contained in:
180
doc/user_guide/ug_mat.markdown
Normal file
180
doc/user_guide/ug_mat.markdown
Normal file
@@ -0,0 +1,180 @@
|
||||
Operations with images {#tutorial_ug_mat}
|
||||
======================
|
||||
|
||||
Input/Output
|
||||
------------
|
||||
|
||||
### Images
|
||||
|
||||
Load an image from a file:
|
||||
@code{.cpp}
|
||||
Mat img = imread(filename)
|
||||
@endcode
|
||||
|
||||
If you read a jpg file, a 3 channel image is created by default. If you need a grayscale image, use:
|
||||
|
||||
@code{.cpp}
|
||||
Mat img = imread(filename, 0);
|
||||
@endcode
|
||||
|
||||
@note format of the file is determined by its content (first few bytes) Save an image to a file:
|
||||
|
||||
@code{.cpp}
|
||||
imwrite(filename, img);
|
||||
@endcode
|
||||
|
||||
@note format of the file is determined by its extension.
|
||||
|
||||
@note use imdecode and imencode to read and write image from/to memory rather than a file.
|
||||
|
||||
XML/YAML
|
||||
--------
|
||||
|
||||
TBD
|
||||
|
||||
Basic operations with images
|
||||
----------------------------
|
||||
|
||||
### Accessing pixel intensity values
|
||||
|
||||
In order to get pixel intensity value, you have to know the type of an image and the number of
|
||||
channels. Here is an example for a single channel grey scale image (type 8UC1) and pixel coordinates
|
||||
x and y:
|
||||
@code{.cpp}
|
||||
Scalar intensity = img.at<uchar>(y, x);
|
||||
@endcode
|
||||
intensity.val[0] contains a value from 0 to 255. Note the ordering of x and y. Since in OpenCV
|
||||
images are represented by the same structure as matrices, we use the same convention for both
|
||||
cases - the 0-based row index (or y-coordinate) goes first and the 0-based column index (or
|
||||
x-coordinate) follows it. Alternatively, you can use the following notation:
|
||||
@code{.cpp}
|
||||
Scalar intensity = img.at<uchar>(Point(x, y));
|
||||
@endcode
|
||||
Now let us consider a 3 channel image with BGR color ordering (the default format returned by
|
||||
imread):
|
||||
@code{.cpp}
|
||||
Vec3b intensity = img.at<Vec3b>(y, x);
|
||||
uchar blue = intensity.val[0];
|
||||
uchar green = intensity.val[1];
|
||||
uchar red = intensity.val[2];
|
||||
@endcode
|
||||
You can use the same method for floating-point images (for example, you can get such an image by
|
||||
running Sobel on a 3 channel image):
|
||||
@code{.cpp}
|
||||
Vec3f intensity = img.at<Vec3f>(y, x);
|
||||
float blue = intensity.val[0];
|
||||
float green = intensity.val[1];
|
||||
float red = intensity.val[2];
|
||||
@endcode
|
||||
The same method can be used to change pixel intensities:
|
||||
@code{.cpp}
|
||||
img.at<uchar>(y, x) = 128;
|
||||
@endcode
|
||||
There are functions in OpenCV, especially from calib3d module, such as projectPoints, that take an
|
||||
array of 2D or 3D points in the form of Mat. Matrix should contain exactly one column, each row
|
||||
corresponds to a point, matrix type should be 32FC2 or 32FC3 correspondingly. Such a matrix can be
|
||||
easily constructed from `std::vector`:
|
||||
@code{.cpp}
|
||||
vector<Point2f> points;
|
||||
//... fill the array
|
||||
Mat pointsMat = Mat(points);
|
||||
@endcode
|
||||
One can access a point in this matrix using the same method Mat::at :
|
||||
@code{.cpp}
|
||||
Point2f point = pointsMat.at<Point2f>(i, 0);
|
||||
@endcode
|
||||
|
||||
### Memory management and reference counting
|
||||
|
||||
Mat is a structure that keeps matrix/image characteristics (rows and columns number, data type etc)
|
||||
and a pointer to data. So nothing prevents us from having several instances of Mat corresponding to
|
||||
the same data. A Mat keeps a reference count that tells if data has to be deallocated when a
|
||||
particular instance of Mat is destroyed. Here is an example of creating two matrices without copying
|
||||
data:
|
||||
@code{.cpp}
|
||||
std::vector<Point3f> points;
|
||||
// .. fill the array
|
||||
Mat pointsMat = Mat(points).reshape(1);
|
||||
@endcode
|
||||
As a result we get a 32FC1 matrix with 3 columns instead of 32FC3 matrix with 1 column. pointsMat
|
||||
uses data from points and will not deallocate the memory when destroyed. In this particular
|
||||
instance, however, developer has to make sure that lifetime of points is longer than of pointsMat.
|
||||
If we need to copy the data, this is done using, for example, cv::Mat::copyTo or cv::Mat::clone:
|
||||
@code{.cpp}
|
||||
Mat img = imread("image.jpg");
|
||||
Mat img1 = img.clone();
|
||||
@endcode
|
||||
To the contrary with C API where an output image had to be created by developer, an empty output Mat
|
||||
can be supplied to each function. Each implementation calls Mat::create for a destination matrix.
|
||||
This method allocates data for a matrix if it is empty. If it is not empty and has the correct size
|
||||
and type, the method does nothing. If, however, size or type are different from input arguments, the
|
||||
data is deallocated (and lost) and a new data is allocated. For example:
|
||||
@code{.cpp}
|
||||
Mat img = imread("image.jpg");
|
||||
Mat sobelx;
|
||||
Sobel(img, sobelx, CV_32F, 1, 0);
|
||||
@endcode
|
||||
|
||||
### Primitive operations
|
||||
|
||||
There is a number of convenient operators defined on a matrix. For example, here is how we can make
|
||||
a black image from an existing greyscale image \`img\`:
|
||||
@code{.cpp}
|
||||
img = Scalar(0);
|
||||
@endcode
|
||||
Selecting a region of interest:
|
||||
@code{.cpp}
|
||||
Rect r(10, 10, 100, 100);
|
||||
Mat smallImg = img(r);
|
||||
@endcode
|
||||
A convertion from Mat to C API data structures:
|
||||
@code{.cpp}
|
||||
Mat img = imread("image.jpg");
|
||||
IplImage img1 = img;
|
||||
CvMat m = img;
|
||||
@endcode
|
||||
|
||||
Note that there is no data copying here.
|
||||
|
||||
Conversion from color to grey scale:
|
||||
@code{.cpp}
|
||||
Mat img = imread("image.jpg"); // loading a 8UC3 image
|
||||
Mat grey;
|
||||
cvtColor(img, grey, COLOR_BGR2GRAY);
|
||||
@endcode
|
||||
Change image type from 8UC1 to 32FC1:
|
||||
@code{.cpp}
|
||||
src.convertTo(dst, CV_32F);
|
||||
@endcode
|
||||
|
||||
### Visualizing images
|
||||
|
||||
It is very useful to see intermediate results of your algorithm during development process. OpenCV
|
||||
provides a convenient way of visualizing images. A 8U image can be shown using:
|
||||
@code{.cpp}
|
||||
Mat img = imread("image.jpg");
|
||||
|
||||
namedWindow("image", WINDOW_AUTOSIZE);
|
||||
imshow("image", img);
|
||||
waitKey();
|
||||
@endcode
|
||||
|
||||
A call to waitKey() starts a message passing cycle that waits for a key stroke in the "image"
|
||||
window. A 32F image needs to be converted to 8U type. For example:
|
||||
@code{.cpp}
|
||||
Mat img = imread("image.jpg");
|
||||
Mat grey;
|
||||
cvtColor(img, grey, COLOR_BGR2GRAY);
|
||||
|
||||
Mat sobelx;
|
||||
Sobel(grey, sobelx, CV_32F, 1, 0);
|
||||
|
||||
double minVal, maxVal;
|
||||
minMaxLoc(sobelx, &minVal, &maxVal); //find minimum and maximum intensities
|
||||
Mat draw;
|
||||
sobelx.convertTo(draw, CV_8U, 255.0/(maxVal - minVal), -minVal * 255.0/(maxVal - minVal));
|
||||
|
||||
namedWindow("image", WINDOW_AUTOSIZE);
|
||||
imshow("image", draw);
|
||||
waitKey();
|
||||
@endcode
|
Reference in New Issue
Block a user