most of the performance tests was rewritten in google-test manner

This commit is contained in:
ilya-lavrenov 2013-08-22 18:03:05 +04:00
parent 6c4ad9b597
commit 4c28a6f0f6
22 changed files with 2817 additions and 2735 deletions

View File

@ -42,7 +42,7 @@
#include "perf_precomp.hpp"
int main(int argc, const char *argv[])
static int old_main(int argc, const char *argv[])
{
const char *keys =
"{ h | help | false | print help message }"
@ -99,7 +99,7 @@ int main(int argc, const char *argv[])
// set this to overwrite binary cache every time the test starts
ocl::setBinaryDiskCache(ocl::CACHE_UPDATE);
if (cmd.get<bool>("verify"))
{
TestSystem::instance().setNumIters(1);
@ -162,3 +162,33 @@ END_DEV:
return 0;
}
const char * impls[] =
{
"ocl",
"plain",
#ifdef HAVE_OPENCV_GPU
"gpu"
#endif
};
int main(int argc, char **argv)
{
// temp solution: if no '--gtest_' and '--perf_' args switch to old behavior
bool useGTest = false;
for(int i=1; i<argc; i++)
{
std::string arg( argv[i] );
if( arg.find("--gtest_")==0 || arg.find("--perf_")==0 )
useGTest = true;
// if (arg == "--perf_verify_sanity")
// argv[i] = (char*)"--perf_no_verify_sanity";
}
if( !useGTest )
return old_main(argc, (const char**)argv);
CV_PERF_TEST_MAIN_INTERNALS(ocl, impls)
}

File diff suppressed because it is too large Load Diff

View File

@ -45,9 +45,15 @@
//M*/
#include "perf_precomp.hpp"
using namespace perf;
///////////// blend ////////////////////////
template <typename T>
void blendLinearGold(const cv::Mat &img1, const cv::Mat &img2, const cv::Mat &weights1, const cv::Mat &weights2, cv::Mat &result_gold)
static void blendLinearGold(const cv::Mat &img1, const cv::Mat &img2,
const cv::Mat &weights1, const cv::Mat &weights2,
cv::Mat &result_gold)
{
result_gold.create(img1.size(), img1.type());
@ -63,60 +69,54 @@ void blendLinearGold(const cv::Mat &img1, const cv::Mat &img2, const cv::Mat &we
for (int x = 0; x < img1.cols * cn; ++x)
{
float w1 = weights1_row[x / cn];
float w2 = weights2_row[x / cn];
result_gold_row[x] = static_cast<T>((img1_row[x] * w1 + img2_row[x] * w2) / (w1 + w2 + 1e-5f));
int x1 = x * cn;
float w1 = weights1_row[x];
float w2 = weights2_row[x];
result_gold_row[x] = static_cast<T>((img1_row[x1] * w1
+ img2_row[x1] * w2) / (w1 + w2 + 1e-5f));
}
}
}
PERFTEST(blend)
typedef TestBaseWithParam<Size> blendLinearFixture;
PERF_TEST_P(blendLinearFixture, blendLinear, OCL_TYPICAL_MAT_SIZES)
{
Mat src1, src2, weights1, weights2, dst, ocl_dst;
ocl::oclMat d_src1, d_src2, d_weights1, d_weights2, d_dst;
// getting params
const Size srcSize = GetParam();
const int type = CV_8UC1;
const std::string impl = getSelectedImpl();
int all_type[] = {CV_8UC1, CV_8UC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4"};
// creating src data
Mat src1(srcSize, type), src2(srcSize, CV_8UC1), dst;
Mat weights1(srcSize, CV_32FC1), weights2(srcSize, CV_32FC1);
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
declare.in(src1, src2, WARMUP_RNG);
randu(weights1, 0.0f, 1.0f);
randu(weights2, 0.0f, 1.0f);
// select implementation
if (impl == "ocl")
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] << " and CV_32FC1";
ocl::oclMat oclSrc1(src1), oclSrc2(src2), oclDst;
ocl::oclMat oclWeights1(weights1), oclWeights2(weights2);
gen(src1, size, size, all_type[j], 0, 256);
gen(src2, size, size, all_type[j], 0, 256);
gen(weights1, size, size, CV_32FC1, 0, 1);
gen(weights2, size, size, CV_32FC1, 0, 1);
TEST_CYCLE() cv::ocl::blendLinear(oclSrc1, oclSrc2, oclWeights1, oclWeights2, oclDst);
blendLinearGold<uchar>(src1, src2, weights1, weights2, dst);
oclDst.download(dst);
CPU_ON;
blendLinearGold<uchar>(src1, src2, weights1, weights2, dst);
CPU_OFF;
d_src1.upload(src1);
d_src2.upload(src2);
d_weights1.upload(weights1);
d_weights2.upload(weights2);
WARMUP_ON;
ocl::blendLinear(d_src1, d_src2, d_weights1, d_weights2, d_dst);
WARMUP_OFF;
GPU_ON;
ocl::blendLinear(d_src1, d_src2, d_weights1, d_weights2, d_dst);
GPU_OFF;
GPU_FULL_ON;
d_src1.upload(src1);
d_src2.upload(src2);
d_weights1.upload(weights1);
d_weights2.upload(weights2);
ocl::blendLinear(d_src1, d_src2, d_weights1, d_weights2, d_dst);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(dst, ocl_dst, 1.f);
}
SANITY_CHECK(dst);
}
else if (impl == "plain")
{
TEST_CYCLE() blendLinearGold<uchar>(src1, src2, weights1, weights2, dst);
SANITY_CHECK(dst);
}
#ifdef HAVE_OPENCV_GPU
else if (impl == "gpu")
CV_TEST_FAIL_NO_IMPL();
#endif
else
CV_TEST_FAIL_NO_IMPL();
}

View File

@ -45,123 +45,242 @@
//M*/
#include "perf_precomp.hpp"
using namespace perf;
#define OCL_BFMATCHER_TYPICAL_MAT_SIZES ::testing::Values(cv::Size(128, 500), cv::Size(128, 1000), cv::Size(128, 2000))
//////////////////// BruteForceMatch /////////////////
PERFTEST(BruteForceMatcher)
typedef TestBaseWithParam<Size> BruteForceMatcherFixture;
PERF_TEST_P(BruteForceMatcherFixture, match,
OCL_BFMATCHER_TYPICAL_MAT_SIZES)
{
Mat trainIdx_cpu;
Mat distance_cpu;
Mat allDist_cpu;
Mat nMatches_cpu;
const Size srcSize = GetParam();
const string impl = getSelectedImpl();
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
vector<DMatch> matches;
Mat query(srcSize, CV_32F), train(srcSize, CV_32F);
declare.in(query, train).time(srcSize.height == 2000 ? 8 : 4 );
randu(query, 0.0f, 1.0f);
randu(train, 0.0f, 1.0f);
if (impl == "plain")
{
// Init CPU matcher
int desc_len = 64;
BFMatcher matcher(NORM_L2);
TEST_CYCLE() matcher.match(query, train, matches);
Mat query;
gen(query, size, desc_len, CV_32F, 0, 1);
Mat train;
gen(train, size, desc_len, CV_32F, 0, 1);
// Output
vector< vector<DMatch> > matches(2);
vector< vector<DMatch> > d_matches(2);
// Init GPU matcher
ocl::BruteForceMatcher_OCL_base d_matcher(ocl::BruteForceMatcher_OCL_base::L2Dist);
ocl::oclMat d_query(query);
ocl::oclMat d_train(train);
ocl::oclMat d_trainIdx, d_distance, d_allDist, d_nMatches;
SUBTEST << size << "; match";
matcher.match(query, train, matches[0]);
CPU_ON;
matcher.match(query, train, matches[0]);
CPU_OFF;
WARMUP_ON;
d_matcher.matchSingle(d_query, d_train, d_trainIdx, d_distance);
WARMUP_OFF;
GPU_ON;
d_matcher.matchSingle(d_query, d_train, d_trainIdx, d_distance);
GPU_OFF;
GPU_FULL_ON;
d_query.upload(query);
d_train.upload(train);
d_matcher.match(d_query, d_train, d_matches[0]);
GPU_FULL_OFF;
int diff = abs((int)d_matches[0].size() - (int)matches[0].size());
if(diff == 0)
TestSystem::instance().setAccurate(1, 0);
else
TestSystem::instance().setAccurate(0, diff);
SUBTEST << size << "; knnMatch";
matcher.knnMatch(query, train, matches, 2);
CPU_ON;
matcher.knnMatch(query, train, matches, 2);
CPU_OFF;
WARMUP_ON;
d_matcher.knnMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_allDist, 2);
WARMUP_OFF;
GPU_ON;
d_matcher.knnMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_allDist, 2);
GPU_OFF;
GPU_FULL_ON;
d_query.upload(query);
d_train.upload(train);
d_matcher.knnMatch(d_query, d_train, d_matches, 2);
GPU_FULL_OFF;
diff = abs((int)d_matches[0].size() - (int)matches[0].size());
if(diff == 0)
TestSystem::instance().setAccurate(1, 0);
else
TestSystem::instance().setAccurate(0, diff);
SUBTEST << size << "; radiusMatch";
float max_distance = 2.0f;
matcher.radiusMatch(query, train, matches, max_distance);
CPU_ON;
matcher.radiusMatch(query, train, matches, max_distance);
CPU_OFF;
d_trainIdx.release();
WARMUP_ON;
d_matcher.radiusMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_nMatches, max_distance);
WARMUP_OFF;
GPU_ON;
d_matcher.radiusMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_nMatches, max_distance);
GPU_OFF;
GPU_FULL_ON;
d_query.upload(query);
d_train.upload(train);
d_matcher.radiusMatch(d_query, d_train, d_matches, max_distance);
GPU_FULL_OFF;
diff = abs((int)d_matches[0].size() - (int)matches[0].size());
if(diff == 0)
TestSystem::instance().setAccurate(1, 0);
else
TestSystem::instance().setAccurate(0, diff);
SANITY_CHECK_MATCHES(matches);
}
else if (impl == "ocl")
{
// Init GPU matcher
ocl::BruteForceMatcher_OCL_base oclMatcher(ocl::BruteForceMatcher_OCL_base::L2Dist);
ocl::oclMat oclQuery(query), oclTrain(train);
TEST_CYCLE() oclMatcher.match(oclQuery, oclTrain, matches);
SANITY_CHECK_MATCHES(matches);
}
#ifdef HAVE_OPENCV_GPU
else if (impl == "gpu")
CV_TEST_FAIL_NO_IMPL();
#endif
else
CV_TEST_FAIL_NO_IMPL();
}
//PERF_TEST_P(BruteForceMatcherFixture, matchSingle,
// OCL_BFMATCHER_TYPICAL_MAT_SIZES)
//{
// const Size srcSize = GetParam();
// const string impl = getSelectedImpl();
// Mat query(srcSize, CV_32F), train(srcSize, CV_32F);
// Mat trainIdx, distance;
// randu(query, 0.0f, 1.0f);
// randu(train, 0.0f, 1.0f);
// if (impl == "plain")
// CV_TEST_FAIL_NO_IMPL();
// else if (impl == "ocl")
// {
// ocl::oclMat oclQuery(query), oclTrain(train), oclTrainIdx, oclDistance;
// TEST_CYCLE() oclMatcher->matchSingle(oclQuery, oclTrain, oclTrainIdx, oclDistance);
// oclTrainIdx.download(trainIdx);
// oclDistance.download(distance);
// SANITY_CHECK(trainIdx);
// SANITY_CHECK(distance);
// }
//#ifdef HAVE_OPENCV_GPU
// else if (impl == "gpu")
// CV_TEST_FAIL_NO_IMPL();
//#endif
// else
// CV_TEST_FAIL_NO_IMPL();
//}
PERF_TEST_P(BruteForceMatcherFixture, knnMatch,
OCL_BFMATCHER_TYPICAL_MAT_SIZES)
{
const Size srcSize = GetParam();
const string impl = getSelectedImpl();
vector<vector<DMatch> > matches(2);
Mat query(srcSize, CV_32F), train(srcSize, CV_32F);
randu(query, 0.0f, 1.0f);
randu(train, 0.0f, 1.0f);
declare.in(query, train);
if (srcSize.height == 2000)
declare.time(8);
if (impl == "plain")
{
BFMatcher matcher (NORM_L2);
TEST_CYCLE() matcher.knnMatch(query, train, matches, 2);
std::vector<DMatch> & matches0 = matches[0], & matches1 = matches[1];
SANITY_CHECK_MATCHES(matches0);
SANITY_CHECK_MATCHES(matches1);
}
else if (impl == "ocl")
{
ocl::BruteForceMatcher_OCL_base oclMatcher(ocl::BruteForceMatcher_OCL_base::L2Dist);
ocl::oclMat oclQuery(query), oclTrain(train);
TEST_CYCLE() oclMatcher.knnMatch(oclQuery, oclTrain, matches, 2);
std::vector<DMatch> & matches0 = matches[0], & matches1 = matches[1];
SANITY_CHECK_MATCHES(matches0);
SANITY_CHECK_MATCHES(matches1);
}
#ifdef HAVE_OPENCV_GPU
else if (impl == "gpu")
CV_TEST_FAIL_NO_IMPL();
#endif
else
CV_TEST_FAIL_NO_IMPL();
}
//PERF_TEST_P(BruteForceMatcherFixture, knnMatchSingle,
// OCL_BFMATCHER_TYPICAL_MAT_SIZES)
//{
// const Size srcSize = GetParam();
// const string impl = getSelectedImpl();
// Mat query(srcSize, CV_32F), train(srcSize, CV_32F);
// Mat trainIdx, distance, allDist;
// randu(query, 0.0f, 1.0f);
// randu(train, 0.0f, 1.0f);
// if (impl == "plain")
// CV_TEST_FAIL_NO_IMPL();
// else if (impl == "ocl")
// {
// ocl::oclMat oclQuery(query), oclTrain(train), oclTrainIdx, oclDistance, oclAllDist;
// TEST_CYCLE() oclMatcher->knnMatchSingle(oclQuery, oclTrain, oclTrainIdx, oclDistance, oclAllDist, 2);
// oclTrainIdx.download(trainIdx);
// oclDistance.download(distance);
// oclAllDist.download(allDist);
// SANITY_CHECK(trainIdx);
// SANITY_CHECK(distance);
// SANITY_CHECK(allDist);
// }
//#ifdef HAVE_OPENCV_GPU
// else if (impl == "gpu")
// CV_TEST_FAIL_NO_IMPL();
//#endif
// else
// CV_TEST_FAIL_NO_IMPL();
//}
PERF_TEST_P(BruteForceMatcherFixture, DISABLED_radiusMatch,
OCL_BFMATCHER_TYPICAL_MAT_SIZES)
{
const Size srcSize = GetParam();
const string impl = getSelectedImpl();
const float max_distance = 2.0f;
vector<vector<DMatch> > matches(2);
Mat query(srcSize, CV_32F), train(srcSize, CV_32F);
declare.in(query, train);
Mat trainIdx, distance, allDist;
randu(query, 0.0f, 1.0f);
randu(train, 0.0f, 1.0f);
if (impl == "plain")
{
BFMatcher matcher (NORM_L2);
TEST_CYCLE() matcher.radiusMatch(query, matches, max_distance);
std::vector<DMatch> & matches0 = matches[0], & matches1 = matches[1];
SANITY_CHECK_MATCHES(matches0);
SANITY_CHECK_MATCHES(matches1);
}
else if (impl == "ocl")
{
ocl::oclMat oclQuery(query), oclTrain(train);
ocl::BruteForceMatcher_OCL_base oclMatcher(ocl::BruteForceMatcher_OCL_base::L2Dist);
TEST_CYCLE() oclMatcher.radiusMatch(oclQuery, oclTrain, matches, max_distance);
std::vector<DMatch> & matches0 = matches[0], & matches1 = matches[1];
SANITY_CHECK_MATCHES(matches0);
SANITY_CHECK_MATCHES(matches1);
}
#ifdef HAVE_OPENCV_GPU
else if (impl == "gpu")
CV_TEST_FAIL_NO_IMPL();
#endif
else
CV_TEST_FAIL_NO_IMPL();
}
//PERF_TEST_P(BruteForceMatcherFixture, radiusMatchSingle,
// OCL_BFMATCHER_TYPICAL_MAT_SIZES)
//{
// const Size srcSize = GetParam();
// const string impl = getSelectedImpl();
// const float max_distance = 2.0f;
// Mat query(srcSize, CV_32F), train(srcSize, CV_32F);
// Mat trainIdx, distance, nMatches;
// randu(query, 0.0f, 1.0f);
// randu(train, 0.0f, 1.0f);
// if (impl == "plain")
// CV_TEST_FAIL_NO_IMPL();
// else if (impl == "ocl")
// {
// ocl::oclMat oclQuery(query), oclTrain(train), oclTrainIdx, oclDistance, oclNMatches;
// TEST_CYCLE() oclMatcher->radiusMatchSingle(oclQuery, oclTrain, oclTrainIdx, oclDistance, oclNMatches, max_distance);
// oclTrainIdx.download(trainIdx);
// oclDistance.download(distance);
// oclNMatches.download(nMatches);
// SANITY_CHECK(trainIdx);
// SANITY_CHECK(distance);
// SANITY_CHECK(nMatches);
// }
//#ifdef HAVE_OPENCV_GPU
// else if (impl == "gpu")
// CV_TEST_FAIL_NO_IMPL();
//#endif
// else
// CV_TEST_FAIL_NO_IMPL();
//}
#undef OCL_BFMATCHER_TYPICAL_MAT_SIZES

View File

@ -45,48 +45,49 @@
//M*/
#include "perf_precomp.hpp"
///////////// StereoMatchBM ////////////////////////
PERFTEST(StereoMatchBM)
PERF_TEST(StereoMatchBMFixture, DISABLED_StereoMatchBM)
{
Mat left_image = imread(abspath("aloeL.jpg"), cv::IMREAD_GRAYSCALE);
Mat right_image = imread(abspath("aloeR.jpg"), cv::IMREAD_GRAYSCALE);
Mat disp,dst;
ocl::oclMat d_left, d_right,d_disp;
int n_disp= 128;
int winSize =19;
Mat left_image = imread(getDataPath("gpu/stereobm/aloe-L.png"), cv::IMREAD_GRAYSCALE);
Mat right_image = imread(getDataPath("gpu/stereobm/aloe-R.png"), cv::IMREAD_GRAYSCALE);
SUBTEST << left_image.cols << 'x' << left_image.rows << "; aloeL.jpg ;"<< right_image.cols << 'x' << right_image.rows << "; aloeR.jpg ";
ASSERT_TRUE(!left_image.empty()) << "no input image";
ASSERT_TRUE(!right_image.empty()) << "no input image";
ASSERT_TRUE(right_image.size() == left_image.size());
ASSERT_TRUE(right_image.size() == left_image.size());
StereoBM bm(0, n_disp, winSize);
bm(left_image, right_image, dst);
const std::string impl = getSelectedImpl();
const int n_disp = 128, winSize = 19;
Mat disp(left_image.size(), CV_16SC1);
CPU_ON;
bm(left_image, right_image, dst);
CPU_OFF;
declare.in(left_image, right_image).out(disp);
d_left.upload(left_image);
d_right.upload(right_image);
if (impl == "ocl")
{
ocl::oclMat oclLeft(left_image), oclRight(right_image),
oclDisp(left_image.size(), CV_16SC1);
ocl::StereoBM_OCL oclBM(0, n_disp, winSize);
ocl::StereoBM_OCL d_bm(0, n_disp, winSize);
TEST_CYCLE() oclBM(oclLeft, oclRight, oclDisp);
WARMUP_ON;
d_bm(d_left, d_right, d_disp);
WARMUP_OFF;
oclDisp.download(disp);
cv::Mat ocl_mat;
d_disp.download(ocl_mat);
ocl_mat.convertTo(ocl_mat, dst.type());
SANITY_CHECK(disp);
}
else if (impl == "plain")
{
StereoBM bm(0, n_disp, winSize);
GPU_ON;
d_bm(d_left, d_right, d_disp);
GPU_OFF;
TEST_CYCLE() bm(left_image, right_image, disp);
GPU_FULL_ON;
d_left.upload(left_image);
d_right.upload(right_image);
d_bm(d_left, d_right, d_disp);
d_disp.download(disp);
GPU_FULL_OFF;
TestSystem::instance().setAccurate(-1, 0.);
SANITY_CHECK(disp);
}
#ifdef HAVE_OPENCV_GPU
else if (impl == "gpu")
CV_TEST_FAIL_NO_IMPL();
#endif
else
CV_TEST_FAIL_NO_IMPL();
}

View File

@ -45,41 +45,38 @@
//M*/
#include "perf_precomp.hpp"
using namespace perf;
///////////// Canny ////////////////////////
PERFTEST(Canny)
PERF_TEST(CannyFixture, Canny)
{
Mat img = imread(abspath("aloeL.jpg"), CV_LOAD_IMAGE_GRAYSCALE);
Mat img = imread(getDataPath("gpu/stereobm/aloe-L.png"), cv::IMREAD_GRAYSCALE),
edges(img.size(), CV_8UC1);
ASSERT_TRUE(!img.empty()) << "can't open aloeL.jpg";
if (img.empty())
const std::string impl = getSelectedImpl();
declare.in(img).out(edges);
if (impl == "ocl")
{
throw runtime_error("can't open aloeL.jpg");
ocl::oclMat oclImg(img), oclEdges(img.size(), CV_8UC1);
TEST_CYCLE() Canny(oclImg, oclEdges, 50.0, 100.0);
oclEdges.download(edges);
SANITY_CHECK(edges);
}
else if (impl == "plain")
{
TEST_CYCLE() Canny(img, edges, 50.0, 100.0);
SUBTEST << img.cols << 'x' << img.rows << "; aloeL.jpg" << "; edges" << "; CV_8UC1";
Mat edges(img.size(), CV_8UC1), ocl_edges;
CPU_ON;
Canny(img, edges, 50.0, 100.0);
CPU_OFF;
ocl::oclMat d_img(img);
ocl::oclMat d_edges;
ocl::CannyBuf d_buf;
WARMUP_ON;
ocl::Canny(d_img, d_buf, d_edges, 50.0, 100.0);
WARMUP_OFF;
GPU_ON;
ocl::Canny(d_img, d_buf, d_edges, 50.0, 100.0);
GPU_OFF;
GPU_FULL_ON;
d_img.upload(img);
ocl::Canny(d_img, d_buf, d_edges, 50.0, 100.0);
d_edges.download(ocl_edges);
GPU_FULL_OFF;
TestSystem::instance().ExceptedMatSimilar(edges, ocl_edges, 2e-2);
SANITY_CHECK(edges);
}
#ifdef HAVE_OPENCV_GPU
else if (impl == "gpu")
CV_TEST_FAIL_NO_IMPL();
#endif
else
CV_TEST_FAIL_NO_IMPL();
}

View File

@ -45,49 +45,39 @@
//M*/
#include "perf_precomp.hpp"
using namespace perf;
///////////// cvtColor////////////////////////
PERFTEST(cvtColor)
typedef TestBaseWithParam<Size> cvtColorFixture;
PERF_TEST_P(cvtColorFixture, cvtColor, OCL_TYPICAL_MAT_SIZES)
{
Mat src, dst, ocl_dst;
ocl::oclMat d_src, d_dst;
const Size srcSize = GetParam();
const std::string impl = getSelectedImpl();
int all_type[] = {CV_8UC4};
std::string type_name[] = {"CV_8UC4"};
Mat src(srcSize, CV_8UC4), dst(srcSize, CV_8UC4);
declare.in(src).out(dst);
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
if (impl == "ocl")
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
gen(src, size, size, all_type[j], 0, 256);
SUBTEST << size << "x" << size << "; " << type_name[j] << " ; CV_RGBA2GRAY";
cvtColor(src, dst, CV_RGBA2GRAY, 4);
CPU_ON;
cvtColor(src, dst, CV_RGBA2GRAY, 4);
CPU_OFF;
d_src.upload(src);
WARMUP_ON;
ocl::cvtColor(d_src, d_dst, CV_RGBA2GRAY, 4);
WARMUP_OFF;
GPU_ON;
ocl::cvtColor(d_src, d_dst, CV_RGBA2GRAY, 4);
GPU_OFF;
GPU_FULL_ON;
d_src.upload(src);
ocl::cvtColor(d_src, d_dst, CV_RGBA2GRAY, 4);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExceptedMatSimilar(dst, ocl_dst, 1e-5);
}
ocl::oclMat oclSrc(src), oclDst(src.size(), CV_8UC4);
TEST_CYCLE() ocl::cvtColor(oclSrc, oclDst, CV_RGBA2GRAY, 4);
oclDst.download(dst);
SANITY_CHECK(dst);
}
else if (impl == "plain")
{
TEST_CYCLE() cv::cvtColor(src, dst, CV_RGBA2GRAY, 4);
SANITY_CHECK(dst);
}
#ifdef HAVE_OPENCV_GPU
else if (impl == "gpu")
CV_TEST_FAIL_NO_IMPL();
#endif
else
CV_TEST_FAIL_NO_IMPL();
}

View File

@ -45,47 +45,43 @@
//M*/
#include "perf_precomp.hpp"
using namespace perf;
///////////// dft ////////////////////////
PERFTEST(dft)
typedef TestBaseWithParam<Size> dftFixture;
PERF_TEST_P(dftFixture, DISABLED_dft, OCL_TYPICAL_MAT_SIZES)
{
Mat src, dst, ocl_dst;
ocl::oclMat d_src, d_dst;
const std::string impl = getSelectedImpl();
Size srcSize = GetParam();
int all_type[] = {CV_32FC2};
std::string type_name[] = {"CV_32FC2"};
Mat src(srcSize, CV_32FC2), dst;
randu(src, 0.0f, 1.0f);
declare.in(src);
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
if (impl == "ocl")
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] << " ; complex-to-complex";
ocl::oclMat oclSrc(src), oclDst;
gen(src, size, size, all_type[j], Scalar::all(0), Scalar::all(1));
EXPECT_NO_THROW({
TEST_CYCLE() cv::ocl::dft(oclSrc, oclDst);
});
dft(src, dst);
CPU_ON;
dft(src, dst);
CPU_OFF;
d_src.upload(src);
WARMUP_ON;
ocl::dft(d_src, d_dst, Size(size, size));
WARMUP_OFF;
GPU_ON;
ocl::dft(d_src, d_dst, Size(size, size));
GPU_OFF;
GPU_FULL_ON;
d_src.upload(src);
ocl::dft(d_src, d_dst, Size(size, size));
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(dst, ocl_dst, src.size().area() * 1e-4);
}
oclDst.download(dst);
SANITY_CHECK(dst);
}
else if (impl == "plain")
{
TEST_CYCLE() cv::dft(src, dst);
SANITY_CHECK(dst);
}
#ifdef HAVE_OPENCV_GPU
else if (impl == "gpu")
CV_TEST_FAIL_NO_IMPL();
#endif
else
CV_TEST_FAIL_NO_IMPL();
}

View File

@ -45,333 +45,344 @@
//M*/
#include "perf_precomp.hpp"
using namespace perf;
using std::tr1::get;
using std::tr1::tuple;
///////////// Blur////////////////////////
PERFTEST(Blur)
CV_ENUM(BlurMatType, CV_8UC1, CV_8UC4)
typedef tuple<Size, BlurMatType> BlurParams;
typedef TestBaseWithParam<BlurParams> BlurFixture;
PERF_TEST_P(BlurFixture, Blur,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
BlurMatType::all()))
{
Mat src1, dst, ocl_dst;
ocl::oclMat d_src1, d_dst;
// getting params
BlurParams params = GetParam();
const Size srcSize = get<0>(params), ksize(3, 3);
const int type = get<1>(params), bordertype = BORDER_CONSTANT;
Size ksize = Size(3, 3);
int bordertype = BORDER_CONSTANT;
int all_type[] = {CV_8UC1, CV_8UC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4"};
const std::string impl = getSelectedImpl();
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
Mat src(srcSize, type), dst(srcSize, type);
declare.in(src, WARMUP_RNG).out(dst);
if (srcSize == OCL_SIZE_4000 && type == CV_8UC4)
declare.time(5);
if (impl == "ocl")
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
ocl::oclMat oclSrc(src), oclDst(srcSize, type);
gen(src1, size, size, all_type[j], 0, 256);
gen(dst, size, size, all_type[j], 0, 256);
TEST_CYCLE() cv::ocl::blur(oclSrc, oclDst, ksize, Point(-1, -1), bordertype);
blur(src1, dst, ksize, Point(-1, -1), bordertype);
CPU_ON;
blur(src1, dst, ksize, Point(-1, -1), bordertype);
CPU_OFF;
d_src1.upload(src1);
WARMUP_ON;
ocl::blur(d_src1, d_dst, ksize, Point(-1, -1), bordertype);
WARMUP_OFF;
GPU_ON;
ocl::blur(d_src1, d_dst, ksize, Point(-1, -1), bordertype);
GPU_OFF;
GPU_FULL_ON;
d_src1.upload(src1);
ocl::blur(d_src1, d_dst, ksize, Point(-1, -1), bordertype);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(ocl_dst, dst, 1.0);
}
oclDst.download(dst);
SANITY_CHECK(dst, 1 + DBL_EPSILON);
}
else if (impl == "plain")
{
TEST_CYCLE() cv::blur(src, dst, ksize, Point(-1, -1), bordertype);
SANITY_CHECK(dst, 1 + DBL_EPSILON);
}
#ifdef HAVE_OPENCV_GPU
else if (impl == "gpu")
CV_TEST_FAIL_NO_IMPL();
#endif
else
CV_TEST_FAIL_NO_IMPL();
}
///////////// Laplacian////////////////////////
PERFTEST(Laplacian)
typedef BlurMatType LaplacianMatType;
typedef tuple<Size, LaplacianMatType> LaplacianParams;
typedef TestBaseWithParam<LaplacianParams> LaplacianFixture;
PERF_TEST_P(LaplacianFixture, Laplacian,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
LaplacianMatType::all()))
{
Mat src1, dst, ocl_dst;
ocl::oclMat d_src1, d_dst;
// getting params
LaplacianParams params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params), ksize = 3;
int ksize = 3;
int all_type[] = {CV_8UC1, CV_8UC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4"};
const std::string impl = getSelectedImpl();
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
Mat src(srcSize, type), dst(srcSize, type);
declare.in(src, WARMUP_RNG).out(dst);
if (srcSize == OCL_SIZE_4000 && type == CV_8UC4)
declare.time(6);
if (impl == "ocl")
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
ocl::oclMat oclSrc(src), oclDst(srcSize, type);
gen(src1, size, size, all_type[j], 0, 256);
gen(dst, size, size, all_type[j], 0, 256);
TEST_CYCLE() cv::ocl::Laplacian(oclSrc, oclDst, -1, ksize, 1);
Laplacian(src1, dst, -1, ksize, 1);
CPU_ON;
Laplacian(src1, dst, -1, ksize, 1);
CPU_OFF;
d_src1.upload(src1);
WARMUP_ON;
ocl::Laplacian(d_src1, d_dst, -1, ksize, 1);
WARMUP_OFF;
GPU_ON;
ocl::Laplacian(d_src1, d_dst, -1, ksize, 1);
GPU_OFF;
GPU_FULL_ON;
d_src1.upload(src1);
ocl::Laplacian(d_src1, d_dst, -1, ksize, 1);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(ocl_dst, dst, 1e-5);
}
oclDst.download(dst);
SANITY_CHECK(dst);
}
else if (impl == "plain")
{
TEST_CYCLE() cv::Laplacian(src, dst, -1, ksize, 1);
SANITY_CHECK(dst);
}
#ifdef HAVE_OPENCV_GPU
else if (impl == "gpu")
CV_TEST_FAIL_NO_IMPL();
#endif
else
CV_TEST_FAIL_NO_IMPL();
}
///////////// Erode ////////////////////
PERFTEST(Erode)
CV_ENUM(ErodeMatType, CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4)
typedef tuple<Size, ErodeMatType> ErodeParams;
typedef TestBaseWithParam<ErodeParams> ErodeFixture;
PERF_TEST_P(ErodeFixture, Erode,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
ErodeMatType::all()))
{
Mat src, dst, ker, ocl_dst;
ocl::oclMat d_src, d_dst;
// getting params
ErodeParams params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params), ksize = 3;
const Mat ker = getStructuringElement(MORPH_RECT, Size(ksize, ksize));
int all_type[] = {CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4", "CV_32FC1", "CV_32FC4"};
const std::string impl = getSelectedImpl();
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
Mat src(srcSize, type), dst(srcSize, type);
declare.in(src, WARMUP_RNG).out(dst).in(ker);
if (srcSize == OCL_SIZE_4000 && type == CV_8UC4)
declare.time(5);
if (impl == "ocl")
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
ocl::oclMat oclSrc(src), oclDst(srcSize, type), oclKer(ker);
gen(src, size, size, all_type[j], Scalar::all(0), Scalar::all(256));
ker = getStructuringElement(MORPH_RECT, Size(3, 3));
TEST_CYCLE() cv::ocl::erode(oclSrc, oclDst, oclKer);
erode(src, dst, ker);
CPU_ON;
erode(src, dst, ker);
CPU_OFF;
d_src.upload(src);
WARMUP_ON;
ocl::erode(d_src, d_dst, ker);
WARMUP_OFF;
GPU_ON;
ocl::erode(d_src, d_dst, ker);
GPU_OFF;
GPU_FULL_ON;
d_src.upload(src);
ocl::erode(d_src, d_dst, ker);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(ocl_dst, dst, 1e-5);
}
oclDst.download(dst);
SANITY_CHECK(dst);
}
else if (impl == "plain")
{
TEST_CYCLE() cv::erode(src, dst, ker);
SANITY_CHECK(dst);
}
#ifdef HAVE_OPENCV_GPU
else if (impl == "gpu")
CV_TEST_FAIL_NO_IMPL();
#endif
else
CV_TEST_FAIL_NO_IMPL();
}
///////////// Sobel ////////////////////////
PERFTEST(Sobel)
typedef BlurMatType SobelMatType;
typedef tuple<Size, SobelMatType> SobelMatParams;
typedef TestBaseWithParam<SobelMatParams> SobelFixture;
PERF_TEST_P(SobelFixture, Sobel,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
SobelMatType::all()))
{
Mat src, dst, ocl_dst;
ocl::oclMat d_src, d_dst;
// getting params
SobelMatParams params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params), dx = 1, dy = 1;
int dx = 1;
int dy = 1;
int all_type[] = {CV_8UC1, CV_8UC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4"};
const std::string impl = getSelectedImpl();
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
Mat src(srcSize, type), dst(srcSize, type);
declare.in(src, WARMUP_RNG).out(dst);
if ((srcSize == OCL_SIZE_2000 && type == CV_8UC4) ||
(srcSize == OCL_SIZE_4000 && type == CV_8UC1))
declare.time(5.5);
else if (srcSize == OCL_SIZE_4000 && type == CV_8UC4)
declare.time(20);
if (impl == "ocl")
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
ocl::oclMat oclSrc(src), oclDst(srcSize, type);
gen(src, size, size, all_type[j], 0, 256);
TEST_CYCLE() cv::ocl::Sobel(oclSrc, oclDst, -1, dx, dy);
Sobel(src, dst, -1, dx, dy);
CPU_ON;
Sobel(src, dst, -1, dx, dy);
CPU_OFF;
d_src.upload(src);
WARMUP_ON;
ocl::Sobel(d_src, d_dst, -1, dx, dy);
WARMUP_OFF;
GPU_ON;
ocl::Sobel(d_src, d_dst, -1, dx, dy);
GPU_OFF;
GPU_FULL_ON;
d_src.upload(src);
ocl::Sobel(d_src, d_dst, -1, dx, dy);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(ocl_dst, dst, 1);
}
oclDst.download(dst);
SANITY_CHECK(dst);
}
else if (impl == "plain")
{
TEST_CYCLE() cv::Sobel(src, dst, -1, dx, dy);
SANITY_CHECK(dst);
}
#ifdef HAVE_OPENCV_GPU
else if (impl == "gpu")
CV_TEST_FAIL_NO_IMPL();
#endif
else
CV_TEST_FAIL_NO_IMPL();
}
///////////// Scharr ////////////////////////
PERFTEST(Scharr)
typedef BlurMatType ScharrMatType;
typedef tuple<Size, ScharrMatType> ScharrParams;
typedef TestBaseWithParam<ScharrParams> ScharrFixture;
PERF_TEST_P(ScharrFixture, Scharr,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
ScharrMatType::all()))
{
Mat src, dst, ocl_dst;
ocl::oclMat d_src, d_dst;
// getting params
ScharrParams params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params), dx = 1, dy = 0;
int dx = 1;
int dy = 0;
int all_type[] = {CV_8UC1, CV_8UC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4"};
const std::string impl = getSelectedImpl();
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
Mat src(srcSize, type), dst(srcSize, type);
declare.in(src, WARMUP_RNG).out(dst);
if ((srcSize == OCL_SIZE_2000 && type == CV_8UC4) ||
(srcSize == OCL_SIZE_4000 && type == CV_8UC1))
declare.time(5.5);
else if (srcSize == OCL_SIZE_4000 && type == CV_8UC4)
declare.time(21);
if (impl == "ocl")
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
ocl::oclMat oclSrc(src), oclDst(srcSize, type);
gen(src, size, size, all_type[j], 0, 256);
TEST_CYCLE() cv::ocl::Scharr(oclSrc, oclDst, -1, dx, dy);
Scharr(src, dst, -1, dx, dy);
CPU_ON;
Scharr(src, dst, -1, dx, dy);
CPU_OFF;
d_src.upload(src);
WARMUP_ON;
ocl::Scharr(d_src, d_dst, -1, dx, dy);
WARMUP_OFF;
GPU_ON;
ocl::Scharr(d_src, d_dst, -1, dx, dy);
GPU_OFF;
GPU_FULL_ON;
d_src.upload(src);
ocl::Scharr(d_src, d_dst, -1, dx, dy);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(ocl_dst, dst, 1);
}
oclDst.download(dst);
SANITY_CHECK(dst);
}
else if (impl == "plain")
{
TEST_CYCLE() cv::Scharr(src, dst, -1, dx, dy);
SANITY_CHECK(dst);
}
#ifdef HAVE_OPENCV_GPU
else if (impl == "gpu")
CV_TEST_FAIL_NO_IMPL();
#endif
else
CV_TEST_FAIL_NO_IMPL();
}
///////////// GaussianBlur ////////////////////////
PERFTEST(GaussianBlur)
typedef ErodeMatType GaussianBlurMatType;
typedef tuple<Size, GaussianBlurMatType> GaussianBlurParams;
typedef TestBaseWithParam<GaussianBlurParams> GaussianBlurFixture;
PERF_TEST_P(GaussianBlurFixture, GaussianBlur,
::testing::Combine(::testing::Values(OCL_SIZE_1000, OCL_SIZE_2000),
GaussianBlurMatType::all()))
{
Mat src, dst, ocl_dst;
int all_type[] = {CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4", "CV_32FC1", "CV_32FC4"};
const int ksize = 7;
// getting params
GaussianBlurParams params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params), ksize = 7;
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
const std::string impl = getSelectedImpl();
Mat src(srcSize, type), dst(srcSize, type);
declare.in(src, WARMUP_RNG).out(dst);
const double eps = src.depth() == CV_8U ? 1 + DBL_EPSILON : 3e-4;
if (impl == "ocl")
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
ocl::oclMat oclSrc(src), oclDst(srcSize, type);
gen(src, size, size, all_type[j], 0, 256);
TEST_CYCLE() cv::ocl::GaussianBlur(oclSrc, oclDst, Size(ksize, ksize), 0);
GaussianBlur(src, dst, Size(ksize, ksize), 0);
CPU_ON;
GaussianBlur(src, dst, Size(ksize, ksize), 0);
CPU_OFF;
ocl::oclMat d_src(src);
ocl::oclMat d_dst;
WARMUP_ON;
ocl::GaussianBlur(d_src, d_dst, Size(ksize, ksize), 0);
WARMUP_OFF;
GPU_ON;
ocl::GaussianBlur(d_src, d_dst, Size(ksize, ksize), 0);
GPU_OFF;
GPU_FULL_ON;
d_src.upload(src);
ocl::GaussianBlur(d_src, d_dst, Size(ksize, ksize), 0);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(ocl_dst, dst, 1.0);
}
oclDst.download(dst);
SANITY_CHECK(dst, eps);
}
else if (impl == "plain")
{
TEST_CYCLE() cv::GaussianBlur(src, dst, Size(ksize, ksize), 0);
SANITY_CHECK(dst, eps);
}
#ifdef HAVE_OPENCV_GPU
else if (impl == "gpu")
CV_TEST_FAIL_NO_IMPL();
#endif
else
CV_TEST_FAIL_NO_IMPL();
}
///////////// filter2D////////////////////////
PERFTEST(filter2D)
typedef BlurMatType filter2DMatType;
typedef tuple<Size, filter2DMatType> filter2DParams;
typedef TestBaseWithParam<filter2DParams> filter2DFixture;
PERF_TEST_P(filter2DFixture, filter2D,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
filter2DMatType::all()))
{
Mat src;
// getting params
filter2DParams params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params), ksize = 3;
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
const std::string impl = getSelectedImpl();
Mat src(srcSize, type), dst(srcSize, type), kernel(ksize, ksize, CV_32SC1);
declare.in(src, WARMUP_RNG).in(kernel).out(dst);
randu(kernel, -3.0, 3.0);
if (srcSize == OCL_SIZE_4000 && type == CV_8UC4)
declare.time(8);
if (impl == "ocl")
{
int all_type[] = {CV_8UC1, CV_8UC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4"};
ocl::oclMat oclSrc(src), oclDst(srcSize, type), oclKernel(kernel);
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
gen(src, size, size, all_type[j], 0, 256);
const int ksize = 3;
SUBTEST << "ksize = " << ksize << "; " << size << 'x' << size << "; " << type_name[j] ;
Mat kernel;
gen(kernel, ksize, ksize, CV_32SC1, -3.0, 3.0);
Mat dst, ocl_dst;
cv::filter2D(src, dst, -1, kernel);
CPU_ON;
cv::filter2D(src, dst, -1, kernel);
CPU_OFF;
ocl::oclMat d_src(src), d_dst;
WARMUP_ON;
ocl::filter2D(d_src, d_dst, -1, kernel);
WARMUP_OFF;
GPU_ON;
ocl::filter2D(d_src, d_dst, -1, kernel);
GPU_OFF;
GPU_FULL_ON;
d_src.upload(src);
ocl::filter2D(d_src, d_dst, -1, kernel);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(ocl_dst, dst, 1e-5);
}
TEST_CYCLE() cv::ocl::filter2D(oclSrc, oclDst, -1, oclKernel);
oclDst.download(dst);
SANITY_CHECK(dst);
}
else if (impl == "plain")
{
TEST_CYCLE() cv::filter2D(src, dst, -1, kernel);
SANITY_CHECK(dst);
}
#ifdef HAVE_OPENCV_GPU
else if (impl == "gpu")
CV_TEST_FAIL_NO_IMPL();
#endif
else
CV_TEST_FAIL_NO_IMPL();
}

View File

@ -45,46 +45,46 @@
//M*/
#include "perf_precomp.hpp"
using namespace perf;
///////////// gemm ////////////////////////
PERFTEST(gemm)
typedef TestBaseWithParam<Size> gemmFixture;
PERF_TEST_P(gemmFixture, DISABLED_gemm, OCL_TYPICAL_MAT_SIZES)
{
Mat src1, src2, src3, dst, ocl_dst;
ocl::oclMat d_src1, d_src2, d_src3, d_dst;
// getting params
const Size srcSize = GetParam();
const std::string impl = getSelectedImpl();
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
Mat src1(srcSize, CV_32FC1), src2(srcSize, CV_32FC1),
src3(srcSize, CV_32FC1), dst(srcSize, CV_32FC1);
declare.in(src1, src2, src3).out(dst);
randu(src1, -10.0f, 10.0f);
randu(src2, -10.0f, 10.0f);
randu(src3, -10.0f, 10.0f);
if (impl == "ocl")
{
SUBTEST << size << 'x' << size;
ocl::oclMat oclSrc1(src1), oclSrc2(src2),
oclSrc3(src3), oclDst(srcSize, CV_32FC1);
gen(src1, size, size, CV_32FC1, Scalar::all(-10), Scalar::all(10));
gen(src2, size, size, CV_32FC1, Scalar::all(-10), Scalar::all(10));
gen(src3, size, size, CV_32FC1, Scalar::all(-10), Scalar::all(10));
TEST_CYCLE() cv::ocl::gemm(oclSrc1, oclSrc2, 1.0, oclSrc3, 1.0, oclDst);
gemm(src1, src2, 1.0, src3, 1.0, dst);
oclDst.download(dst);
CPU_ON;
gemm(src1, src2, 1.0, src3, 1.0, dst);
CPU_OFF;
d_src1.upload(src1);
d_src2.upload(src2);
d_src3.upload(src3);
WARMUP_ON;
ocl::gemm(d_src1, d_src2, 1.0, d_src3, 1.0, d_dst);
WARMUP_OFF;
GPU_ON;
ocl::gemm(d_src1, d_src2, 1.0, d_src3, 1.0, d_dst);
GPU_OFF;
GPU_FULL_ON;
d_src1.upload(src1);
d_src2.upload(src2);
d_src3.upload(src3);
ocl::gemm(d_src1, d_src2, 1.0, d_src3, 1.0, d_dst);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(ocl_dst, dst, src1.cols * src1.rows * 1e-4);
SANITY_CHECK(dst);
}
else if (impl == "plain")
{
TEST_CYCLE() cv::gemm(src1, src2, 1.0, src3, 1.0, dst);
SANITY_CHECK(dst);
}
#ifdef HAVE_OPENCV_GPU
else if (impl == "gpu")
CV_TEST_FAIL_NO_IMPL();
#endif
else
CV_TEST_FAIL_NO_IMPL();
}

View File

@ -46,56 +46,54 @@
#include "perf_precomp.hpp"
using namespace perf;
using std::tr1::tuple;
using std::tr1::get;
///////////// GoodFeaturesToTrack ////////////////////////
PERFTEST(GoodFeaturesToTrack)
typedef tuple<string, double> GoodFeaturesToTrackParams;
typedef TestBaseWithParam<GoodFeaturesToTrackParams> GoodFeaturesToTrackFixture;
PERF_TEST_P(GoodFeaturesToTrackFixture, GoodFeaturesToTrack,
::testing::Combine(::testing::Values(string("gpu/opticalflow/rubberwhale1.png"),
string("gpu/stereobm/aloe-L.png")),
::testing::Range(0.0, 4.0, 3.0)))
{
using namespace cv;
std::vector<cv::Point2f> pts_gold;
int maxCorners = 2000;
double qualityLevel = 0.01;
// getting params
GoodFeaturesToTrackParams param = GetParam();
const string fileName = getDataPath(get<0>(param)), impl = getSelectedImpl();
const int maxCorners = 2000;
const double qualityLevel = 0.01, minDistance = get<1>(param);
std::string images[] = { "rubberwhale1.png", "aloeL.jpg" };
Mat frame = imread(fileName, IMREAD_GRAYSCALE);
declare.in(frame);
ASSERT_TRUE(!frame.empty()) << "no input image";
std::vector<cv::Point2f> pts_gold, pts_ocl;
for(size_t imgIdx = 0; imgIdx < (sizeof(images)/sizeof(std::string)); ++imgIdx)
if (impl == "ocl")
{
Mat frame = imread(abspath(images[imgIdx]), IMREAD_GRAYSCALE);
CV_Assert(!frame.empty());
ocl::oclMat oclFrame(frame), pts_oclmat;
cv::ocl::GoodFeaturesToTrackDetector_OCL detector(maxCorners, qualityLevel, minDistance);
for(float minDistance = 0; minDistance < 4; minDistance += 3.0)
{
SUBTEST << "image = " << images[imgIdx] << "; ";
SUBTEST << "minDistance = " << minDistance << "; ";
TEST_CYCLE() detector(oclFrame, pts_oclmat);
cv::goodFeaturesToTrack(frame, pts_gold, maxCorners, qualityLevel, minDistance);
detector.downloadPoints(pts_oclmat, pts_gold);
CPU_ON;
cv::goodFeaturesToTrack(frame, pts_gold, maxCorners, qualityLevel, minDistance);
CPU_OFF;
cv::ocl::GoodFeaturesToTrackDetector_OCL detector(maxCorners, qualityLevel, minDistance);
ocl::oclMat frame_ocl(frame), pts_oclmat;
WARMUP_ON;
detector(frame_ocl, pts_oclmat);
WARMUP_OFF;
detector.downloadPoints(pts_oclmat, pts_ocl);
double diff = abs(static_cast<float>(pts_gold.size() - pts_ocl.size()));
TestSystem::instance().setAccurate(diff == 0.0, diff);
GPU_ON;
detector(frame_ocl, pts_oclmat);
GPU_OFF;
GPU_FULL_ON;
frame_ocl.upload(frame);
detector(frame_ocl, pts_oclmat);
detector.downloadPoints(pts_oclmat, pts_ocl);
GPU_FULL_OFF;
}
SANITY_CHECK(pts_gold);
}
else if (impl == "plain")
{
TEST_CYCLE() cv::goodFeaturesToTrack(frame, pts_gold,
maxCorners, qualityLevel, minDistance);
SANITY_CHECK(pts_gold);
}
#ifdef HAVE_OPENCV_GPU
else if (impl == "gpu")
CV_TEST_FAIL_NO_IMPL();
#endif
else
CV_TEST_FAIL_NO_IMPL();
}

View File

@ -45,6 +45,8 @@
//M*/
#include "perf_precomp.hpp"
using namespace perf;
///////////// Haar ////////////////////////
namespace cv
{
@ -83,61 +85,45 @@ public:
}
}
PERFTEST(Haar)
PERF_TEST(HaarFixture, Haar)
{
Mat img = imread(abspath("basketball1.png"), CV_LOAD_IMAGE_GRAYSCALE);
if (img.empty())
{
throw runtime_error("can't open basketball1.png");
}
CascadeClassifier faceCascadeCPU;
if (!faceCascadeCPU.load(abspath("haarcascade_frontalface_alt.xml")))
{
throw runtime_error("can't load haarcascade_frontalface_alt.xml");
}
const std::string impl = getSelectedImpl();
vector<Rect> faces;
SUBTEST << img.cols << "x" << img.rows << "; scale image";
CPU_ON;
faceCascadeCPU.detectMultiScale(img, faces,
1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));
CPU_OFF;
Mat img = imread(getDataPath("gpu/haarcascade/basketball1.png"), CV_LOAD_IMAGE_GRAYSCALE);
ASSERT_TRUE(!img.empty()) << "can't open basketball1.png";
declare.in(img);
vector<Rect> oclfaces;
ocl::CascadeClassifier_GPU faceCascade;
if (!faceCascade.load(abspath("haarcascade_frontalface_alt.xml")))
if (impl == "plain")
{
throw runtime_error("can't load haarcascade_frontalface_alt.xml");
CascadeClassifier faceCascade;
ASSERT_TRUE(faceCascade.load(getDataPath("gpu/haarcascade/haarcascade_frontalface_alt.xml")))
<< "can't load haarcascade_frontalface_alt.xml";
TEST_CYCLE() faceCascade.detectMultiScale(img, faces,
1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));
SANITY_CHECK(faces, 4 + 1e-4);
}
else if (impl == "ocl")
{
ocl::CascadeClassifier_GPU faceCascade;
ocl::oclMat oclImg(img);
ASSERT_TRUE(faceCascade.load(getDataPath("gpu/haarcascade/haarcascade_frontalface_alt.xml")))
<< "can't load haarcascade_frontalface_alt.xml";
TEST_CYCLE() faceCascade.detectMultiScale(oclImg, faces,
1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));
SANITY_CHECK(faces, 4 + 1e-4);
}
ocl::oclMat d_img(img);
WARMUP_ON;
faceCascade.detectMultiScale(d_img, oclfaces,
1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));
WARMUP_OFF;
if(faces.size() == oclfaces.size())
TestSystem::instance().setAccurate(1, 0);
#ifdef HAVE_OPENCV_GPU
else if (impl == "gpu")
CV_TEST_FAIL_NO_IMPL();
#endif
else
TestSystem::instance().setAccurate(0, abs((int)faces.size() - (int)oclfaces.size()));
faces.clear();
GPU_ON;
faceCascade.detectMultiScale(d_img, oclfaces,
1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));
GPU_OFF;
GPU_FULL_ON;
d_img.upload(img);
faceCascade.detectMultiScale(d_img, oclfaces,
1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));
GPU_FULL_OFF;
CV_TEST_FAIL_NO_IMPL();
}

View File

@ -45,50 +45,42 @@
//M*/
#include "perf_precomp.hpp"
using namespace perf;
///////////// HOG////////////////////////
PERFTEST(HOG)
PERF_TEST(HOGFixture, HOG)
{
Mat src = imread(abspath("road.png"), cv::IMREAD_GRAYSCALE);
Mat src = imread(getDataPath("gpu/hog/road.png"), cv::IMREAD_GRAYSCALE);
ASSERT_TRUE(!src.empty()) << "can't open input image road.png";
if (src.empty())
{
throw runtime_error("can't open road.png");
}
cv::HOGDescriptor hog;
hog.setSVMDetector(hog.getDefaultPeopleDetector());
const std::string impl = getSelectedImpl();
std::vector<cv::Rect> found_locations;
std::vector<cv::Rect> d_found_locations;
declare.in(src).time(5);
SUBTEST << src.cols << 'x' << src.rows << "; road.png";
if (impl == "plain")
{
cv::HOGDescriptor hog;
hog.setSVMDetector(hog.getDefaultPeopleDetector());
hog.detectMultiScale(src, found_locations);
TEST_CYCLE() hog.detectMultiScale(src, found_locations);
CPU_ON;
hog.detectMultiScale(src, found_locations);
CPU_OFF;
SANITY_CHECK(found_locations, 1 + DBL_EPSILON);
}
else if (impl == "ocl")
{
cv::ocl::HOGDescriptor ocl_hog;
ocl_hog.setSVMDetector(ocl_hog.getDefaultPeopleDetector());
ocl::oclMat oclSrc(src);
cv::ocl::HOGDescriptor ocl_hog;
ocl_hog.setSVMDetector(ocl_hog.getDefaultPeopleDetector());
ocl::oclMat d_src;
d_src.upload(src);
TEST_CYCLE() ocl_hog.detectMultiScale(oclSrc, found_locations);
WARMUP_ON;
ocl_hog.detectMultiScale(d_src, d_found_locations);
WARMUP_OFF;
if(d_found_locations.size() == found_locations.size())
TestSystem::instance().setAccurate(1, 0);
SANITY_CHECK(found_locations, 1 + DBL_EPSILON);
}
#ifdef HAVE_OPENCV_GPU
else if (impl == "gpu")
CV_TEST_FAIL_NO_IMPL();
#endif
else
TestSystem::instance().setAccurate(0, abs((int)found_locations.size() - (int)d_found_locations.size()));
GPU_ON;
ocl_hog.detectMultiScale(d_src, found_locations);
GPU_OFF;
GPU_FULL_ON;
d_src.upload(src);
ocl_hog.detectMultiScale(d_src, found_locations);
GPU_FULL_OFF;
CV_TEST_FAIL_NO_IMPL();
}

File diff suppressed because it is too large Load Diff

View File

@ -45,101 +45,97 @@
//M*/
#include "perf_precomp.hpp"
using namespace perf;
using std::tr1::tuple;
using std::tr1::get;
/////////// matchTemplate ////////////////////////
//void InitMatchTemplate()
//{
// Mat src; gen(src, 500, 500, CV_32F, 0, 1);
// Mat templ; gen(templ, 500, 500, CV_32F, 0, 1);
// ocl::oclMat d_src(src), d_templ(templ), d_dst;
// ocl::matchTemplate(d_src, d_templ, d_dst, CV_TM_CCORR);
//}
PERFTEST(matchTemplate)
CV_ENUM(CV_TM_CCORRMatType, CV_32FC1, CV_32FC4)
typedef tuple<Size, CV_TM_CCORRMatType> CV_TM_CCORRParams;
typedef TestBaseWithParam<CV_TM_CCORRParams> CV_TM_CCORRFixture;
PERF_TEST_P(CV_TM_CCORRFixture, matchTemplate,
::testing::Combine(::testing::Values(OCL_SIZE_1000, OCL_SIZE_2000),
CV_TM_CCORRMatType::all()))
{
//InitMatchTemplate();
Mat src, templ, dst, ocl_dst;
int templ_size = 5;
// getting params
CV_TM_CCORRParams params = GetParam();
const Size srcSize = get<0>(params), templSize(5, 5);
const int type = get<1>(params);
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
std::string impl = getSelectedImpl();
// creating src data
Mat src(srcSize, type), templ(templSize, type);
const Size dstSize(src.cols - templ.cols + 1, src.rows - templ.rows + 1);
Mat dst(dstSize, CV_32F);
randu(src, 0.0f, 1.0f);
randu(templ, 0.0f, 1.0f);
declare.time(srcSize == OCL_SIZE_2000 ? 20 : 6).in(src, templ).out(dst);
// select implementation
if (impl == "ocl")
{
int all_type[] = {CV_32FC1, CV_32FC4};
std::string type_name[] = {"CV_32FC1", "CV_32FC4"};
ocl::oclMat oclSrc(src), oclTempl(templ), oclDst(dstSize, CV_32F);
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
for(templ_size = 5; templ_size <= 5; templ_size *= 5)
{
gen(src, size, size, all_type[j], 0, 1);
TEST_CYCLE() cv::ocl::matchTemplate(oclSrc, oclTempl, oclDst, CV_TM_CCORR);
SUBTEST << src.cols << 'x' << src.rows << "; " << type_name[j] << "; templ " << templ_size << 'x' << templ_size << "; CCORR";
oclDst.download(dst);
gen(templ, templ_size, templ_size, all_type[j], 0, 1);
matchTemplate(src, templ, dst, CV_TM_CCORR);
CPU_ON;
matchTemplate(src, templ, dst, CV_TM_CCORR);
CPU_OFF;
ocl::oclMat d_src(src), d_templ(templ), d_dst;
WARMUP_ON;
ocl::matchTemplate(d_src, d_templ, d_dst, CV_TM_CCORR);
WARMUP_OFF;
GPU_ON;
ocl::matchTemplate(d_src, d_templ, d_dst, CV_TM_CCORR);
GPU_OFF;
GPU_FULL_ON;
d_src.upload(src);
d_templ.upload(templ);
ocl::matchTemplate(d_src, d_templ, d_dst, CV_TM_CCORR);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(dst, ocl_dst, templ.rows * templ.cols * 1e-1);
}
}
int all_type_8U[] = {CV_8UC1};
std::string type_name_8U[] = {"CV_8UC1"};
for (size_t j = 0; j < sizeof(all_type_8U) / sizeof(int); j++)
{
for(templ_size = 5; templ_size <= 5; templ_size *= 5)
{
SUBTEST << src.cols << 'x' << src.rows << "; " << type_name_8U[j] << "; templ " << templ_size << 'x' << templ_size << "; CCORR_NORMED";
gen(src, size, size, all_type_8U[j], 0, 255);
gen(templ, templ_size, templ_size, all_type_8U[j], 0, 255);
matchTemplate(src, templ, dst, CV_TM_CCORR_NORMED);
CPU_ON;
matchTemplate(src, templ, dst, CV_TM_CCORR_NORMED);
CPU_OFF;
ocl::oclMat d_src(src);
ocl::oclMat d_templ(templ), d_dst;
WARMUP_ON;
ocl::matchTemplate(d_src, d_templ, d_dst, CV_TM_CCORR_NORMED);
WARMUP_OFF;
GPU_ON;
ocl::matchTemplate(d_src, d_templ, d_dst, CV_TM_CCORR_NORMED);
GPU_OFF;
GPU_FULL_ON;
d_src.upload(src);
d_templ.upload(templ);
ocl::matchTemplate(d_src, d_templ, d_dst, CV_TM_CCORR_NORMED);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(dst, ocl_dst, templ.rows * templ.cols * 1e-1);
}
}
SANITY_CHECK(dst, 1e-4);
}
else if (impl == "plain")
{
TEST_CYCLE() cv::matchTemplate(src, templ, dst, CV_TM_CCORR);
SANITY_CHECK(dst, 1e-4);
}
#ifdef HAVE_OPENCV_GPU
else if (impl == "gpu")
CV_TEST_FAIL_NO_IMPL();
#endif
else
CV_TEST_FAIL_NO_IMPL();
}
typedef TestBaseWithParam<Size> CV_TM_CCORR_NORMEDFixture;
PERF_TEST_P(CV_TM_CCORR_NORMEDFixture, matchTemplate, OCL_TYPICAL_MAT_SIZES)
{
// getting params
const Size srcSize = GetParam(), templSize(5, 5);
const std::string impl = getSelectedImpl();
// creating src data
Mat src(srcSize, CV_8UC1), templ(templSize, CV_8UC1), dst;
const Size dstSize(src.cols - templ.cols + 1, src.rows - templ.rows + 1);
dst.create(dstSize, CV_8UC1);
declare.in(src, templ, WARMUP_RNG).out(dst)
.time(srcSize == OCL_SIZE_2000 ? 10 : srcSize == OCL_SIZE_4000 ? 23 : 2);
// select implementation
if (impl == "ocl")
{
ocl::oclMat oclSrc(src), oclTempl(templ), oclDst(dstSize, CV_8UC1);
TEST_CYCLE() cv::ocl::matchTemplate(oclSrc, oclTempl, oclDst, CV_TM_CCORR_NORMED);
oclDst.download(dst);
SANITY_CHECK(dst, 2e-2);
}
else if (impl == "plain")
{
TEST_CYCLE() cv::matchTemplate(src, templ, dst, CV_TM_CCORR_NORMED);
SANITY_CHECK(dst, 2e-2);
}
#ifdef HAVE_OPENCV_GPU
else if (impl == "gpu")
CV_TEST_FAIL_NO_IMPL();
#endif
else
CV_TEST_FAIL_NO_IMPL();
}

View File

@ -45,142 +45,147 @@
//M*/
#include "perf_precomp.hpp"
using namespace perf;
using std::tr1::tuple;
using std::tr1::get;
///////////// ConvertTo////////////////////////
PERFTEST(ConvertTo)
CV_ENUM(ConvertToMatType, CV_8UC1, CV_8UC4)
typedef tuple<Size, ConvertToMatType> ConvertToParams;
typedef TestBaseWithParam<ConvertToParams> ConvertToFixture;
PERF_TEST_P(ConvertToFixture, ConvertTo,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
ConvertToMatType::all()))
{
Mat src, dst, ocl_dst;
ocl::oclMat d_src, d_dst;
// getting params
ConvertToParams params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
int all_type[] = {CV_8UC1, CV_8UC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4"};
std::string impl = getSelectedImpl();
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
// creating src data
Mat src(srcSize, type), dst;
const int dstType = CV_MAKE_TYPE(CV_32F, src.channels());
dst.create(srcSize, dstType);
declare.in(src, WARMUP_RNG).out(dst);
// select implementation
if (impl == "ocl")
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] << " to 32FC1";
ocl::oclMat oclSrc(src), oclDst(srcSize, dstType);
gen(src, size, size, all_type[j], 0, 256);
//gen(dst, size, size, all_type[j], 0, 256);
TEST_CYCLE() oclSrc.convertTo(oclDst, dstType);
//d_dst.upload(dst);
src.convertTo(dst, CV_32FC1);
CPU_ON;
src.convertTo(dst, CV_32FC1);
CPU_OFF;
d_src.upload(src);
WARMUP_ON;
d_src.convertTo(d_dst, CV_32FC1);
WARMUP_OFF;
GPU_ON;
d_src.convertTo(d_dst, CV_32FC1);
GPU_OFF;
GPU_FULL_ON;
d_src.upload(src);
d_src.convertTo(d_dst, CV_32FC1);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(dst, ocl_dst, 0.0);
}
oclDst.download(dst);
SANITY_CHECK(dst);
}
else if (impl == "plain")
{
TEST_CYCLE() src.convertTo(dst, dstType);
SANITY_CHECK(dst);
}
#ifdef HAVE_OPENCV_GPU
else if (impl == "gpu")
CV_TEST_FAIL_NO_IMPL();
#endif
else
CV_TEST_FAIL_NO_IMPL();
}
///////////// copyTo////////////////////////
PERFTEST(copyTo)
typedef ConvertToMatType copyToMatType;
typedef tuple<Size, copyToMatType> copyToParams;
typedef TestBaseWithParam<copyToParams> copyToFixture;
PERF_TEST_P(copyToFixture, copyTo,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
copyToMatType::all()))
{
Mat src, dst, ocl_dst;
ocl::oclMat d_src, d_dst;
// getting params
copyToParams params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
int all_type[] = {CV_8UC1, CV_8UC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4"};
std::string impl = getSelectedImpl();
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
// creating src data
Mat src(srcSize, type), dst(srcSize, type);
declare.in(src, WARMUP_RNG).out(dst);
// select implementation
if (impl == "ocl")
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
ocl::oclMat oclSrc(src), oclDst(srcSize, type);
gen(src, size, size, all_type[j], 0, 256);
//gen(dst, size, size, all_type[j], 0, 256);
TEST_CYCLE() oclSrc.copyTo(oclDst);
//d_dst.upload(dst);
src.copyTo(dst);
CPU_ON;
src.copyTo(dst);
CPU_OFF;
d_src.upload(src);
WARMUP_ON;
d_src.copyTo(d_dst);
WARMUP_OFF;
GPU_ON;
d_src.copyTo(d_dst);
GPU_OFF;
GPU_FULL_ON;
d_src.upload(src);
d_src.copyTo(d_dst);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(dst, ocl_dst, 0.0);
}
oclDst.download(dst);
SANITY_CHECK(dst);
}
else if (impl == "plain")
{
TEST_CYCLE() src.copyTo(dst);
SANITY_CHECK(dst);
}
#ifdef HAVE_OPENCV_GPU
else if (impl == "gpu")
CV_TEST_FAIL_NO_IMPL();
#endif
else
CV_TEST_FAIL_NO_IMPL();
}
///////////// setTo////////////////////////
PERFTEST(setTo)
typedef ConvertToMatType setToMatType;
typedef tuple<Size, setToMatType> setToParams;
typedef TestBaseWithParam<setToParams> setToFixture;
PERF_TEST_P(setToFixture, setTo,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
setToMatType::all()))
{
Mat src, ocl_src;
Scalar val(1, 2, 3, 4);
ocl::oclMat d_src;
// getting params
setToParams params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
const Scalar val(1, 2, 3, 4);
int all_type[] = {CV_8UC1, CV_8UC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4"};
std::string impl = getSelectedImpl();
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
// creating src data
Mat src(srcSize, type);
declare.in(src);
// select implementation
if (impl == "ocl")
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
ocl::oclMat oclSrc(srcSize, type);
gen(src, size, size, all_type[j], 0, 256);
src.setTo(val);
CPU_ON;
src.setTo(val);
CPU_OFF;
d_src.upload(src);
WARMUP_ON;
d_src.setTo(val);
WARMUP_OFF;
d_src.download(ocl_src);
TestSystem::instance().ExpectedMatNear(src, ocl_src, 1.0);
GPU_ON;;
d_src.setTo(val);
GPU_OFF;
GPU_FULL_ON;
d_src.upload(src);
d_src.setTo(val);
GPU_FULL_OFF;
}
TEST_CYCLE() oclSrc.setTo(val);
oclSrc.download(src);
SANITY_CHECK(src);
}
else if (impl == "plain")
{
TEST_CYCLE() src.setTo(val);
SANITY_CHECK(src);
}
#ifdef HAVE_OPENCV_GPU
else if (impl == "gpu")
CV_TEST_FAIL_NO_IMPL();
#endif
else
CV_TEST_FAIL_NO_IMPL();
}

View File

@ -43,50 +43,59 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "perf_precomp.hpp"
using namespace perf;
using std::tr1::tuple;
using std::tr1::get;
///////////// Moments ////////////////////////
PERFTEST(Moments)
CV_ENUM(MomentsMatType, CV_8UC1, CV_16SC1, CV_32FC1, CV_64FC1)
typedef tuple<Size, MomentsMatType> MomentsParams;
typedef TestBaseWithParam<MomentsParams> MomentsFixture;
PERF_TEST_P(MomentsFixture, DISABLED_Moments,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
MomentsMatType::all()))
{
Mat src;
bool binaryImage = 0;
// getting params
MomentsParams params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
int all_type[] = {CV_8UC1, CV_16SC1, CV_32FC1, CV_64FC1};
std::string type_name[] = {"CV_8UC1", "CV_16SC1", "CV_32FC1", "CV_64FC1"};
std::string impl = getSelectedImpl();
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
// creating src data
Mat src(srcSize, type), dst(7, 1, CV_64F);
const bool binaryImage = false;
cv::Moments mom;
declare.in(src, WARMUP_RNG).out(dst);
// select implementation
if (impl == "ocl")
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j];
ocl::oclMat oclSrc(src);
gen(src, size, size, all_type[j], 0, 256);
cv::Moments CvMom = moments(src, binaryImage);
CPU_ON;
moments(src, binaryImage);
CPU_OFF;
cv::Moments oclMom;
WARMUP_ON;
oclMom = ocl::ocl_moments(src, binaryImage);
WARMUP_OFF;
Mat gpu_dst, cpu_dst;
HuMoments(CvMom, cpu_dst);
HuMoments(oclMom, gpu_dst);
GPU_ON;
ocl::ocl_moments(src, binaryImage);
GPU_OFF;
GPU_FULL_ON;
ocl::ocl_moments(src, binaryImage);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(gpu_dst, cpu_dst, .5);
}
TEST_CYCLE() mom = cv::ocl::ocl_moments(oclSrc, binaryImage);
cv::HuMoments(mom, dst);
SANITY_CHECK(dst);
}
else if (impl == "plain")
{
TEST_CYCLE() mom = cv::moments(src, binaryImage);
cv::HuMoments(mom, dst);
SANITY_CHECK(dst);
}
#ifdef HAVE_OPENCV_GPU
else if (impl == "gpu")
CV_TEST_FAIL_NO_IMPL();
#endif
else
CV_TEST_FAIL_NO_IMPL();
}

View File

@ -45,43 +45,46 @@
//M*/
#include "perf_precomp.hpp"
using namespace perf;
using std::tr1::tuple;
using std::tr1::get;
///////////// norm////////////////////////
PERFTEST(norm)
typedef TestBaseWithParam<Size> normFixture;
PERF_TEST_P(normFixture, DISABLED_norm, OCL_TYPICAL_MAT_SIZES)
{
Mat src1, src2, ocl_src1;
ocl::oclMat d_src1, d_src2;
// getting params
const Size srcSize = GetParam();
const std::string impl = getSelectedImpl();
double value = 0.0;
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
// creating src data
Mat src1(srcSize, CV_8UC1), src2(srcSize, CV_8UC1);
declare.in(src1, src2);
randu(src1, 0, 1);
randu(src2, 0, 1);
// select implementation
if (impl == "ocl")
{
SUBTEST << size << 'x' << size << "; CV_8UC1; NORM_INF";
ocl::oclMat oclSrc1(src1), oclSrc2(src2);
gen(src1, size, size, CV_8UC1, Scalar::all(0), Scalar::all(1));
gen(src2, size, size, CV_8UC1, Scalar::all(0), Scalar::all(1));
TEST_CYCLE() value = cv::ocl::norm(oclSrc1, oclSrc2, NORM_INF);
norm(src1, src2, NORM_INF);
CPU_ON;
norm(src1, src2, NORM_INF);
CPU_OFF;
d_src1.upload(src1);
d_src2.upload(src2);
WARMUP_ON;
ocl::norm(d_src1, d_src2, NORM_INF);
WARMUP_OFF;
d_src1.download(ocl_src1);
TestSystem::instance().ExpectedMatNear(src1, ocl_src1, .5);
GPU_ON;
ocl::norm(d_src1, d_src2, NORM_INF);
GPU_OFF;
GPU_FULL_ON;
d_src1.upload(src1);
d_src2.upload(src2);
ocl::norm(d_src1, d_src2, NORM_INF);
GPU_FULL_OFF;
SANITY_CHECK(value);
}
else if (impl == "plain")
{
TEST_CYCLE() value = cv::norm(src1, src2, NORM_INF);
SANITY_CHECK(value);
}
#ifdef HAVE_OPENCV_GPU
else if (impl == "gpu")
CV_TEST_FAIL_NO_IMPL();
#endif
else
CV_TEST_FAIL_NO_IMPL();
}

View File

@ -46,117 +46,130 @@
#include "perf_precomp.hpp"
///////////// PyrLKOpticalFlow ////////////////////////
PERFTEST(PyrLKOpticalFlow)
using namespace perf;
using std::tr1::get;
using std::tr1::tuple;
using std::tr1::make_tuple;
template <typename T>
static vector<T> & MatToVector(const ocl::oclMat & oclSrc, vector<T> & instance)
{
std::string images1[] = {"rubberwhale1.png", "aloeL.jpg"};
std::string images2[] = {"rubberwhale2.png", "aloeR.jpg"};
Mat src;
oclSrc.download(src);
for (size_t i = 0; i < sizeof(images1) / sizeof(std::string); i++)
for (int i = 0; i < src.cols; ++i)
instance.push_back(src.at<T>(0, i));
return instance;
}
CV_ENUM(LoadMode, IMREAD_GRAYSCALE, IMREAD_COLOR)
typedef tuple<int, tuple<string, string, LoadMode> > PyrLKOpticalFlowParamType;
typedef TestBaseWithParam<PyrLKOpticalFlowParamType> PyrLKOpticalFlowFixture;
PERF_TEST_P(PyrLKOpticalFlowFixture,
PyrLKOpticalFlow,
::testing::Combine(
::testing::Values(1000, 2000, 4000),
::testing::Values(
make_tuple<string, string, LoadMode>
(
string("gpu/opticalflow/rubberwhale1.png"),
string("gpu/opticalflow/rubberwhale1.png"),
LoadMode(IMREAD_COLOR)
)
// , make_tuple<string, string, LoadMode>
// (
// string("gpu/stereobm/aloe-L.png"),
// string("gpu/stereobm/aloe-R.png"),
// LoadMode(IMREAD_GRAYSCALE)
// )
)
)
)
{
PyrLKOpticalFlowParamType params = GetParam();
tuple<string, string, LoadMode> fileParam = get<1>(params);
const int pointsCount = get<0>(params);
const int openMode = static_cast<int>(get<2>(fileParam));
const string fileName0 = get<0>(fileParam), fileName1 = get<1>(fileParam);
Mat frame0 = imread(getDataPath(fileName0), openMode);
Mat frame1 = imread(getDataPath(fileName1), openMode);
const string impl = getSelectedImpl();
ASSERT_FALSE(frame0.empty()) << "can't load " << fileName0;
ASSERT_FALSE(frame1.empty()) << "can't load " << fileName1;
Mat grayFrame;
if (openMode == IMREAD_COLOR)
cvtColor(frame0, grayFrame, COLOR_BGR2GRAY);
else
grayFrame = frame0;
// initialization
vector<Point2f> pts, nextPts;
vector<unsigned char> status;
vector<float> err;
goodFeaturesToTrack(grayFrame, pts, pointsCount, 0.01, 0.0);
// selecting implementation
if (impl == "plain")
{
Mat frame0 = imread(abspath(images1[i]), i == 0 ? IMREAD_COLOR : IMREAD_GRAYSCALE);
if (frame0.empty())
{
std::string errstr = "can't open " + images1[i];
throw runtime_error(errstr);
}
Mat frame1 = imread(abspath(images2[i]), i == 0 ? IMREAD_COLOR : IMREAD_GRAYSCALE);
if (frame1.empty())
{
std::string errstr = "can't open " + images2[i];
throw runtime_error(errstr);
}
Mat gray_frame;
if (i == 0)
{
cvtColor(frame0, gray_frame, COLOR_BGR2GRAY);
}
for (int points = Min_Size; points <= Max_Size; points *= Multiple)
{
if (i == 0)
SUBTEST << frame0.cols << "x" << frame0.rows << "; color; " << points << " points";
else
SUBTEST << frame0.cols << "x" << frame0.rows << "; gray; " << points << " points";
Mat ocl_nextPts;
Mat ocl_status;
vector<Point2f> pts;
goodFeaturesToTrack(i == 0 ? gray_frame : frame0, pts, points, 0.01, 0.0);
vector<Point2f> nextPts;
vector<unsigned char> status;
vector<float> err;
calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, err);
CPU_ON;
calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, err);
CPU_OFF;
ocl::PyrLKOpticalFlow d_pyrLK;
ocl::oclMat d_frame0(frame0);
ocl::oclMat d_frame1(frame1);
ocl::oclMat d_pts;
Mat pts_mat(1, (int)pts.size(), CV_32FC2, (void *)&pts[0]);
d_pts.upload(pts_mat);
ocl::oclMat d_nextPts;
ocl::oclMat d_status;
ocl::oclMat d_err;
WARMUP_ON;
d_pyrLK.sparse(d_frame0, d_frame1, d_pts, d_nextPts, d_status, &d_err);
WARMUP_OFF;
GPU_ON;
d_pyrLK.sparse(d_frame0, d_frame1, d_pts, d_nextPts, d_status, &d_err);
GPU_OFF;
GPU_FULL_ON;
d_frame0.upload(frame0);
d_frame1.upload(frame1);
d_pts.upload(pts_mat);
d_pyrLK.sparse(d_frame0, d_frame1, d_pts, d_nextPts, d_status, &d_err);
if (!d_nextPts.empty())
d_nextPts.download(ocl_nextPts);
if (!d_status.empty())
d_status.download(ocl_status);
GPU_FULL_OFF;
size_t mismatch = 0;
for (int i = 0; i < (int)nextPts.size(); ++i)
{
if(status[i] != ocl_status.at<unsigned char>(0, i))
{
mismatch++;
continue;
}
if(status[i])
{
Point2f gpu_rst = ocl_nextPts.at<Point2f>(0, i);
Point2f cpu_rst = nextPts[i];
if(fabs(gpu_rst.x - cpu_rst.x) >= 1. || fabs(gpu_rst.y - cpu_rst.y) >= 1.)
mismatch++;
}
}
double ratio = (double)mismatch / (double)nextPts.size();
if(ratio < .02)
TestSystem::instance().setAccurate(1, ratio);
else
TestSystem::instance().setAccurate(0, ratio);
}
TEST_CYCLE()
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, err);
SANITY_CHECK(nextPts);
SANITY_CHECK(status);
SANITY_CHECK(err);
}
else if (impl == "ocl")
{
ocl::PyrLKOpticalFlow oclPyrLK;
ocl::oclMat oclFrame0(frame0), oclFrame1(frame1);
ocl::oclMat oclPts(1, static_cast<int>(pts.size()), CV_32FC2, (void *)&pts[0]);
ocl::oclMat oclNextPts, oclStatus, oclErr;
TEST_CYCLE()
oclPyrLK.sparse(oclFrame0, oclFrame1, oclPts, oclNextPts, oclStatus, &oclErr);
MatToVector(oclNextPts, nextPts);
MatToVector(oclStatus, status);
MatToVector(oclErr, err);
SANITY_CHECK(nextPts);
SANITY_CHECK(status);
SANITY_CHECK(err);
}
#ifdef HAVE_OPENCV_GPU
else if (impl == "gpu")
CV_TEST_FAIL_NO_IMPL();
#endif
else
CV_TEST_FAIL_NO_IMPL();
// size_t mismatch = 0;
// for (int i = 0; i < (int)nextPts.size(); ++i)
// {
// if(status[i] != ocl_status.at<unsigned char>(0, i))
// {
// mismatch++;
// continue;
// }
// if(status[i])
// {
// Point2f gpu_rst = ocl_nextPts.at<Point2f>(0, i);
// Point2f cpu_rst = nextPts[i];
// if(fabs(gpu_rst.x - cpu_rst.x) >= 1. || fabs(gpu_rst.y - cpu_rst.y) >= 1.)
// mismatch++;
// }
// }
// double ratio = (double)mismatch / (double)nextPts.size();
// if(ratio < .02)
// TestSystem::instance().setAccurate(1, ratio);
// else
// TestSystem::instance().setAccurate(0, ratio);
}

View File

@ -40,6 +40,15 @@
//
//M*/
#ifdef __GNUC__
# pragma GCC diagnostic ignored "-Wmissing-declarations"
# pragma GCC diagnostic ignored "-Wunused-function"
# if defined __clang__ || defined __APPLE__
# pragma GCC diagnostic ignored "-Wmissing-prototypes"
# pragma GCC diagnostic ignored "-Wextra"
# endif
#endif
#ifndef __OPENCV_PERF_PRECOMP_HPP__
#define __OPENCV_PERF_PRECOMP_HPP__
@ -50,6 +59,7 @@
#include <cstdio>
#include <vector>
#include <numeric>
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
@ -59,9 +69,12 @@
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/ocl/ocl.hpp"
#include "opencv2/ts/ts.hpp"
#include "opencv2/ts/ts_perf.hpp"
#include "opencv2/ts/ts_gtest.h"
#define OCL_SIZE_1000 cv::Size(1000, 1000)
#define OCL_SIZE_2000 cv::Size(2000, 2000)
#define OCL_SIZE_4000 cv::Size(4000, 4000)
#define OCL_TYPICAL_MAT_SIZES ::testing::Values(OCL_SIZE_1000, OCL_SIZE_2000, OCL_SIZE_4000)
#define Min_Size 1000
#define Max_Size 4000
@ -76,15 +89,15 @@ void gen(Mat &mat, int rows, int cols, int type, int low, int high, int n);
string abspath(const string &relpath);
int CV_CDECL cvErrorCallback(int, const char *, const char *, const char *, int, void *);
typedef struct
{
short x;
short y;
} COOR;
COOR do_meanShift(int x0, int y0, uchar *sptr, uchar *dptr, int sstep,
cv::Size size, int sp, int sr, int maxIter, float eps, int *tab);
void meanShiftProc_(const Mat &src_roi, Mat &dst_roi, Mat &dstCoor_roi,
int sp, int sr, cv::TermCriteria crit);
//typedef struct
//{
// short x;
// short y;
//} COOR;
//COOR do_meanShift(int x0, int y0, uchar *sptr, uchar *dptr, int sstep,
// cv::Size size, int sp, int sr, int maxIter, float eps, int *tab);
//void meanShiftProc_(const Mat &src_roi, Mat &dst_roi, Mat &dstCoor_roi,
// int sp, int sr, cv::TermCriteria crit);
template<class T1, class T2>

View File

@ -45,88 +45,103 @@
//M*/
#include "perf_precomp.hpp"
using namespace perf;
using std::tr1::tuple;
using std::tr1::get;
///////////// pyrDown //////////////////////
PERFTEST(pyrDown)
CV_ENUM(pyrDownMatType, CV_8UC1, CV_8UC4)
typedef tuple<Size, pyrDownMatType> pyrDownParams;
typedef TestBaseWithParam<pyrDownParams> pyrDownFixture;
PERF_TEST_P(pyrDownFixture, pyrDown,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
pyrDownMatType::all()))
{
Mat src, dst, ocl_dst;
int all_type[] = {CV_8UC1, CV_8UC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4"};
// getting params
pyrDownParams params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
std::string impl = getSelectedImpl();
// creating src data
Mat src(srcSize, type), dst;
Size dstSize((srcSize.height + 1) >> 1, (srcSize.width + 1) >> 1);
dst.create(dstSize, type);
declare.in(src).out(dst);
// select implementation
if (impl == "ocl")
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
ocl::oclMat oclSrc(src), oclDst(dstSize, type);
gen(src, size, size, all_type[j], 0, 256);
TEST_CYCLE() cv::ocl::pyrDown(oclSrc, oclDst);
pyrDown(src, dst);
oclDst.download(dst);
CPU_ON;
pyrDown(src, dst);
CPU_OFF;
ocl::oclMat d_src(src);
ocl::oclMat d_dst;
WARMUP_ON;
ocl::pyrDown(d_src, d_dst);
WARMUP_OFF;
GPU_ON;
ocl::pyrDown(d_src, d_dst);
GPU_OFF;
GPU_FULL_ON;
d_src.upload(src);
ocl::pyrDown(d_src, d_dst);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(dst, ocl_dst, dst.depth() == CV_32F ? 1e-4f : 1.0f);
}
SANITY_CHECK(dst);
}
else if (impl == "plain")
{
TEST_CYCLE() cv::pyrDown(src, dst);
SANITY_CHECK(dst);
}
#ifdef HAVE_OPENCV_GPU
else if (impl == "gpu")
CV_TEST_FAIL_NO_IMPL();
#endif
else
CV_TEST_FAIL_NO_IMPL();
}
///////////// pyrUp ////////////////////////
PERFTEST(pyrUp)
typedef pyrDownMatType pyrUpMatType;
typedef tuple<Size, pyrUpMatType> pyrUpParams;
typedef TestBaseWithParam<pyrUpParams> pyrUpFixture;
PERF_TEST_P(pyrUpFixture, pyrUp,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
pyrUpMatType::all()))
{
Mat src, dst, ocl_dst;
int all_type[] = {CV_8UC1, CV_8UC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4"};
// getting params
pyrUpParams params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
for (int size = 500; size <= 2000; size *= 2)
std::string impl = getSelectedImpl();
// creating src data
Mat src(srcSize, type), dst;
Size dstSize(srcSize.height << 1, srcSize.width << 1);
dst.create(dstSize, type);
declare.in(src).out(dst);
// select implementation
if (impl == "ocl")
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
ocl::oclMat oclSrc(src), oclDst(dstSize, type);
gen(src, size, size, all_type[j], 0, 256);
TEST_CYCLE() cv::ocl::pyrDown(oclSrc, oclDst);
pyrUp(src, dst);
oclDst.download(dst);
CPU_ON;
pyrUp(src, dst);
CPU_OFF;
ocl::oclMat d_src(src);
ocl::oclMat d_dst;
WARMUP_ON;
ocl::pyrUp(d_src, d_dst);
WARMUP_OFF;
GPU_ON;
ocl::pyrUp(d_src, d_dst);
GPU_OFF;
GPU_FULL_ON;
d_src.upload(src);
ocl::pyrUp(d_src, d_dst);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(dst, ocl_dst, (src.depth() == CV_32F ? 1e-4f : 1.0));
}
SANITY_CHECK(dst);
}
else if (impl == "plain")
{
TEST_CYCLE() cv::pyrDown(src, dst);
SANITY_CHECK(dst);
}
#ifdef HAVE_OPENCV_GPU
else if (impl == "gpu")
CV_TEST_FAIL_NO_IMPL();
#endif
else
CV_TEST_FAIL_NO_IMPL();
}

View File

@ -45,110 +45,120 @@
//M*/
#include "perf_precomp.hpp"
using namespace perf;
using std::tr1::tuple;
using std::tr1::get;
///////////// Merge////////////////////////
PERFTEST(Merge)
CV_ENUM(MergeMatType, CV_8U, CV_32F)
typedef tuple<Size, MergeMatType> MergeParams;
typedef TestBaseWithParam<MergeParams> MergeFixture;
PERF_TEST_P(MergeFixture, Merge,
::testing::Combine(::testing::Values(OCL_SIZE_1000, OCL_SIZE_2000),
MergeMatType::all()))
{
Mat dst, ocl_dst;
ocl::oclMat d_dst;
// getting params
MergeParams params = GetParam();
const Size srcSize = get<0>(params);
const int depth = get<1>(params), channels = 3;
int channels = 4;
int all_type[] = {CV_8UC1, CV_32FC1};
std::string type_name[] = {"CV_8UC1", "CV_32FC1"};
std::string impl = getSelectedImpl();
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
// creating src data
const int dstType = CV_MAKE_TYPE(depth, channels);
Mat dst(srcSize, dstType);
vector<Mat> src(channels);
for (vector<Mat>::iterator i = src.begin(), end = src.end(); i != end; ++i)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
Size size1 = Size(size, size);
std::vector<Mat> src(channels);
for (int i = 0; i < channels; ++i)
{
src[i] = Mat(size1, all_type[j], cv::Scalar::all(i));
}
merge(src, dst);
CPU_ON;
merge(src, dst);
CPU_OFF;
std::vector<ocl::oclMat> d_src(channels);
for (int i = 0; i < channels; ++i)
{
d_src[i] = ocl::oclMat(size1, all_type[j], cv::Scalar::all(i));
}
WARMUP_ON;
ocl::merge(d_src, d_dst);
WARMUP_OFF;
GPU_ON;
ocl::merge(d_src, d_dst);
GPU_OFF;
GPU_FULL_ON;
for (int i = 0; i < channels; ++i)
{
d_src[i] = ocl::oclMat(size1, all_type[j], cv::Scalar::all(i));
}
ocl::merge(d_src, d_dst);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(dst, ocl_dst, 0.0);
}
i->create(srcSize, CV_MAKE_TYPE(depth, 1));
declare.in(*i, WARMUP_RNG);
}
declare.out(dst);
// select implementation
if (impl == "ocl")
{
ocl::oclMat oclDst(srcSize, dstType);
vector<ocl::oclMat> oclSrc(src.size());
for (vector<ocl::oclMat>::size_type i = 0, end = src.size(); i < end; ++i)
oclSrc[i] = src[i];
TEST_CYCLE() cv::ocl::merge(oclSrc, oclDst);
oclDst.download(dst);
SANITY_CHECK(dst);
}
else if (impl == "plain")
{
TEST_CYCLE() cv::merge(src, dst);
SANITY_CHECK(dst);
}
#ifdef HAVE_OPENCV_GPU
else if (impl == "gpu")
CV_TEST_FAIL_NO_IMPL();
#endif
else
CV_TEST_FAIL_NO_IMPL();
}
///////////// Split////////////////////////
PERFTEST(Split)
typedef MergeMatType SplitMatType;
typedef tuple<Size, SplitMatType> SplitParams;
typedef TestBaseWithParam<SplitParams> SplitFixture;
PERF_TEST_P(SplitFixture, Split,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
SplitMatType::all()))
{
//int channels = 4;
int all_type[] = {CV_8UC1, CV_32FC1};
std::string type_name[] = {"CV_8UC1", "CV_32FC1"};
// getting params
MergeParams params = GetParam();
const Size srcSize = get<0>(params);
const int depth = get<1>(params), channels = 3;
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
std::string impl = getSelectedImpl();
// creating src data
Mat src(srcSize, CV_MAKE_TYPE(depth, channels));
declare.in(src, WARMUP_RNG);
// select implementation
if (impl == "ocl")
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j];
Size size1 = Size(size, size);
ocl::oclMat oclSrc(src);
vector<ocl::oclMat> oclDst(channels, ocl::oclMat(srcSize, CV_MAKE_TYPE(depth, 1)));
Mat src(size1, CV_MAKE_TYPE(all_type[j], 4), cv::Scalar(1, 2, 3, 4));
std::vector<cv::Mat> dst, ocl_dst(4);
split(src, dst);
CPU_ON;
split(src, dst);
CPU_OFF;
ocl::oclMat d_src(size1, CV_MAKE_TYPE(all_type[j], 4), cv::Scalar(1, 2, 3, 4));
std::vector<cv::ocl::oclMat> d_dst;
WARMUP_ON;
ocl::split(d_src, d_dst);
WARMUP_OFF;
GPU_ON;
ocl::split(d_src, d_dst);
GPU_OFF;
GPU_FULL_ON;
d_src.upload(src);
ocl::split(d_src, d_dst);
for(size_t i = 0; i < dst.size(); i++)
d_dst[i].download(ocl_dst[i]);
GPU_FULL_OFF;
vector<double> eps(4, 0.);
TestSystem::instance().ExpectMatsNear(dst, ocl_dst, eps);
}
TEST_CYCLE() cv::ocl::split(oclSrc, oclDst);
AssertEQ(channels, 3);
Mat dst0, dst1, dst2;
oclDst[0].download(dst0);
oclDst[1].download(dst1);
oclDst[2].download(dst2);
SANITY_CHECK(dst0);
SANITY_CHECK(dst1);
SANITY_CHECK(dst2);
}
else if (impl == "plain")
{
vector<Mat> dst(channels, Mat(srcSize, CV_MAKE_TYPE(depth, 1)));
TEST_CYCLE() cv::split(src, dst);
AssertEQ(channels, 3);
Mat & dst0 = dst[0], & dst1 = dst[1], & dst2 = dst[2];
SANITY_CHECK(dst0);
SANITY_CHECK(dst1);
SANITY_CHECK(dst2);
}
#ifdef HAVE_OPENCV_GPU
else if (impl == "gpu")
CV_TEST_FAIL_NO_IMPL();
#endif
else
CV_TEST_FAIL_NO_IMPL();
}